搜档网
当前位置:搜档网 › 电机电磁噪声的分析

电机电磁噪声的分析

电机电磁噪声的分析
电机电磁噪声的分析

电机电磁噪声的分析

定转子的槽配合的选择对电磁噪音的影响很大,选择合适的槽配合是降低电磁噪音最有效、最经济的方法,因此,在选择定转子槽配合时要慎重。要避免出现幅值较大,次数较低的力波,幅值较大的定转子齿谐波磁场由定转子槽数决定,由电机学,可知定转子一阶齿谐波作用产生的力波次数m 为,

()()12m Z p Z p =±+±±+

式中1Z 、2Z - 定、转子槽数、p -极对数

定子相带谐波与转子一阶齿谐波作用产生的力波次数(对定子60 相带整数槽绕组)为:

()()26m Kp p Z p =+±±+

式中012K =±±?、、

定转子二阶齿谐波作用产生的力波次数为:

()()1222m Z p Z p =±+±±+

在设计时,应尽量避免定转子槽配合产生较低的m ,另外齿谐波幅值随转子槽数增大而减小。因此,为了降低电机的电磁噪音,在选择定转子槽数时应采用远槽多槽配合,即 2Z 与 1Z 相差较大及21Z Z ?,

电动机二维(力波频率与力波阶次)电磁噪声理论

由异步电动机气隙磁密波的作用,在定子铁心齿上产生的磁力有径向和切向两个分量。

径向分量使定子铁心产生的振动变形是电磁噪声的主要来源;

切向分量是与电磁转矩相对应的作用力矩,它使齿对其根部弯曲,并产生局部振动变形,这是电磁噪声的一个次要来源;

电磁噪声一般在极数较多、功率较大的电机中比较明显,并且是引起负载时噪声增大的重要原因。

三相异步电动机运行时,气隙中存在基波与一系列谐波磁场,它们相互作用除产生引起转矩的切向力外,还会产生许多高次、频率且各不相同的旋转径向电磁力波,这些径向力波作用在定转子上,使它发生径向周期性变形,即产生频率等于径向力波频率的振动,该振动传到机座,引起机座的振动,从而又使机座周围的空气脉动而引起电磁噪声,电机本身都有固有的振动频率,当径向力波频率与电机的固有频率相同或相近时,就会引起共振,产生很大的电磁噪音。

笼型异步电动机电磁噪声的频带通常为700 ~4000Hz 。在这个频率范围内,人的耳朵有很高的灵敏度,因而引起强烈的噪声感觉,严重时表现为十分刺耳的啸叫声。

降低电动机电磁噪声的基本条件,除了使力波频率远离电动机固有频率这一传统条件以外,电动机二维电磁噪声理论又增加一个使力波阶数不等于模态振型阶数这个新条件。因此,二维电磁噪声理论给电动机槽配合的选择提供了两个可以达到降低噪声的选择条件。

Y系列电动机的主要模态振型阶数大多数是2阶的,所以异步电机避免产生高电磁噪声的经验是消除2阶力波,二维电磁噪声理论给予异步电动机设计中槽配合的选择增加了必须考虑降低电磁噪声的新内容:

1.计算电磁力波阶数和力波频率;

2.计算电动机结构的模态参数,特别是模态频率和模态振型阶数;

3.在模态参数已确定的情况下,按二维电磁噪声理论中低噪声条件选择Z 1/Z 2;

电磁谐波磁场产生的力波

谐波磁场产生的力波所引起的振动与噪声,一方面与该力波的幅值大小有关,也与力波阶次的次数有关。在大多数情况下,次数小于8的影响较大,高次数的力波一般不考虑,所以一定要选择合适的定转子槽配合,以避免产生较低次的力波。

若Z 1和Z 2分别代表定、转子槽数,则要求:

Z 1-Z 2≠(0或2p);

Z 1-Z 2≠(±1或2p±1);

Z 1-Z 2≠(±2或2p±2);

Z 1-Z 2≠(±3或2p±3);

槽配合影响电机的附加转矩、附加损耗、电磁振动和电磁噪声。从降低电磁噪声方面考虑,选择槽配合时应注意以下问题:

(1) 选择合适的转子槽数来降低电磁噪声;

转子的槽数直接决定转子力波的频率,也就是说如果转子槽数选择不当,使力波频率与定子固有频率重合,电机将有明显的电磁噪声现象,可用下式计算:

12f p

Z k

f ?= 上式中:......2,1,0=k ;

f 1 = 定子工作频率;

(2)选择合适的定、转子槽数来提高电磁力波的阶次;

定转子槽数对电磁力波的阶次n 有直接的影响,对于不同槽配合的电机将产生不同阶次的力波。根据下式计算电磁力波的阶次n.

{

11221222Z K Z K p Z K Z K n ±±±=

上式中:......3,2,1,21±±±=K K

根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算:

式中:B ——气隙磁密

θ——机械角位移

μ0——真空磁导率

由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。

主波磁场产生的力波

主波磁场B 1所产生的径向力波为:P r1=P 0+P 1, 式中,是径向力的不变部分,它均匀作用于圆周上,使定子铁芯受到压缩应力。不变部分不会产生振动与噪声。

P1=P0cos(2pθ-2ω1t-2θ0),

其中p为主波的极对数,ω1—主波的角速度,θ0—初相角。P1是径向力波的交变部分,这个力波的角频率是2ω1,即2倍的电源频率,它使定、转子产生2倍电源频率的振动与噪声。它的强度与气隙磁密的平方成正比,这在两极的大容量电机中,容易产生较大的影响,而在一般情况下,由于它的频率较低,其噪声影响并不显著。

为了控制机械噪声和振动,首先必须判明产生振动或噪声的部位,使用仪器测绘电机噪音频谱曲线时,常用倍频程或1/3倍频程,电机噪音频谱分析一般用1%窄带频谱这样便于找出电机的主要噪音声源(如仅做分析不计量可以用掌上电脑的噪音测试软件测试对应峰值);

常见的电机噪声频率与发生部位:

1. 轴承 1)轴承滚珠:2000-5000Hz;

2)轴向振动:1000-1600Hz有明显峰值;

3)轴向串动声: 50-400 Hz有明显峰值(对应f=n/10, n/30,

n/60*Re/Rc 或E*n/30);

2. 端盖共振:1000-1500 Hz有峰值;

3. 机壳共振:500-1000 Hz有明显峰值;

4. 换向器噪音: m*n/60;

