搜档网
当前位置:搜档网 › 《生物医学信号处理》实习报告一

《生物医学信号处理》实习报告一

《生物医学信号处理》实习报告一
《生物医学信号处理》实习报告一

《生物医学信号处理》实习报告

两种方法计算得到的功率谱(图)

总结

根据两种方法计算得到的功率谱,分析它们的优缺点:

通过实验仿真可以直观地看出以下特性:

(1)功率谱估计中周期图法其特点是离散性大,曲线粗糙,方差较大,但是分辨率较高。

(2)经典功率谱估计的分辨率反比于有效信号的长度,但现代谱估计的分辨率可以不受此限制。

这是因为对于给定的N点有限长序列x(n),虽然其估计出的自相关函数也是有限长的,但是现代谱估计的一些隐含着数据和自相关函数的外推,使其可能的长度超过给定的长度,不象经典谱估计那样受窗函数的

数字信号处理在生物医学的应用

数字信号处理在生物医学领域的应用 作者:张春强 安徽农业大学工学院 车辆工程 13720482 摘要:在生物医学研究中有各种各样待提取和处理的信号,信号处理立即成为解决这些问题的有效方法之一。主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(Digital Signal Processing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。 而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 2 数字信号处理在生物医学工程中的应用 2.1 信号处理在DNA 序列中的应用 生物序列数据在数学上以字符串表示,每个字符对应于字母表中的一个字母。如 DNA 序列中,用 A,T,C,G 四个字母代表组成 DNA 序列的四种碱基。对数值化后的DNA 序列进行频谱分析发现基因序列蛋白质编码区存在周期 3行为,即其功率谱在1/3频率处有一谱峰。用傅利叶变换来分析基因序列的功率谱可以发现其蛋白质编码区,可以预测基因位置和真核细胞基因中独特的外显子。 1.1 DFT 求 DNA 序列功率谱 在对基因组序列进行计算分析之前,先将其转化为数值序列。设字母表Λ = {A ,C ,G ,T } ,取长度为N 的DNA 序列x[n],对于Λ中每个不同的字母都形成一个指示器序列[]n x α(0≤n ≤N-1,α∈Λ),在序列[]n x α中的某一个位置i 有: []其他)(01i n x ααα=???=(位置i 处的碱基为α) 该指示器的DFT 变换为 [][]n jw N n DFT k e n x k X --=∑=1 0αα,)10(-≤≤N k (1) 于是可以求得DNA 序列的功率谱:

生物医学信号处理历年精彩试题_电子科大_饶妮妮

生物医学信号处理试卷集 试卷一答案和评分标准: 一、假设有两个离散平稳随机过程)(),(n y n x ,m x m R 6 .0)(=, m y m R 8 .0)(=,它们统计独立,求这 两个随机过程的乘积的自相关函数和功率谱密度。(14分) 解: 设z=xy , m y x z m R m R m n y n y E m n x n x E m n y m n x n y n x E m n z n z E m R 48 .0)()()]()([)]()([)]()()()([)]()([)(==++=++=+=(6分) ∑==+∞ -∞ =-m m j m z j z e m R DTFT e P ωω48.0)]([)((4分) =ωcos 96.02304.17696 .0-(4分) 二、设线性系统如图所示,已知 n n n s ,相互独立,且ωω2 sin )(=j s e S , 21 )(= ωj n e S 。要求设计一 个滤波器ωω2 sin )(c e H j =,试确定c 使得滤波后的输出n s ?与真实信号n s 的均方误差最小,即 ])?[(2n n s s E -最小。(14分) 解答: 设误差为n n n s ? s e -=其自相关为: )m (R )m (R )m (R )m (R )]s ?s )(s ?s [(E )e e (E )m (R s ?s s ?s ?s s m n m n n n m n n e +--=--==+++(2分) 做傅立叶变化: )()()()()(???ω ωωωωj s j s s j s s j s j e e S e S e S e S e S +--=(4分) ω ωωωωωωω4262j n j s 2j j x 2j ?sin 21 sin ])(e S )(e S [)e (H )(e S )e (H )(c c e S j s +=+== (2分) ωωωωωω4i s i i sx i ?sin )e (S )e (H )e (S )e (H )(c e S j s s === ωωωωωω4i s i i xs i s ?sin )e (S )e (H )e (S )e (H )(c e S j s ===** (2分) 2 2 14321 c c +-=ξ (3分)

第6章空间分析

第6章空间分析 6.1空间数据查询及量算 查询和定位空间对象,并对空间对象进行量算是地理信息系统的基本功能之一,它是地理信息系统进行高层次分析的基础。在地理信息系统中,为进行高层次分析,往往需要查询、定位空间对象,并用一些简单的量测值对地理分布或现象进行描述,比如长度、面积、距离和形状等。实际上,空间分析首先始于空间查询和量算,它是空间分析的定量基础。 6.1.1空间查询 空间查询是从现有的信息中检索出符合特定条件的信息的过程。通过空间查询,GIS可以回答用户提出的简单问题。查询操作不对数据库中的数据做任何改动,也没有任何新数据或新实体生成。图形与属性的查询是空间查询中的两个基本部分,从这个角度出发,可以将空间查询分为三类:图形查询、属性查询与图形属性互查。 图形查询即通过图形查属性,是根据图形的空间位置来查询有关属性信息,包括实体之间的空间关系查询以及实体的属性信息查询等,称为图形查属性。地理信息系统软件一般都会提供一个INFO工具,让用户利用光标,用点选、画线、矩形、圆以及不规则多边形等工具选中地物,显示所查询对象的属性列表,可进行有关统计分析。该查询通常分为两步,首先借助空间索引,在地理信息系统数据库中快速

