搜档网
当前位置:搜档网 › 等差数列的前n项和公式推导及例题解析

等差数列的前n项和公式推导及例题解析

等差数列的前n项和公式推导及例题解析
等差数列的前n项和公式推导及例题解析

等差数列的前n 项和·例题解析

一、等差数列前n 项和公式推导:

(1) Sn=a1+a2+......an-1+an 也可写成

Sn=an+an-1+......a2+a1

两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

=n(a1+an)

所以Sn=[n (a1+an )]/2 (公式一)

(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得

Sn=na1+ [n(n+1)d]/2(公式二)

二、对于等差数列前n 项和公式的应用

【例1】 等差数列前10项的和为140,其中,项数为

奇数的各项的和为125,求其第6项.

解 依题意,得

10a d =140a a a a a =5a 20d =125

1135791++++++101012()-????? 解得a 1=113,d=-22.

∴ 其通项公式为

a n =113+(n -1)·(-22)=-22n +135

∴a 6=-22×6+135=3

说明 本题上边给出的解法是先求出基本元素a 1、d ,

再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而

直接去求,所列方程组化简后可得

相减即得+,

a

2a9d=28

a4d=25

a5d=3 6

1

1

1

?

?

?

即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.

解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3

若a m=b N,则有3n-1=5N-3

即=+ n N 21

3 () N-

若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以

N=1,4,7,…,40 n=1,6,11,…,66

∴两数列相同项的和为

2+17+32+…+197=1393

【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为

[ ]

A .1,3,5

B .1,3,7

C .1,3,99

D .1,3,9

解 C 2b =a 5a b =3a 由题设+?

又∵ 14=5a +3b ,

∴ a =1,b =3

∴首项为1,公差为2

又+

∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99

∴ a =1,b =3,c =99

【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.

解 依题意2=1+(2n +2-1)d

前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212

由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=++

+-=+-=11112122

9131222

913()()()() nd =511 由①,有(2n +1)d=1

由④,⑤,解得,d =111n =5 ∴ 共插入10个数.

【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .

解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212

且S m =S n ,m ≠n

∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122

d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212

∴S m+n =0

【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .

分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12

d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.

解 d S na d 3a 3d =21ba 15d =24

n 111设公差为,由公式=+得++n n ()-???12 解方程组得:d =-2,a 1=9

∴a n =9+(n -1)(n -2)=-2n +11

由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112

其余各项为负.数列{a n }的前n 项和为:

S 9n (2)=n 10n n 2=+--+n n ()-12

∴当n ≤5时,T n =-n 2+10n

当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n

∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50

即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22?????N

说明 根据数列{a n }中项的符号,运用分类讨论思想可

求{|a n |}的前n 项和.

【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.

解法一 由a 6+a 9+a 12+a 15=34

得4a 1+38d =34

又=+×S 20a d 20120192

=20a 1+190d

=5(4a 1+38d)=5×34=170

解法二 S =(a +a )202

=10(a a )20120120×+ 由等差数列的性质可得:

a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17

S 20=170

【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.

解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得

(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②???

由②,有a 1=-2-4d ,代入①,有d 2=4

再由d >0,得d =2 ∴a 1=-10

最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:

a 4+a 6=a 3+a 7 即a 3+a 7=-4

又a 3·a 7=-12,由韦达定理可知:

a 3,a 7是方程x 2+4x -12=0的二根

解方程可得x 1=-6,x 2=2

∵ d >0 ∴{a n }是递增数列

∴a 3=-6,a 7=2

d =a =2a 10S 1807120--a 373

,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若

S T n n a b n n =+231100100

,则等于 [ ]

A 1

B C D ....23199299

200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312

=+

解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231

∵2a 100=a 1+a 199,2b 100=b 1+b 199

∴××选.a b a b 100100199199=a b =21993199+1=199299

C 11++ 解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn

∵S T n n n n =+231

可设S n =2n 2k ,T n =n(3n +1)k

∴∴××a b S S T T n k n k n n k n n k

n n n n a b n n n n n n =--=--+---+=--=--=--=--112210010022131131142622131

2100131001199299

()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由

已知,将和写成什么?若写成,+,S T n n n n =+231

S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.