5. 转子动不平衡噪音:n/60 Hz;

6. 单边电磁拉力不平衡:峰值与电源频率对应;

7. 电机定子磁场径向磁拉力振动峰值与两倍电源频率对应;

8. 齿谐波噪音:ZQn/60+2f0 (Z为谐波次数,Q为转子齿数,f0为电源频);

9. 转差声:Sf0或2Sf0,S为转差率(%);

10. 空气动力共鸣声:在f=m*Z*n/60有明显峰值,m为风道数,Z为谐波次数;

电机的负载噪音的测试;

1.外拖法(负载隔离法);

2.对拖叠加法(施加负载法);

3.振动测试法;

电磁噪声是由在时间上和空间上作变化,并由电机各部分之间作用的磁拉力引起的。对于异步电机电磁噪声的形成的原因可以归为:

1. 气隙空间的磁场是一个旋转力波,它的径向力波使定子和转子发生径向变形和周期性震动,产生了电磁噪声。

2. 气隙磁场中除了电源基波分量外,还有高次谐波分量,高次谐波的径向力波也都分别作用于定转子铁心上,使它们产生径向变形和周期震动,在一般情况下,对高次谐波来说,电动机转子刚度相对较强,定子铁心的径向变形是主要的,可能产生较大的噪声。

3. 定子铁心不同阶次谐波的变形,有不同的固有频率,当径向力波的频率与铁心的某个固有频率接近或相等时,就会引起“共振”。在这种情况下,即使径向力的波幅不大,也会导致铁心变形、周期性震动和产生较大噪声。

4. 定子变形后引起周围空气振动,从而产生噪声。这时,定子相当于一个声辐射器。

5. 当铁心饱和时,将会使磁场正弦分布的顶部变得平坦,在磁场分布中加大了三次谐波分量,将使电磁噪声增加。

6. 定转子槽都是开口的,气隙磁导在旋转时也是在变化和波动的。气隙磁场中出现了很多由于槽开口引入的谐波。

我们可采用下列方法降低电磁噪声。

1. 尽量采用正弦绕组,减少谐波成份;

2. 选择适当的气隙磁密,不应太高,但过低又会影响材料的利用率;

3. 选择合适的槽配合,避免出现低次力波;

4. 采用转子斜槽,斜一个定子槽距;

5. 定、转子磁路对称均匀,迭压紧密;

6. 定、转子加工与装配,应注意它们的圆度与同轴度;

7. 注意避开它们的共振频率;

在现阶段要想设计一台彻底避免电磁噪声的电机是不可能的,我们所能做的就是使所设计的电机的气隙磁场谐波分量要小,产生的径向力波阶次数要高,使电机电磁激振力波的频率远离定子固有频率及变频器开关频率。尽量控制变频电机在较宽的调频范围内,始终保持理想噪声。

电机噪音分析

电机噪音分析 电机 1引言 噪声是由物体的振动产生的,再通过空气或其它弹性介质才能传播到人的耳朵。它由很多杂乱无章的单调声音混合而成。其中20Hz~20000Hz是人们耳朵可以听到的频率。低于20Hz的波叫次声波,高于20000Hz的波叫超声波。 噪声直接影响人们的身体健康,太强或长时间噪声,会使人十分痛苦、难受,甚至使人耳聋或死亡。噪声是现代社会污染环境的三大公害之一。为了保障人民的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准,如表1。 表1 每天最长工作时间(h)8 4 2 - 噪声dB(A) 85 93 96 115(最大) 电机是产生噪声的声源之一,电机又在家庭、商业、办公室以及工农医等行业广泛而大量地应用着,与人民的生活密切相关。随着社会的进步,人们对污染环境的噪声提出了越来越高的要求与限制,尤其对与人们密切接触的家用电器更是如此。这方面,先进国家尤其重视。我国政府历来重视人民的健康,对限制噪声不遗余力。表2是我国产品标准规定的部分家用电器的噪声限值。 表2我国部分家用电器的噪声限值dB(A) 电冰箱(250升以下)洗衣机吸油烟机电磁灶吸尘器洗衣机镇流器空调器(2500W、分体式) 52 75 75 50 84 72 35 45 因此,尽量降低电机的噪声,生产低噪声的电机,给人们创造一个舒适、安静的环境是每个设计者与生产者的职责。 2电机噪声的分类 根据电机噪声产生的不同方式,大致可把其噪声分为三大类: ①电磁噪声;②机械噪声;③空气动力噪声。 3电磁噪声 电磁噪声主要是由气隙磁场作用于定子铁芯的径向分量所产生的。它通过磁轭向外传播,使定子铁芯产生振动变形。其次是气隙磁场的切向分量,它与电磁转矩相反,使铁芯齿局部变形振动。当径向电磁力波与定子的固有频率接近时,就会引起共振,使振动与噪声大大增强,甚至危及电机的安全。 根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算: 式中:B——气隙磁密 θ——机械角位移 μ0——真空磁导率 由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。 3.1主波磁场产生的力波 主波磁场B1所产生的径向力波为:Pr1=P0+P1,式中,是径向力的不变部分,它均匀作用于圆周上,使定子铁芯受到压缩应力。不变部分不会产生振动与噪声。P1=P0cos(2pθ-2ω1t-2θ0),其中p主波的极对数,ω1—主波的角速度,θ0—初相角。P1是径向力波的交变部分,这个力波的角频率是2ω1,即2倍的电源频率,它使定、转子产生2倍电源频率的振动与噪声。它的强度与气隙磁密的平方成正比。这在两极的大容量电机中,容易产生较大的影响,而在一般情况下,由于它的频率较低,其影响不显著。 3.2谐波磁场产生的力波 谐波磁场产生的力波所引起的振动与噪声,一方面与该力波的幅值大小有关,也与力波的次数有