【例10】 解答下列各题:

(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;

(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;

(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;

(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值. 分析与解答

(1)a =a (62)d d =562+-=---1734

a 9=a 6+(9-6)d=-17+3×(-5)=-32

(2)a 1=19,a n+2=89,S n+2=1350

∵∴+×+S =

(a +a )(n +2)

2

n 2=2135019+89

=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********

23 (3)∵a 4+a 6+a 15+a 17=50

又因它们的下标有4+17=6+15=21

∴a 4+a 17=a 6+a 15=25

S =(a +a )2020120××2

10250417=+=()a a (4)∵a n =33-3n ∴a 1=30

S=(a+a)n

2

n

1n

·

×

=

-

=-+

=--+

()

()

633

2

3

2

63

2 3

2

21

2

321

8

2

2

2

n n

n n n

∵n∈N,∴当n=10或n=11时,S n取最大值165.

【例11】求证:前n项和为4n2+3n的数列是等差数列.

证设这个数列的第n项为a n,前n项和为S n.

当n≥2时,a n=S n-S n-1

∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]

=8n-1

当n=1时,a1=S1=4+3=7

由以上两种情况可知,对所有的自然数n,都有a n=8n -1

又a n+1-a n=[8(n+1)-1]-(8n-1)=8

∴这个数列是首项为7,公差为8的等差数列.

说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.

【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证?

由S n =an 2+bn ,得

当n ≥2时,a n =S n -S n-1

=an 2+bn -a(n -1)2-b(n -1)

=2na +b -a

a 1=S 1=a +b

∴对于任何n ∈N ,a n =2na +b -a

且a n -a n-1=2na +(b -a)-2(n -1)a -b +a

=2a(常数)

∴{a n }是等差数列.

?

若{a n }是等差数列,则

S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-12

12

2

21 若令

,则-,即d d 22=a a =b 1 S n =an 2+bn

综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:

充分性=+是等差数列.

必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2????

【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .

解法一 设{a n }的公差d

按题意,则有

S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--?????

??-+-121212 即+

-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+1212

12

11()()()()() =-(m +n)

解法二 设S x =Ax 2+Bx(x ∈N)

Am Bm n An Bn m 22+=①+=②?????

①-②,得A(m 2-n 2)+B(m -n)=n -m

∵m ≠n ∴ A(m +n)+B=-1

故A(m +n)2+B(m +n)=-(m +n)

即S m+n =-(m +n)

说明 a 1,d 是等差数列的基本元素,通常是先求出基

本元素,再

解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12

解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)

【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?

解 ∵S 偶项-S 奇项=nd

∴nd=90-75=15

又由a 2n -a 1=27,即(2n -1)d=27

nd 15 (2n 1)d 27n =5=-=∴???

【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.

解法一 建立S n 关于n 的函数,运用函数思想,求最大值.

根据题意:+×,=+×S =17a d S 9a d 1719117162982

∵a 1=25,S 17=S 9 解得d =-2

∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12

∴当n=13时,S n最大,最大值S13=169

解法二因为a1=25>0,d=-2<0,所以数列{a n}是递减等

差数列,若使前项和最大,只需解≥

,可解出.

n

a0

a0

n n

n+1

?

?

?

∵a1=25,S9=S17

∴×+×

×+

×

,解得-

925

2d=1725d d=2

981716

2

∴a n=25+(n-1)(-2)=-2n+27

-+≥

-++≥

∴2n270

2(n1)270

n13.5

n12.5

n=13?

?

?

?

?

?

?

即前13项和最大,由等差数列的前n项和公式可求得S13=169.

解法三利用S9=S17寻找相邻项的关系.

由题意S9=S17得a10+a11+a12+…+a17=0

而a10+a17=a11+a16=a12+a15=a13+a14

∴a13+a14=0,a13=-a14∴a13≥0,a14≤0

∴S13=169最大.

解法四根据等差数列前n项和的函数图像,确定取最大值时的n.