发电机电磁噪音分析

发电机电磁噪音分析与措施 发电机型号为SF250—28/1730,水轮机型号为ZDT03一LM一140,于9月18日发电。在试运行过程中出现噪音过大现象。经测试,机组试运行时,在空转状态下,距离机座1 m处测量噪音值为60 dB;起励建压后,有刺耳的高频声,离机座1m处测量噪音值为95 dB;满负荷运行时离机座1m处测量噪音值为110 dB。 1、噪音分析 发电机的噪音种类大体上可分为:电磁噪音、机械噪音、空气动力噪音。电磁噪音是电磁力作用在定、转子间的气隙中,产生旋转力波或脉动力波,是定子产生振动而辐射噪音。它与电机气隙内的谐波磁场及由此产生的电磁力波幅值、频率和极数,以及定子本身的振动特性,如固有频率、阻尼、机械阻抗有密切的关系。机械噪音是由机械接触而引起的,如轴承、电刷等,跟接触部件材料、制造质量及装配工艺、配合精度有关。空气动力噪音由电机内的冷却风扇产生,主要由风扇形式、通风道风阻、挡风板等决定。 2、定子绕组谐波计算 设计时借用24极1730机座的冲片,槽数为144槽,冲片尺寸:外径D1:1 730mm,内径Di:1490mm;槽形尺寸:b =13 mm,h =48 mm。每极每相的槽数q=1—5/7,定子绕组接线循环序列: 2 2 1 2 2 1 2;2 2 1 2 2 1 2--利用计算机谐波分析得KYP=0.9397、KQPA=0.9552、KQPB=0.9552、KQPC= 0.9552、FP= 100、FPF=0,但是在谐波磁场极对数10对极上存在反转波FPF=10.78.谐波磁场极对数v=10很接近基波极对数P=14,力波节点对数M =v—P=10—14=一2很小,因为振动幅值与力波节点对数(M2—1)2成反比,所以引起铁心共振。 3、机组结构布臵 因本机组为在原有旧厂房基础上的增容改造机,受原厂房结构限制,本发电机组采用无机坑布臵形式,发电机直接裸露在厂房地面上,声波因无机坑屏蔽隔离就直接传送到厂房内,所以噪音比传统有机坑布臵形式的发电机组大。 由现场测量的噪音数据得出加励磁后电机噪音急剧增大,表明噪音主要为电磁噪音。通过分析发电机电磁噪音主要的由于定子绕组谐波分量过大引起,加上发电机组采用无机坑布臵形式,所以噪音越明显。 4、治理措施 (1) 采用扩相带来降低谐波分量。扩相带后并联支路数、线圈尺寸及技术数据不变,只是定子绕组接线循环序列改为:2 2 2 1 2 1 2;2 2 2 1 2 1 2--利用计算机程序分析得KYP=0.9 397,KOPA=0.948,KOPB=0.948,KQPC=0.948,FP=100,FPF=0,谐波磁场极对数10对极上反转波下降至FPF=1.5986.由此可见基波极对数P=14附近的谐波磁场极对数反转波幅值大幅降低,从而达到降低谐波分量目的。扩相带后绕组系数KQPA=0.948 KQPB=0.948 KQPC= 0.948较扩相带前KQPA=0.9552 KQPB=0.9552 KQPC=0.9552略有所低,但对机组的性能影响不大。 (2) 增加机座断面惯性矩来避开共振区。增加支撑圆钢12根沿圆周均布并焊接牢固,使得机座断面惯性矩增加,从而改变定子铁心固有频率,避开共振区。 (3) 加厚加固挡风板以降低因振动引起的机械噪音。挡风板厚度由原 2 mm 改为4 mm,把紧螺栓由6xM10改为12xM10。

洗衣机运行过程中电机噪声大的原因及解决方案

洗衣机运行过程中电机产生噪声的原因及解决方法 0.引言 随着国民经济的发展,人民的生活水平不断提高,希望从繁重的家务劳动中解放出来,洗衣机作为家庭中的助手,受到广大消费者的喜爱。目前世界上主要流行的洗衣机有波轮式、滚筒式、搅拌式,我国生产的主要为前两种,其中生产量和社会拥有量最庞大的为波轮洗衣机】 【1。波轮洗衣机因为结构简单、耗电少、洗涤力强、成本低、便于维修等优点较适合我国广大居民的消费水平和洗涤需要,在国内使用最为广泛。洗衣机如果运用不当或者出现故障时会出现很大的震动和噪声,本文将以国内应用最为广泛的波轮式洗衣机为对象对产生震动和噪声的原因做全面性的阐述并提出解决方案。 1.洗衣机运行过程中噪音的来源 电机是洗衣机的动力,也是洗衣机的噪音源。电机的震动通过传动皮带和底座传到洗衣机的转动系统和箱体部分,产生洗衣机的噪音。 细分之后,电机的噪音可分为三种:电磁噪音、机械噪音和空气摩擦声。电磁噪声是指电机在运行中,定子和转子之间的脉动磁拉力、七夕不均匀产生的单向磁拉力等使定子产生周期震动而发生的噪音。机械噪音是电机在运行中,旋转部分和静止部分因震荡和摩擦而发出的声音。震源是轴承和旋转系统质量不对称而产生的周期震动。空气摩擦噪音是电机在运行时,转子上的风扇和叶片对空气产生冲击和摩擦而产生的声音。对洗衣机来说,转子上仅有铸铝小叶片,对空气的冲击和摩擦作用很小,因此可以忽略不计。

2.降低噪音的方法 (1)降低电磁噪音的方法由于电机加工和装配不良造成定子和转子气隙不均匀,电路中产生高次谐波,是引起电磁谐波大的主要原因。由于磁路系统设计等方面的原因,电磁噪音是无法完全消除的,只能通过调整、检修来降低电磁噪音。气隙的均匀性受零、部件精度及装配精度的影响,一般来说由于加工工艺的限制,转子的外圆与定子的内圆都不完全呈圆形,都有一定的椭圆度,转子轴的轴线与转子的外圆中心线也有一定的不同轴度,上下端盖的轴承中心线和定子内圆的中心线也不完全重合和平行,所以气隙的不均匀性总是存在的。增大气隙可以削弱由于气隙不均匀而产生的单向磁拉力,但是气隙是电动机进行能量转换的媒介,气隙增大将导致电机输出转矩下降。洗衣机电机的气隙一般为0.3mm,在电机已选定型的情况下,要想降低电磁噪声,只有通过减小气隙的不均匀性来解决。

调速永磁同步电动机高频电磁噪音的分析与抑制

调速永磁同步电动机高频电磁噪音的分析与抑制(已处 理) 调速永磁同步电动机高频电磁噪音的分析与抑制 Analysis and Simulation of High-Frequency Noise of Vector-Contorlled PMSM system 调速永磁同步电动机高频电磁噪音的分析与抑制 撰稿人:梁文毅 5 摘要 : 可以转化为对高次谐波电流产生的径向力波的分析,从而转化为对 PWM 信号产生高频电流谐波的分析。本文分析了矢量控制调速永磁 同步电动机驱动系统中产 目前永磁同步电动机矢量控制通常采用 d-q 轴数学模 生 PWM 谐波电流的原因,并基于此分析结果给出了高频 型,本节利用该数学模型对 d-q 轴谐波电流进行分析。电机电磁噪音的特征。基于分析结果,本文提出了解决该类电磁控制算法采用 SVPWM 控制,调制频率为 fPWM。 噪音的几种方式,并采用有限元仿真软件 EasiMotor 对分析结论进行仿真验证,仿真结果验证了理论分析的正确性。 1.1. 永磁同步电动机 d-q 轴谐波电流分析 [14] 关键词:永磁同步电动机、矢量控制、电磁噪音、PWM谐 波电流 在文献 [14] 中对 PWM 谐波电流进行了详细分析,根 据分析可知,通常情况下,d 轴谐波电流主要为一次 PWM

Abstract: 谐波电流,其大小与Δid1 直接相关,其中: 1 ?i ?UT cos2αδ 60 ? cos60 ?δ 2 3L d1 ss d The high frequency electromagnetic noise causedby PWM has been analysed in this paper based on 当α 30 +δ/2 时,Δid1 取最大值,其值为: the analysis of the PWM harmonic current in vector- controlled PMSM system. Based on this result, the2 ? i UT 1? cos60? δ 2 3L d1 ss d characteristic of the noise has been studied, also some of methods to reducing the noise has been proposed 这里,Ld 为 d 轴同步电感,δ为功角, Ts 为调制周期, and the simulation of finite element method in Us 为稳态运行时电压矢 量幅值, 为电压矢量在扇区中瞬 EasiMotor software verified the validity of methods. αKey words: PMSM, Vector Control, Electromagnetic α 时位置,0 。 60 noise, Harmonic current. 而 q 轴 PWM 谐波电流主要为二次 PWM 谐波电流, 其大小与Δiq2 直接相关,其值为:引言 3 ?i ?? 1 3U cos α? 30 U UT 4L q2 s dc q s q

电机电磁噪声的分析

电机电磁噪声的分析 定转子的槽配合的选择对电磁噪音的影响很大,选择合适的槽配合是降低电磁噪音最有效、最经济的方法,因此,在选择定转子槽配合时要慎重。要避免出现幅值较大,次数较低的力波,幅值较大的定转子齿谐波磁场由定转子槽数决定,由电机学,可知定转子一阶齿谐波作用产生的力波次数m 为, ()()12m Z p Z p =±+±±+ 式中1Z 、2Z - 定、转子槽数、p -极对数 定子相带谐波与转子一阶齿谐波作用产生的力波次数(对定子60 相带整数槽绕组)为: ()()26m Kp p Z p =+±±+ 式中012K =±±?、、 定转子二阶齿谐波作用产生的力波次数为: ()()1222m Z p Z p =±+±±+ 在设计时,应尽量避免定转子槽配合产生较低的m ,另外齿谐波幅值随转子槽数增大而减小。因此,为了降低电机的电磁噪音,在选择定转子槽数时应采用远槽多槽配合,即 2Z 与 1Z 相差较大及21Z Z ?, 电动机二维(力波频率与力波阶次)电磁噪声理论 由异步电动机气隙磁密波的作用,在定子铁心齿上产生的磁力有径向和切向两个分量。 径向分量使定子铁心产生的振动变形是电磁噪声的主要来源;

切向分量是与电磁转矩相对应的作用力矩,它使齿对其根部弯曲,并产生局部振动变形,这是电磁噪声的一个次要来源; 电磁噪声一般在极数较多、功率较大的电机中比较明显,并且是引起负载时噪声增大的重要原因。 三相异步电动机运行时,气隙中存在基波与一系列谐波磁场,它们相互作用除产生引起转矩的切向力外,还会产生许多高次、频率且各不相同的旋转径向电磁力波,这些径向力波作用在定转子上,使它发生径向周期性变形,即产生频率等于径向力波频率的振动,该振动传到机座,引起机座的振动,从而又使机座周围的空气脉动而引起电磁噪声,电机本身都有固有的振动频率,当径向力波频率与电机的固有频率相同或相近时,就会引起共振,产生很大的电磁噪音。 笼型异步电动机电磁噪声的频带通常为700 ~4000Hz 。在这个频率范围内,人的耳朵有很高的灵敏度,因而引起强烈的噪声感觉,严重时表现为十分刺耳的啸叫声。 降低电动机电磁噪声的基本条件,除了使力波频率远离电动机固有频率这一传统条件以外,电动机二维电磁噪声理论又增加一个使力波阶数不等于模态振型阶数这个新条件。因此,二维电磁噪声理论给电动机槽配合的选择提供了两个可以达到降低噪声的选择条件。 Y系列电动机的主要模态振型阶数大多数是2阶的,所以异步电机避免产生高电磁噪声的经验是消除2阶力波,二维电磁噪声理论给予异步电动机设计中槽配合的选择增加了必须考虑降低电磁噪声的新内容: 1.计算电磁力波阶数和力波频率; 2.计算电动机结构的模态参数,特别是模态频率和模态振型阶数;