∵{a n}是等差数列

∴可设S n=An2+Bn

二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示

∵S9=S17,

∴对称轴x=9+17

2

=13

∴取n=13时,S13=169最大

二级等差数列求和公式及推导

二级等差数列求和公式就是后一项减前一项是等差数列,怎样求原数列的和? 二级等差数列求和公式 就是后一项减前一项是等差数列,怎样求原数列的和? a2-a1=k a3-a2=k+d a4-a3=k+2d …… an-a(n-1)=k+(n-2)d 相加

an-a1=(n-1)k+[1+2+……+(n-2)]d=(n-1)k+(n-2)(n-1)d/2 所以an=a1+(n-1)k+(n-2)(n-1) d/2 二阶等差数列怎样求和 a1=1 an-a(n-1)=2n-1 Sn=? a1 = 1 a2 - a1 = 2*2 -1

a3 - a2 = 2*3 -1 a4 - a3 = 2*4 -1 …… an - a(n-1) = 2*n - 1 以上等式相加后,得到通项公式 an = 1 + 2(2+3+4+……+n) - 1-1-1- …… -1 =2(1+2+3+……+n) - n =n(n+1) - n =n^2

检验: a2 - a1 = 4 - 1 = 2*2 - 1 a3 - a2 = 9 - 4 = 2*3 - 1 a4 - a3 = 16 -9 = 2*4 - 1 成立 下面求 Sn = 1^2 + 2^2 + 3^2 + …… + n^2 (n+1)^3 - n^3 = (n^3 + 3n^2 + 3n + 1) - n^3 = 3*n^2 + 3n + 1 利用上面这个式子有:

2^3 - 1^3 = 3*1^2 + 3*1 + 1 3^3 - 2^3 = 3*2^2 + 3*2 + 1 4^3 - 3^3 = 3*3^2 + 3*3 + 1 5^3 - 4^3 = 3*4^2 + 3*4 + 1 …… (n+1)^3 - n^3 = 3*n^2 + 3n + 1

等差数列的前n项和

等差数列的前n项和 1.理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n项和公式与二次函数的关系.(重点) 2.熟练掌握等差数列的五个基本量a1,d,n,a n,S n之间的联系,能够由其中的任意三个求出其余的两个.(重点) [基础·初探] 教材整理等差数列的前n项和 1.等差数列的前n项和公式 已知量首项、末项与项数首项、公差与项数 求和公式S n=n a1+a n 2S n=na1+ n n-1 2d 2.等差数列前n项和公式的函数特点 S n=na1+n n-1 2d= d 2n2+? ? ? ? ? a1- d 2n. d≠0时,S n是关于n的二次函数,且无常数项. 判断(正确的打“√”,错误的打“×”) (1)公差为零的数列不能应用等差数列的前n项和公式.() (2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.() (3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.() 【解析】(1)任何等差数列都能应用等差数列的前n项和公式. (2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式. (3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)×(2)×(3)√

[小组合作型] 与S n 有关的基本量的计算 (1)已知等差数列{a n }中,a 1=32,d =-1 2,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4; (3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10. 【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换. 【尝试解答】 (1)S n =n ·32+n n -1 2·? ?? ?? -12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×? ???? -12=-4. (2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+ 5×5-1 2 d =24, 即5a 1+10d =24,所以a 1+2d =24 5, 所以a 2+a 4=2(a 1+2d )=2×245=48 5. (3)因为a n =a 1+(n -1)d ,S n =na 1+ n n -1 2 d , 又a 1=1,a n =-512,S n =-1 022, 所以????? 1+n -1d =-512, ①n +1 2n n -1d =-1 022, ② 把(n -1)d =-513代入②得

等差数列前n项求和

2.3 等差数列的前n 项和 一、教学目标 1、理解等差数列的概念;探索并掌握等差数列的通项公式、前n 项和。 2、体会等差数列与二次函数的关系。 二、基础知识 1、数列前n 项和公式: 一般地,称n a a a a ++++...321为数列}{n a 的前n 项的和,用n S 表示,即n n a a a a S ++++= (321) 2、数列通项n a 与前n 项和n S 的关系 当2≥n 时,有n n a a a a S ++++=...321;13211...--++++=n n a a a a S ,所以n a =____________;当n=1时,11s a =。总上可得n a =____________ 3、等差数列}{n a 的前n 项和的公式=n S ________________=__________________ 4、若数列{}n a 的前n 项和公式为Bn An S n +=2(B A ,为常数),则数列{}n a 为 。 5、在等差数列}{n a 中,n S ;n S 2-n S ;n S 3-n S 2;。。。 仍成等差数列,公差为___________ 6、在等差数列}{n a 中:若项数为偶数2n 则=n S ________________;奇偶-s s =________________;=偶奇 s s ________________。 若项数为奇数2n-1则=-1n S ________________;偶奇-s s =________________;=偶奇 s s ________________。 7、若数列}{n a 与}{n b 均为等差数列,且前n 项和分别是n S 和n T ,则 =m m b a _____________。 三、典例分析 例1、已知数列{}n a 的前n 项和22+=n S n ,求此数列的通项公式。 解析:32111=+==s a ① )2(12]2)1[(2221≥-=+--+=-=-n n n n s s a n n n ② 在②中,当n=1时,1112=-?与①中的1a 不相等

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1. 准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解 决等差数列的相关问题 2. 通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生 对数学问题的观察、分析、概括和归纳的能力 3?激情参与、惜时高效,禾U 用数列知识解决具体问题,感受数列的应用价值 【重点】:等差数列的概念及等差数列通项公式的推导和应用 【难点】:对等差数列中“等差”特征的理解、把握和应用 【学法指导】 1.阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法 ; 2.完成教材助读设置的问题,然后结 合课本的基础知识和例题,完成预习自测; 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑” 一、知识温故 1?数列有几种表示方法? 2?数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1?一般地,如果一个数列从第 ________ 项起,每一项与它的前一项的差等于 ____________ 常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的 ___________ ,公差通常用字母 ___________________________ 表示。 2.由三个数a 、A 、b 组成的 ___________ 数列可以看成最简单的等差数列。这时 A 叫做a 与b 的等差数列即 3. 如果数列{a n }是公差为d 的等差数列,则a 2 a 1 a 5 a 1 4.通项公式为a n =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? ,a 3 a 1 a 4 a 1 1. 等差数列a 2d , a ,a 2d ?' A . a n a (n 1)d B. C . a n a 2(n 2)d D. 2.已知数列{, a n } 的通项公式为 a n A . 2 B. 3 C. 2 3. 已知a 1 b - 1 ?的通项公式是( a (n 3)d a 2nd 2n ,则它的公差为( D. 3 ,则a 与b 的等差中项为 【预习自测】 a n a n

等差数列前n项和公式及性质

2.2 等差数列的前n项和 第一课时等差数列前n项和公式及性质 【选题明细表】 基础达标 1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B ) (A)40 (B)42 (C)43 (D)45 解析:∵a1=2,a2+a3=13, ∴3d=13-4=9,∴d=3, a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B ) (A)28 (B)29 (C)30 (D)31

解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1, S偶=a2+a4+…+a2n=na n+1, ∴S奇-S偶=a n+1=29.故选B. 3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D ) (A)27 (B)36 (C)45 (D)54 解析:∵2a8=a5+a11=6+a11,∴a5=6, ∴S9===9a5=54.故选D. 4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若 S3=9,S6=36,则a7+a8+a9等于( B ) (A)63 (B)45 (C)36 (D)27 解析:由S3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B. 5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A ) (A)-2 (B)0 (C)1 (D)2 解析:由已知得2a n-=0, 又a n≠0,∴a n=2, ∴S2n-1===2(2n-1), ∴S2n-1-4n=-2.故选A.

等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计 职业技术学校刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。 学生分析: 数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。 教学目标: 知识与技能目标: 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 过程与方法目标: 培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标: 体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 教学用具:ppt 整节课分为三个阶段: 问题呈现阶段 探究发现阶段 公式应用阶段 问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道 这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100) 紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。 200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=? 据说,当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案: (1+100)+(2+99)+……+(50+51)=101×50=5050 【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。 问题呈现2: 图案中,第1层到第21层一共有多少颗宝石?