无刷电机电磁噪音振动的最主要原因分析和有效解决途径

这个板块中关于噪音的问题非常多。在此我总结了1下,只从最常见发生机率最大也是刚刚开始做无刷最容易忽视的情况做1个分析和有效解决方案,我看好多的噪音求助就属于我下面要说的噪音种类了。先说这种情况下的原因,解决方案相信大家看完了就应该知道怎么做了。 所有的电动机均呈现某种形式的齿槽效应。 齿槽效应越低电动机转动越平稳。 在电动机和电动机的铁芯结构中的磁体所产生的非均匀磁场形成了齿槽效应:当转子中的磁体切割定子齿时产生磁力。当磁力从1个齿转到另外1个齿时,磁力帮助或阻止转动,使转子有规律的加速或者减速。不均匀的磁拉力产生的齿槽效应。电动机转动不平稳会引起速度脉动和转矩脉动、效率损耗、振动和噪音。速度脉动是指全过程内的速度变化或者速度波动;而转矩脉动则描述了全过程内的转矩变化,槽中绕铜导线将增加这一效果。而从1个齿到另外1个齿的不平衡拉力也在转子中产生了径向偏差,根据这一个产生的齿槽效应的强弱,相应幅度的电磁振动和电磁噪音将随之出现。这种情况在无刷电机中表现最为明显。 根据这个基础在保证满足基本性能要求情况下,调整相关参数或气隙或磁钢磁场强度或者其他,只要是减弱齿槽效应的就可以,相对来说已经做好的电机调气隙是最方便的,直接降低了气隙磁密,这样可以解决或者削弱90%(这里不是说噪音的幅度是说电磁噪音的种类)以上的电磁噪音,只不过需要牺牲其他方面的性能。具体调整矛盾的程度自己把握控制。 至于为什么,因为不管是电枢结构或者是电磁参数不当或者材料共振频率或者其他原因所形成的电磁振动噪音最终要表现于外时,必须得通过1个途径,那就是气隙。控制了气隙也就可以直接影响电磁振动。这里要说明一下电磁振动是电磁噪音的声源,他们本为1体,只不过因为其他相关原因表现出来的幅度不同而已。 这里我有点疑惑,这个相对于做过成熟的无刷设计者来说应该是众所周知了的问题吧?为什么没人把它明白的说出来,这个论坛上我没见到人说,只看见到处的噪音求助和讨论。 强磁无刷哦,比如我拿个例子来说,我以前做了个2.2kw的永磁无刷,磁钢是4mm厚,气隙1.0,做出来的电机那个电磁噪音无法抑制,什么加厚磁轭,什么控制机座的共振频率,什么改齿宽1系列减弱电机因齿槽效应的的方法来改都不行,照样噪音,后来把通过把转子外径车小了,1步1步的做到了1.6气隙才噪音才变没了,好了,这个时候的电机性能拿去和以前的1.0气隙的性能比却没降多少哦,知道为什么没?呵呵,原来是4mm的磁钢太厚了,材料过剩浪费了,就是说设计方案好多都存在输出过剩,设计出来后电机性能比设计的性能高的多哦,所以减了后并不降低多少的,这个样机我后来用了2.5mm的磁钢,气隙1.7mm,绕组稍微补偿了点,结果是性能ok,空载电流才0.14A(原来的空载电流是现在的10倍)负载电流也比原来的低,振动噪音全过。 重申:在这个论坛上叫喊噪音的做无刷电机的估计都是把气隙磁密取的过高来设计电机的,而在强磁电机设计中要想取合适的电机磁密,就只能加大气隙来适应,所以在有些时候能用粘接磁的地方就别用烧结磁了,浪费了。硬要用烧结磁的话就只要加大气隙,不然产生的振动噪音就n难搞定。 当然有相关特殊要求的的电机不在此列。 小无刷电机或者其他常规电机的情况和大无刷电机的不一样的 电机由于在加工过程中所带来的误差造成感应电动势的不完全对称、永磁材料的不一致、电

直流电机的磁噪声

直流电机的磁噪声 1产生原因 直流电机的定于是凸极式的,给我们的分析带来许多困难。其一是直流电机的凸极形磁极造成了定子圆周的严重不对称。由第三章的分析知道,这时,必须考虑广义齿(即磁极)的对称振动和广义齿的反对称振动。一般来说,直流电机定子振动时,变形主要在非磁极相连的那部分圆周。其二是磁极的凸极形状,使定子励磁绕组所产生的主极磁场类似于同步电机转子励磁绕组所产生的主极磁场。因此,完全可以借鉴同步电机的分沂。但现在所不同的是:同步电机中主极磁场是随转子一道同步旋转的,而直流电机中主极磁场由定子直流电所产生,是静止的。这样,直流电机的电磁噪声必然是与转子关系密切,从而得到与同步电机不同的结果。其三是凸极形是定子磁极,既然是静止的,气隙中的主要能量也必然是存贮在静止的区域中,即直流电机定子的磁极下的气隙中。由马克斯韦定律可知,直流电机的电磁振动激振力波或力矩主要是在磁极下起作用。 磁极上的作用力主要有随时间而变的径向力、切向力和弯曲力矩。既然考虑产生振动的交变力,它肯定不可能完全由定子方面直流电产生,必须有转子方面产生附加磁场的参加,才能产生这种交变力。因此,在直流电机电磁噪声的分析与控制中,转子所产生的磁场频率、极对数和幅值的分析才是至关重要的。为简便起见,在分析中不考虑切向力矩。 气隙磁场产生的径向力波为 22022001202212120(,)1{cos cos[()]}2221 cos{[()]} 22k n r k r h B b t p B kZ kZ t B B kZ kZ t νννννννθνθνθωμμννθωμΛ= =Λ+±-ΛΛ≈±±-∑∑∑∑∑∑(7-45) 由此可知:直流电机中由径向力波引起的振动和噪声频率为转子旋转齿额,即 221 260r Z n f kZ k ωπ== k=1,2,3… 实践证明,与同步电机一样,定子主极磁场与转子一阶齿谐波磁场相互作用,所产生的力波是引起直流电机电磁噪声和振动的主要成份。所不同的是,现在,由于力波主要在磁极下起作用,作用力或力矩在蹈极极面下求平均值。因此主要考虑主极磁场基波与一阶转子齿谐波磁场相互作用所产生的力波和力矩。这样,可以假定直流电机的气照磁场由二部分组成,一是主极磁场基波,二是转子开招引起的一阶齿谐波磁场。 诸自强7.4 直流电机的电磁噪声 多次实验研究表明:直流电机的磁振动主要是由齿频磁力产生。 2/60Z n πω=秒 式中 Z —电枢铁芯齿数。

三相异步电动机的电磁噪音分析和控制

龙源期刊网 https://www.sodocs.net/doc/4717764966.html, 三相异步电动机的电磁噪音分析和控制 作者:吴建兵 来源:《中华建设科技》2012年第09期 【摘要】对三相交流异步电动机的电磁噪音,从槽配合选择、气隙谐波磁场等方面进行分 析,找出引起电磁噪音的主要原因,最后提出控制电磁噪音的相关措施。 【关键词】异步电动机;气隙槽配合;谐波磁场;电磁噪音 Wu Jian— (Xi''an Tech Full Simo Motor Co., LtdXi''anShaanxi710018) 【Abstract】Three—phase AC induction motor electromagnetic noise from the slot with the select air gap harmonic magnetic field analysis to identify major cause electromagnetic noise, and 【Key words】Asynchronous motor;Air gap slot with;Harmonic magnetic field; 1.引言 Y、Y2系列三相异步电动机应用于各行各业,其负载噪音指标方面与国外产品相比尚有 较大差距。特别是2极高速中小型电动机的电磁噪音已超出国际贸易和国内特殊行业的最低要求。产品出口和国内特殊行业的应用受到严重影响。本文定性加简单的量化分析,阐明2极电机电磁噪音超标的原因及解决方案。 2. 噪音分类 异步电动机的噪音分三类:电磁噪音、空气动力噪音和机械噪音。空气动力噪音源于异步电动机的风扇通风噪音。由于空载和负载的转差非常小,从空载到负载通风噪音几近定值。因此,对于空载噪音达标而负载噪音超标的2极高速电机,通风噪音不是电磁噪音超标的主要原因。 机械噪音主要是由轴承噪音引起的。对于工艺成熟的Y、Y2系列电机,从降低机械噪音方面来使电磁噪音达标也是不明智的。 电磁噪音是由于电机气隙中各次谐波磁场引起的交变电磁力引发铁心及其相联的机械构件 中的振动和共振。采取更趋合理的方案是完全可以做到的。