最新人教版高中数学必修五 等差数列通项公式优质教案

2.2.2 从容说课 本节课的主要内容是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质;让学生明白一个数列的通项公式是关于正整数n的一次型函数,那么这个数列必定是一个等差数列,使学生学会用图象与通项公式的关系解决某些问题在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在教学过程中,遵循学生的认 知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位,通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识 通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点,通过等差数列的图象的应用,通过等差数列通项公式的运用,渗透方程思想,进一步渗透数形结合思想、函数思想.通过引导学生积极探究,主动学习,提高学生学习积极性,也提高了课堂的教学效果 教学重点等差数列的定义、通项公式、性质的理解与应用 教学难点等差数列的性质的应用、灵活应用等差数列的定义及性质解决一些相关问题 教具准备多媒体及课件 三维目标 一、知识与技能 1.明确等差中项的概念 2.进一步熟练掌握等差数列的通项公式及推导公式,能通过通项公式与图象认识等差数列的性质 3.能用图象与通项公式的关系解决某些问题 二、过程与方法

1.通过等差数列的图象的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想 2.发挥学生的主体作用,讲练相结合,作好探究性学习 3.理论联系实际,激发学生的学习积极性 三、情感态度与价值观 1.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点 2.通过体验等差数列的性质的奥秘,激发学生的学习兴趣 教学过程 导入新课 师 同学们,上一节课我们学习了等差数列的定义,等差数列的通项公式,哪位同学能回忆一下什么样的 数列叫等差数列? 生 我回答,一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即a n -a n -1=d (n ≥2,n ∈N *),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d ”表示 师 对,我再找同学说一说等差数列{a n }的通项公式的内容是什么? 生1 等差数列{a n }的通项公式应是a n =a 1+(n -1)d 生2 等差数列{a n }还有两种通项公式:a n =a m +(n -m)d 或a n =p n +q(p 、q 是常数 师 好!刚才两位同学说得很好,由上面的两个公式我们还可以得到下面几种计算公差d 的公式:①d =a n -a n -1;② 11--= n a a d n ;③m n a a d m n --=.你能理解与记忆它们吗? 生3 公式②11--=n a a d n 与③m n a a d m n --=记忆规律是项的值的差比上项数之间的差(下标之差 [合作探究] 探究内容:如果我们在数a 与数b 中间插入一个数A ,使三个数a ,A ,b 成等差数列,那么数A 应满足什么样的条件呢?

高三数学《等差数列及其前n项和》知识点总结

高三数学《等差数列及其前n项和》知 识点总结 www.5y kj.co m 一、等差数列的有关概念 .定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d. 2.等差中项:数列a,A,b成等差数列的充要条件是A =/2,其中A叫做a,b的等差中项. 二、等差数列的有关公式 .通项公式:an=a1+d. 2.前n项和公式:Sn=na1+n/2d+d=n/2. 三、等差数列的性质 .若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq. 2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd. 3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d. 4.等差数列的增减性:d>0时为递增数列,且当

a1<0时前n项和Sn有最小值.d<0时为递减数列,且当a1>0时前n项和Sn有最大值. 5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和Sn=An2+Bn是{an}成等差数列的充要条件. 四、解题方法 .与前n项和有关的三类问题 知三求二:已知a1、d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想. Sn=d/2*n2+n=An2+Bn⇒d=2A. 利用二次函数的图象确定Sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧 已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…; 若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

求等差数列前n项和的最值问题的两种常用解法

求等差数列前n 项和的最值问题的两种常用解法 【必备方法】 1.函数法:利用等差数列前n 项和的函数表达式bn an S n +=2, 通过配方或借助图象求二次函数最值的方法求解,一定注意n 是正整数。 2.邻项变号法: ①0,01<>d a 时,满足???≤≥+0 01n n a a 的项数m 使得n S 取得最大值为m S ; ②当0,01>a a ,故n=7 时,n S 最大. 方法二:由113S S =可得d a d a 55113311+=+,把131=a 代入得2-=d ,故n n n n n S n 14)1(132+-=--=,根据二次函数性质,当n=7时,n S 最大. 方法三:根据131=a ,113S S =,知这个数列的公差不等于零.由于113S S =说明这个数列的和先是单调递增的然后又单调递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性, 当113S S =时,只有72 113=+= n 时,n S 取得最大值. 答案:C 练习: 1.已知在等差数列}{n a 中,311=a ,n S 是它的前n 项的和,2210S S =. (1)求n S ;