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

电机噪音及振动分析

电动机的噪声和振动 电机类2007-06-18 22:02:51 阅读140 评论0 字号:大中小订阅 通常电动机的噪声和振动是同时发生的。电动机噪声包括通风噪声、电磁噪声和机械振动噪声。由于电动机修理操作不当。造成电机修理后的噪声和振动增大。原因如下: 电机修理后的噪声和振动增大引起原因 一、机械方面引起: 1、转子固定键未拧紧,有松动现象。 2、未做风扇静平衡,或做的精度不够。 3、转子不平蘅,未做静、动平衡检查。 4、定、转子铁心变形。 5、转轴弯曲,定、转子相擦。 6、地脚固定不稳,安装不正,不牢固。 7、铁心及铁心齿压板松动。 8、零部件加工不同心,装配公差不合理。 9、电动机组装和安装质量不好。 10、端盖、轴承盖螺丝未拧紧,或装偏。 二、电磁方面引起的: 1、三相绕组不平蘅。 2、绕组有短路或断路故障。 3、电刷接触不好,压力过大、过小。刷质不合要求。 4、断笼或端环开裂,松动。 5、改极时,定、转子槽数配合不适合。 6、集电环的短接片与短路环接触不稳定。 7、电源供电质量不好,三相不平蘅,有高次谐波等等。 三、风方面引起: 1、风扇有缺陷或损坏,如掉叶、变形、风扇不平衡产生噪声合振动。 2、风扇在轴上固定不牢固。 3、风罩与风叶之间的间隙不合适,过小或偏斜。 4、风路局部堵塞。 三种噪声简易鉴别方法

一、通风噪声鉴别法: 1、去掉风扇或堵住风口,让电机在无通风气流情况下运转,这时如果电动机噪声消失或显著减弱,则说明是通风噪声引起的。 2、变测量噪声的位置进行鉴别,因为以通风噪声为主的电动机,在电动机进口处和风扇附近处噪声最强。 3、磁噪声和机械噪声有时不稳定,时高时低,而通风噪声通常是稳定的。 4、用外径和型式不同的风扇,在不同转速下试运转,如果电动机噪声有明显差别,则说明电动机噪声主要是通风噪声引起的。 5、械噪声或电磁噪声较大的电动机,往往振动也大,但通风噪声与电动机振动关系不大。 二、机械噪声鉴别法: 1、机械噪声与外施电压大小和负载电流无关。 2、如果噪声不稳定,时高时低,那就是机械噪声,因为通风噪声是稳定的。 四、电磁噪声鉴别法:电磁噪声大小随磁场强弱、负载电流大小以及转速高低而变,利用这个特征,可采取下面办法进行鉴别。 1、突然断电法:由于机械惯性比电磁过渡过程慢得多,突然断电,无电磁因素影响,这是电动机转速几乎不变。如果这是电动机噪声突然消失或显著降低,可断定是电磁原因产生得噪声。 2、改变电压法:由于异步电动机转速随电压变化不大,当改变电压时,机械噪声和通风噪声基本不变,但电磁噪声随电压变化很大。 3、对拖法:用一台低噪声电动机拖动有噪声得被试电动机,这是噪声降低消失,则说明被拖动得电动机噪声是电磁噪声。 4、如果电磁噪声是因绕组不对称,匝间短路等缺陷引起,则三相电流不平蘅,如因转子断笼或绕线转子三相绕组不对称引起,则定子电流有波动。 解决噪声和振动的修理措施 一、降低机械方面引起的噪声的措施: 1、紧固所有装配件上的紧固螺栓,保证端盖,轴承盖,定、转子铁心,固定键,齿端板,风扇座,集流装置等配合不松动。 2、选用的轴承和润滑油,选用超精研磨、波纹度小于.2μM的电动机专用轴承,可降低轴承噪声。 3、装配轴承时要采用合理工具,最好热套。装配轴承时严禁猛打猛敲,使轴承受力不均。 4、增强修配零部件的机械强度的精度。 5、校正转子平衡。 6、提高电动机组装质量,保证同心度,与机械设备联接要正确,做好确定中心工作。 7、电刷硬度适当降低,刷压要合适,电刷在刷盒内间隙要合适(一般0.1MM左右) 8、检查铁心的偏心情况,必要时可适当当车圆转子表面(控制切削量0.10-0.20MM)。 9、检查电动机轴伸盒集电环的偏摆,时之合格。

电机电磁噪音原因与处理

电机电磁噪音原因与处理 电机产生电磁噪声的主要原因是谐波分量,尤其是那些频率和机座频率比较接近的谐波,这些谐波有可能引起共振而导致震动过大,产生很大的噪声。 选择合理的气隙,异步电机因为需要从电网上吸收无功电流建立励磁磁场,所以异步电机气隙不能太大,否则电机的功率将会降低。但是也不能太小,太小了则给生产制造增加困难,并且有可能因定转子同心度不够产生的单边磁拉力导致轴变形而造成定转子擦铁。 增加槽数,但是这将会使电机的铜材料用量增加和绝缘材料用量的增加,即增加电机的成本。一般为了消除齿谐波,异步电机一般都会采用转子斜槽。同步电机因转子斜极不方便而采用定子斜槽,通常都斜一个定子齿距。磁性槽楔在中小型电机中通常都不采用。在实际生产过程中,中小型电机降低噪声的主要方法还是选择合适的槽配合和选择合适的气隙以及斜槽。另外机械结构的加工精度以及装配都会对电机的噪声产生很大的影响。 所以异步电机降低电磁噪声的方法: 1)合理选择气隙磁密。 2)选择合适绕组形式和并联支路数 3)增加定子槽数以减少谐波分布系数 4)合适的槽配合 5)利用磁性槽楔 6)转子斜槽 对于已经生产出来的产品电磁噪音较大: 1)适当增加机座断面惯性矩,避开共振区; 2)同步凸极机可以通过计算,适当增加或减小极靴宽度来改善磁场分布,使得基波更接近正弦波,从而降低高次谐波分量,达到降低电磁噪音的效果; 3)选择更加适当的定子绕组接线轮换数,可以有效的降低电机绕组产生的反转波,从而降低噪音; 4)对于齿谐波含量较高的,可以采用磁性槽靴。 至于新设计的电机:

1)选择合适的槽数配合; 2)选择合适的极距; 3)增加并联支路数; 4)凸极机的,要选择合适的极靴宽度; 5)在电机性能保证的情况下,适当降低气隙磁密; 6)通过工艺保证定转子的同心度,使得单边磁拉力趋于零。

电机噪音问题总结

[转] 转载:电机噪声问题总结 电机2010-07-08 08:02:52 阅读20 评论0 字号:大中小订阅 异步电机降低电磁噪声的方法: (1)合理选择气隙磁密。 (2)选择合适绕组形式和并联支路数 (3)增加定子槽数以减少谐波分布系数 (4)合适的槽配合 (5)利用磁性槽楔 (6)转子斜槽 消除电机电磁噪声主要就是削弱谐波分量,尤其是那些频率和机座频率比较接近的谐波,如果不消弱这些谐波的话就很有可能引起共振而导致震动过大,产生很大的噪声。选择合理气隙,异步电机因为需要从电网上吸收无功电流建立励磁磁场,因为异步电机气隙不能太大,否则电机的功率将很低,但是也不能太小,太小了则给生产制造增加困难,并且有可能因定转子同心度不够产生的单边磁拉力导致轴的就形而造成定转子相擦。增加槽数则会使电机的铜材料用量增加和绝缘材料用量的增加,即增加电机的成本。一般为了消除齿谐波,异步电机一般都会采用转子斜槽。同步电机因转子斜极不方便而采用定子斜槽,通常都斜一个定子齿距。磁性槽楔在中小型电机中通常都不采用。在实际生产过程中,中小型电机降低噪声的主要方法还是选择合适的槽配合和选择合适的气隙以及斜槽。另外机械结构的加工精度以及装配都会对电机的噪声产生很大的影响。 1、对于已经生产出来的产品电磁噪音较大: 1)、适当增加机座断面惯性矩,避开共振区; 2)、同步凸极机可以通过计算,适当增加或减小极靴宽度来改善磁场分布,使得基波更接近正弦波,从而降低高次谐波分量,达到降低电磁噪音的效果; 3)、选择更加适当的定子绕组接线轮换数,可以有效的降低电机绕组产生的反转波,从而降低噪音; 4)、对于齿谐波含量较高的,可以采用磁性槽靴。 2、至于新设计的电机: 1)、选择合适的槽数配合; 2)、选择合适的极距; 3)、增加并联支路数; 4)、凸极机的,要选择合适的极靴宽度; 5)、在电机性能保证的情况下,适当降低气隙磁密; 6)、通过工艺保证定转子的同心度,使得单边磁拉力趋于零。 实践证明:电机电磁噪音的主要矛盾是定转子槽配合、转子斜槽及定转子的同心度。降噪措施主要是选用优秀的定转子槽配合及合理的转子斜槽宽,同时使电机气隙尽可能均匀。 电磁噪音是不可能完全消除的,对任何电机都是; 关键是有个度(量值), 有些人或客户对此近乎疯狂,听噪音几乎要恨不得钻到马达里面去; 对电机的噪音超标, 那时不允许的.我常对客户说,要马达没噪音, 马达不转就一点噪音就没有了.

马达电磁兼容(EMC)的解决方法

马达电磁兼容(EMC)的解决方法 马达,特别是带电刷的马达,会产生大量的噪声。电器要满足电磁兼容标准的要求,必须对这些噪声进行处理。解决电磁兼容的手段无非是电容、电感(扼流圈)、电源滤波器和接地。 不幸的是,电磁兼容问题通常是在产品已彻底完成设计并组装完毕时发现。这时考虑电磁兼容是十分困难的。制造商不仅面临着时间上的紧迫而且项目预算已经用完,责任工程师已经调到其它项目上,不能随时解决有关的问题。 解决这些问题的最好时机是在产品的设计阶段,而不是产品开发周期最终阶段。许多试验是可以在产品装入最终机壳之前进行的。 电容 电容通过向噪声源的公共端提供一条阻抗很低的通路来将电压尖峰旁路掉。尖峰电压主要是由马达电刷产生的。电容可以接在马达的每根引线与地之间,也可以接在两根引线之间。如果尖峰噪声是共模的,则跨接在引线之间的电容几乎没有什么效果。但是这种由电刷产生的随机噪声通常是差模的。 尽管这样,在电刷与地之间接入电容会有很大效果。电容安装什么位置或怎样连接主要取决于所面临的噪声的种类。电压尖峰是由电刷与换向片触点的断开产生的。尖峰的幅度可以通过将电刷材料换成较软的材料或增加电刷对换向片的压力来减小。但是这会缩短电刷的寿命周期和其它一些问题。 要使电容具有较好的滤波效果,它与噪声源的公共地之间的联线要尽量短。自由空间中的导线的电感约为每英寸1nH。如果电刷产生的噪声频率为50~100MHz,与电容连接的导线的长度为4~6英寸,那么即使不考虑电容的阻抗,仅导线电感的阻抗也已经有: XL=2πf L=3.77 总阻抗还需要加上电容(0.1μF)的阻抗,XC=1/2πf C=0.159Ω。 从结果可以看出,单看电容的阻抗,这是一个非常好的旁路型滤波器。但是由于引线电感的影响,已经根本不起滤波器的作用了。如果将导线的长度缩短为1英寸,则电感的阻抗仅为0.628Ω,这时滤波电容的效果提高了20%。 用马达外壳做接地端时,壳体上的漆必须去掉,以便导线能够良好的与地接触。依靠连接螺钉的4、5个螺纹来连接不是一个好办法。即使产品的外壳是金属的,将滤波器件直接安装在噪声源上,而不是靠近噪声源或外壳的某个位置,是一个聪明的选择。这消除额外的引线长度,使噪声回到噪声源的阻抗最小,具有最佳的滤波效果。 电源线滤波器 在许多产品中,电源线滤波器都必要的。电源线滤波器安装正确时,是一种简捷的解决干扰的方法。电源线滤波器保证了电网免受产品内部噪声的污染。但