完整版等差数列前n项和教案

等差数列的前n项和(第一课时)教学设计 【教学目标】 一、知识与技能 1 ?掌握等差数列前n项和公式; 2?体会等差数列前n项和公式的推导过程; 3?会简单运用等差数列前n项和公式。 二、过程与方法 1?通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法; 2.通过公式的运用体会方程的思想。 三、情感态度与价值观 结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。 【教学重点】 等差数列前n项和公式的推导和应用。 【教学难点】 在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。 【重点、难点解决策略】 本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。 【教学用具】 多媒体软件,电脑 【教学过程】 一、明确数列前n项和的定义,确定本节课中心任务:

前n 和呢,于数列{a n } :ai, a 2, as, a n ,…我 称ai+且2+23+…+a n 数列{a n } 的前n 和,用Sn 表不,Sn=ai+a2+a3+…+a 如 , Si =ax S 7 =ai+a 24-a 3+ +a 7,下面我们来共同探究如何求等差数列的前 n 项 和。 二、问题牵引,探究发现 问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人 与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱? 即:Sioo=l+2+3+ ? +100=? 著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同 学们思考高斯方法的特点,适合类型和方法本质。 同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为 相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办 呢? — ...... .... 探索与发现1:假如让你计算从第一人到第21人的钱数,高斯 的首尾配对法行吗? 即计算S2F1+2+3+?+21的值,在这个过程中让学生发现当 项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助 学生思考解决问题的办法,为引出倒序相加法做铺垫。 特点: 首项与末项的和: 第2项与倒数第2项的和: 第3项与倒数第3项的和: 1+ 100 = 101, 2 + 99 =101, 3+98 =101, 50+ 51 = 101, 101 X 50 = 5050。 5050 第50项与倒数第50项的和: 于是所求的和是: 1 + 2+3+ ? +100 二 101X50

等差数列概念及通项公式经典教案

等差数列的概念及通项公式 【学习目标】 1.准确理解等差数列、等差中项的概念,掌握等差数列通项公式的求解方法,能够熟练应用通项公式解决等差数列的相关问题. 2.通项对等差数列概念的探究和通项公式的推导,体会数形结合思想、化归思想、归纳思想,培养学生对数学问题的观察、分析、概括和归纳的能力. 3.激情参与、惜时高效,利用数列知识解决具体问题,感受数列的应用价值. 【重点】:等差数列的概念及等差数列通项公式的推导和应用. 【难点】:对等差数列中“等差”特征的理解、把握和应用. 【学法指导】 1. 阅读探究课本上的基础知识,初步掌握等差数列通项公式的求法; 2. 完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测; 3. 将预习中不能解决的问题标出来,并写到后面“我的疑惑”处. 一、知识温故 1.数列有几种表示方法? 2.数列的项与项数有什么关系? 3函数与数列之间有什么关系? 教材助读 1.一般地,如果一个数列从第 项起,每一项与它的前一项的差等于 常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的 ,公差通常用字母_______________ 表示。 2. 由三个数a 、A 、b 组成的 数列可以看成最简单的等差数列。这时A 叫做a 与b 的等差数列即 3.如果数列{n a } 是公差为d 的等差数列,则+=12a a ,+=13a a , +=14a a +=15a a +=1a a ,......,n 4.通项公式为n a =an+b (a,b 为常数)的数列都是等差数列吗?反之,成立吗? 【预习自测】 1. 等差数列d a 2-,a ,d a 2+…….的通项公式是( ) A .d n a a n )1(-+= B. d n a a n )3(-+= C .d n a a n )2(2-+= D. nd a a n 2+= 2.已知数列{n a } 的通项公式为n a n 23-=,则它的公差为( ) A .2 B.3 C. -2 D. -3 3.已知231+= a ,2 31 -=b ,则a 与b 的等差中项为