电机轴承常见种异常声音的分析与解决精编WORD版

电机轴承常见种异常声 音的分析与解决精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生

解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值 B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发

解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围

电机噪音分析

电机噪音分析 本文转载自湘电集团有限公司https://www.sodocs.net/doc/4717764966.html,/ 1 引言 噪声是由物体的振动产生的,再通过空气或其它弹性介质才能传播到人的耳朵。它由很多杂乱无章的单调声音混合而成。其中20Hz~20000Hz是人们耳朵可以听到的频率。低于20Hz的波叫次声波,高于20000Hz的波叫超声波。 噪声直接影响人们的身体健康,太强或长时间噪声,会使人十分痛苦、难受,甚至使人耳聋或死亡。噪声是现代社会污染环境的三大公害之一。为了保障人民的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准,如表1。 表 1 每天最长工作时间(h)8 4 2 - 噪声dB(A) 85 93 96 115(最大) 电机是产生噪声的声源之一,电机又在家庭、商业、办公室以及工农医等行业广泛而大量地应用着,与人民的生活密切相关。随着社会的进步,人们对污染环境的噪声提出了越来越高的要求与限制,尤其对与人们密切接触的家用电器更是如此。这方面,先进国家尤其重视。我国政府历来重视人民的健康,对限制噪声不遗余力。表2是我国产品标准规定的部分家用电器的噪声限值。 表2 我国部分家用电器的噪声限值dB(A) 电冰箱(250升以下)洗衣机吸油烟机电磁灶吸尘器洗衣机镇流器空调器(2500W、分体式) 52 75 75 50 84 72 35 45

因此,尽量降低电机的噪声,生产低噪声的电机,给人们创造一个舒适、安静的环境是每个设计者与生产者的职责。 2 电机噪声的分类 根据电机噪声产生的不同方式,大致可把其噪声分为三大类: ①电磁噪声;②机械噪声;③空气动力噪声。 3 电磁噪声 电磁噪声主要是由气隙磁场作用于定子铁芯的径向分量所产生的。它通过磁轭向外传播,使定子铁芯产生振动变形。其次是气隙磁场的切向分量,它与电磁转矩相反,使铁芯齿局部变形振动。当径向电磁力波与定子的固有频率接近时,就会引起共振,使振动与噪声大大增强,甚至危及电机的安全。 根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算: 式中:B——气隙磁密 θ——机械角位移 μ0——真空磁导率 由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。 3.1 主波磁场产生的力波 主波磁场B1所产生的径向力波为:Pr1=P0+P1,式中,是径向力的不变部分,它均匀作用于圆周上,使定子铁芯受到压缩应力。不变部分不会产生振动与噪声。P1=P0cos(2p θ-2ω1t-2θ0),其中p主波的极对数,ω1—主波的角速度,θ0—初相角。P1是径向力波的交变部分,这个力波的角频率是2ω1,即2倍的电源频率,它使定、转子产生2倍电源频率的振动与噪声。它的强度与气隙磁密的平方成正比。这在两极的大容量电机中,容易产

电机电磁噪声的分析

电机电磁噪声的分析

电机电磁噪声的分析 定转子的槽配合的选择对电磁噪音的影响很大,选择合适的槽配合是降低电磁噪音最有效、最经济的方法,因此,在选择定转子槽配合时要慎重。要避免出 现幅值较大,次数较低的力波,幅值较大的定转子齿谐波磁场由定转子槽数决定, 由电机学,可知定转子一阶齿谐波作用产生的力波次数m为, m Z i p Z2 p 式中Z i、Z2-定、转子槽数、p-极对数 定子相带谐波与转子一阶齿谐波作用产生的力波次数(对定子60相带整数槽绕组)为: m 6Kp p Z2 p 式中KO、1、2 定转子二阶齿谐波作用产生的力波次数为: m 2Z1 p 2Z2 p 在设计时,应尽量避免定转子槽配合产生较低的m,另外齿谐波幅值随转子槽数 增大而减小。因此,为了降低电机的电磁噪音, 在选择定转子槽数时应采用远槽 多槽配合,即Z2与Z1相差较大及Z 2 Z 1, 电动机二维(力波频率与力波阶次)电磁噪声理论 由异步电动机气隙磁密波的作用,在定子铁心齿上产生的磁力有径向和切向两个分量 径向分量使定子铁心产生的振动变形是电磁噪声的主要来源; 切向分量是与电磁转矩相对应的作用力矩,它使齿对其根部弯曲,并产生局部振动

变形,这是电磁噪声的一个次要来源; 电磁噪声一般在极数较多、功率较大的电机中比较明显,并且是引起负载时噪声增大的重要原因。 三相异步电动机运行时,气隙中存在基波与一系列谐波磁场,它们相互作用 除产生引起转矩的切向力外,还会产生许多高次、频率且各不相同的旋转径向电磁力波,这些径向力波作用在定转子上,使它发生径向周期性变形,即产生频率等于径向力波频率的振动,该振动传到机座,引起机座的振动,从而又使机座周围的空气脉动而引起电磁噪声,电机本身都有固有的振动频率,当径向力波频率与电机的固有频率相同或相近时,就会引起共振,产生很大的电磁噪音。 笼型异步电动机电磁噪声的频带通常为700?4000Hz 。在这个频率范围内, 人的耳朵有很高的灵敏度,因而引起强烈的噪声感觉,严重时表现为十分刺耳的啸叫声。 降低电动机电磁噪声的基本条件,除了使力波频率远离电动机固有频率这一传统条件以外,电动机二维电磁噪声理论又增加一个使力波阶数不等于模态振型阶数这个新条件。因此,二维电磁噪声理论给电动机槽配合的选择提供了两个可以达到降低噪声的选择条件。 丫系列电动机的主要模态振型阶数大多数是2阶的,所以异步电机避免产生高 电磁噪声的经验是消除2阶力波,二维电磁噪声理论给予异步电动机设计中槽配 合的选择增加了必须考虑降低电磁噪声的新内容: 1.计算电磁力波阶数和力波频率; 2.计算电动机结构的模态参数,特别是模态频率和模态振型阶数; 3?在模态参数已确定的情况下,按二维电磁噪声理论中低噪声条件选择 Z1/Z2 ;

相关主题