等差数列前n项和最值问题

等差数列前n项和最值 问题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

等差数列前n 项和的最值问题 问题引入:已知数列{},n a 的前n 项和212 n S n n =+,求这个数列的通项公式.数列是等差数列吗如果是,它的首项与公差分别是什么 解: 当n>1时:1122n n n a s s n -=-= =- 当n=1时:2 11131122 a s ==+?= 综上:122n a n =- ,其中:13 2 a =,2d = 探究1:一般地,如果一个数列{}n a 的前n 项和为:2,n s pn qn r =++≠0,那么这个数列一定是等差数列吗如果是,它的首项和公差分别是 什么结论:当r=0时为等差,当r ≠0时不是 一、 应用二次函数图象求解最值 例1:等差数列 {}n a 中, 1490,a S S >=,则n 的取值为多少时n S 最大 分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。 解析:由条件1 490,a S S >=可知,d<0,且211(1)()222 n n n d d S na d n a n -=+ =+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为49 6.52 n +==, 而n N * ∈,且介于6与7的中点,从而6n =或7n =时n S 最大。 1. 已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值. 解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2, n a =13-2(n-1), n a =15-2n, 由???≤≥+0a 0a 1n n 即? ??≤+-≥-0)1n (2150n 215得:≤n ≤,所以n=7时,n S 取最大值. 2. 已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值. 结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n= =5时,数列a n 前5项和取得最大值. 二、转化为求二次函数求最值 例2、在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值 分析:利用条件转化为二次函数,通过配方写成顶点式易求解。 解析:∵4a =1a +3d, ∴ -14=1a +9, 1a =-23, ∴ n S =-23n +2 )1(3-n n =23[(n -496)2- 24936], ∴ 当n= 496最小时,n S 最小,但由于n N * ∈,496 介于8与9之间, 8100S =-,999S =- 即有且8 9S S >,故当n =8 8S =-100最小. 点评:通过条件求出1a ,从而将n S 转化为关于n 的二次函数,然后配方求解,但要注意的是此处49 6 介于8与9之间,但并不能取两个整数,判断的标准是对称轴是否处于两个整数中点,否则只有一个取值。 3. 已知等差数列 {}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是(B )

等差数列的概念、等差数列的通项公式 说课稿 教案

等差数列的概念、等差数列的通项公式 从容说课 本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察——分析概括——师生互动,形成概念——启发引导,演绎结论——拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究. 在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化. 教学重点理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题. 教学难点(1)等差数列的性质,等差数列“等差”特点的理解、把握和应用; (2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 教具准备多媒体课件,投影仪 三维目标 一、知识与技能 1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项. 二、过程与方法 1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力; 2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性. 三、情感态度与价值观 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识. 教学过程 导入新课 师上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子) (1)0,5,10,15,20,25,…; (2)48,53,58,63,…; (3)18,15.5,13,10.5,8,5.5…; (4)10 072,10 144,10 216,10 288,10 366,…. 请你们来写出上述四个数列的第7项. 生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510. 师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说. 生这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7

《等差数列前n项和公式》教学设计

《等差数列的前n项和》教学设计 一、设计理念 让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 二、背景分析 本节课教学内容是高中课程标准实验教科书必修5(北师大)中第二章的第三节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 三、学情分析 1、学生已掌握的理论知识角度:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、学生了解数列求和历史角度:大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭

【精品】等差数列通项公式教案

等差数列通项公式教案 教学目标 1.明确等差数列的定义. 2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题 3.培养学生观察、归纳能力. 教学重点 1.等差数列的概念; 2.等差数列的通项公式 教学难点 等差数列“等差”特点的理解、把握和应用 教学方法 启发式数学 教具准备 投影片1张(内容见下面) 教学过程 (I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片) (Ⅱ)讲授新课 师:看这些数列有什么共同的特点? 1,2,3,4,5,6;① 10,8,6,4,2,…;② ③ 生:积极思考,找上述数列共同特点。 对于数列①(1≤n≤6);(2≤n≤6) 对于数列②-2n(n≥1) (n≥2) 对于数列③(n≥1) (n≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义: 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。 如:上述3个数列都是等差数列,它们的公差依次是1,-2,。 二、等差数列的通项公式 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得: 即:即:即:…… 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。 如数列①(1≤n≤6) 数列②:(n≥1) 数列③:(n≥1) 由上述关系还可得:即:则:=如:三、例题讲解 例1:(1)求等差数列8,5,2…的第20项

等差数列的前n项和公式推导及例题解析

等差数列的前n 项和·例题解析 一、等差数列前n 项和公式推导: 二、(1) Sn=a1+a2+......an-1+an 也可写成 三、 Sn=an+an-1+......a2+a1 四、 两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1) 五、 =n(a1+an) 六、 所以Sn=[n (a1+an )]/2 (公式一) 七、(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得 八、Sn=na1+ [n(n+1)d]/2(公式二) 九、 十、二、对于等差数列前n 项和公式的应用 【例1】 等差数列前10项的和为140,其中,项数为 奇数的各项的和为125,求其第6项. 解 依题意,得 10a d =140a a a a a =5a 20d =125 1135791++++++101012()-????? 解得a 1=113,d=-22. ∴ 其通项公式为 a n =113+(n -1)·(-22)=-22n +135 ∴a 6=-22×6+135=3 说明 本题上边给出的解法是先求出基本元素a 1、d ,

再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而 直接去求,所列方程组化简后可得 + + 相减即得+, a 2a9d=28 a4d=25 a5d=3 6 1 1 1 ? ? ? 即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和. 解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3 若a m=b N,则有3n-1=5N-3 即=+ n N 21 3 () N- 若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以 N=1,4,7,…,40 n=1,6,11,…,66 ∴两数列相同项的和为 2+17+32+…+197=1393 【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为

高中数学等差数列前n项和经典教案-等差数列前n项和公式教案

《等差数列前n项和》 (高一年级第一册·第三章第三节) 一、教材分析 ●教学内容 《等差数列前n项和》现行高中教材第三章第三节“等差数列前n项和”的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。 ●地位与作用 本节对“等差数列前n 项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其学习平台是学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用。 二、学情分析 ●知识基础:高一年级学生已掌握了函数,数列等有关基础知识,并且在初中已了 解特殊的数列求和。 ●认知水平与能力:高一学生已初步具有抽象逻辑思维能力,能在教师的引导下独 立地解决问题。 ●任教班级学生特点:我班学生基础知识较扎实、思维较活跃,能够很好的掌握教 材上的内容,能较好地应用数形结合的方法解决问题,但处理抽象问题的能力还有待进一步提高。 三、目标分析 1、教学目标 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: ●知识技能 (1)掌握等差数列前n项和公式; (2)掌握等差数列前n项和公式的推导过程; (3)会简单运用等差数列的前n项和公式。 ●数学思考 (1)通过对等差数列前n项和公式的推导过程,渗透倒序相加求和的数学方法; (2)通过公式的运用体会方程的思想;

(3) 通过运用公式的过程,提高学生类比化归、数形结合的能力。 ● 解决问题 创设由探索1+2+3+……+100的和,推广到探索一般的等差数列前n 项和 n n a a a a s ++++=......321的求和公式的情景,使学生进一步体会从特殊到一般的数学研究方法, 并使学生在反馈练习的过程中,进一步提高问题解决的能力。 ● 情感态度 结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。 2、教学重点、难点 ● 重点 等差数列前n 项和公式的推导和应用。 ● 难点 等差数列前n 项和公式的推导过程中渗透倒序相加的思想方法。 ● 重、难点解决的方法策略 本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点。 四、教学模式与教法、学法 本课采用“探究——发现”教学模式。 教师的教法突出活动的组织设计与方法的引导。 学生的学法突出探究、发现与交流。 五、过程设计 数形结合 类比化归 公式应用 知识回顾

高中数学-等差数列前n项和教案

§2.3 等差数列的前n 项和 授课类型:新授课 备课人: ●教学目标 知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题,了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前 项和的公式研究 的最值 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 情感态度与价值观:通过公式的推导过程,展现数学中的对称美。通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。 ●教学重点 探索并掌握等差数列的前n 项和公式,学会用公式解决一些实际问题,体会等差数列的前n 项和与二次函数之间的联系。 ●教学难点 等差数列前n 项和公式推导思路的获得。 ●教学过程 Ⅰ.课题导入 “小故事”: 高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。 教师问:“你是如何算出答案的? 高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050” 这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发 现和寻找出某些规律性的东西。 (2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。 Ⅱ.讲授新课 1. 推导等差数列的前n 项和 公式1:2 )(1n n a a n S +=

相关主题