检索出被选空间实体,然后根据空间实体与属性的连接关系,得到所查询空间实体的属性列表。 属性查询是根据一定的属性条件来查询满足条件的空间实体的位置,是基于实体的属性信息进行查询,称为属性查图形。它与一般的非空间的关系数据库的SQL查询没有区别,只不过最后查询的结果需要再与图形关联起来,即查询到结果后,利用图形和属性的对应关系,进一步在图上用指定的显示方式将结果定位绘出。例如在中国行政区划图上查询人口大于4000万且城市人口大于1000万的省有哪些。 图形属性互查就是将空间关系和属性结合起来进行查询,并将最后结果以图形和属性两种方式显示出来。这种查询方式可以使空间信息和属性信息之间的联系得到更大的发挥,是实际生活中经常用到的查询。例如:查询京沪线沿线人口大于100万的城市及其各种属性信息。 另外,还有一种查询称为地址匹配,就是将文字性的描述地址与其空间的地理位置坐标建立对应关系的过程。例如根据一个地理名字(如学校名字)来定位相关实体并获得其属性信息。其基础是地理编码,即将一个地理名字与一个或若干个空间实体关联起来,或者与实体的某个属性关联起来,或者与某个地理坐标关联起来。地址匹配服务按照特定的步骤为地址查找匹配对象。首先要将地址标准化,然后服务器搜索地址匹配参考数据,查找潜在的位置。根据与地址的接近程度为每个候选位置指定分值,最后用分值最高的来匹配这个地址。

1生物医学信号概述

第一章生物医学信号概述 第一节学习生物医学信号处理的理由生物医学工程是一个应用性的研究领域,生物医学信号处理自然应该成为该专业的主干课程之一,使学生掌握处理信号和系统的方法。 信号处理的含义比纯粹的数学运算更深更广。生物医学信号处理以严谨的组织行为方式为分析和概念化物理行为提供了一个基础框架,不管这种行为是一个电子控制系统的输出还是一次种植与周围组织的反应。 对信号/系统进行计算能够获得较精确的分析结果,但对分析过程的理解(定性的)也十分重要。例如,一名学生建议用小波来检测心电图信号中的异常,则他/她必须理解小波变换的数学概念。另一名具有神经生理学兴趣的学生希望研究全身振动对视觉功能的影响,则他/她需要理解共振的概念(即使他/她已经忘记了量化这种现象的二阶差分方程)。类似地,一名要研究心率的神经中枢控制的学生,不管他/她用哪种方法来描述心率,都需要理解记忆或相关的概念以及在能量记录中瞬时变化的原因。简言之,作为一名生物医学工程师应该掌握信号处理的定性描述并具备应用定量分析方法解决生物医学问题的技能。通过学习《生物医学信号处理》课程,学生可以达到上述要求。 更具体地说,生物医学信号处理将教给学生两种主要技能:(1)为了提取原始的生物医学信息,获取和处理生物医学信号的技能;(2)解释处理结果性质的技能。为此,《生物医学信号处理》课程应该包含以下四个重要内容: (1)测量生物医学信号,即量化和校正测量仪器对待测信号的影响。 (2)操作(即滤波)生物医学信号,即识别和分离信号中的有用成份和无用成份。 (3)定量描述生物医学信号,即揭示产生生物医学信号的本质,根据第二步得出的结果预测信号未来的行为。 (4)探测生物医学信号源,即描述一个生物医学物理系统的输入与输出信号之间内在联系。 大多数信号处理教材都很强调计算和算法。对于生物医学工程专业的学生来说,如果在生物医学信号处理课程中仍选用大量信号处理的内容,则可能是熟悉知识的枯糙重复。本教材的宗旨是通过许多具体生物医学信号处理实例,将真实世界与理论研究联系起来,并指导学生如何应用一项理论去解决一个具体的生物医学问题。 第二节信号及其类型 信息是一个过程产生的能量的测量,而信号则是信息的一种表达形式。来自于真实世界的信号各不相同,但大致可分为四种类型:(1)确定性信号;(2)随机信号;(3)分形信号;(4)混沌信号,如图1-1(a)、(b)、(c)和(d)分别是四种类型信号的一个例子。 确定性信号在教材中常作为例子给出,是学生最熟悉的一类信号,但这类信号在真实世界中则较少出现。所谓确定性信号是指在已知足够过去值的条件下,能够准确预测该信号未来值的一类信号。例如,正弦波信号A Sinωt。换句话说,只要能够用数学封闭表达式来表达的一类信号就是确定的信号。 既使信号的全部过去值已知,也不能准确预测其未来值的一类信号称为随机信号。随机信号

生物医学信号处理的方法

生物医学信号处理的方法 生物医学仪器包括了诊断仪器和治疗仪器两大类。在诊断仪器中要寻找对诊断有意义的具有某种特征的信号或信号的某种特征量。在治疗仪器中同样需要确定特征信号的存在或信号特征量的大小去控制治疗部分的工作。一般说来,信号并不能直接提供这些信息,它们需要应用信号处理方法去提取。例如,临床的常规脑电图检查可为脑损伤、脑血栓、内分泌疾病等的诊断、预防和治疗提供信息。另外脑电图也常用来作睡眠、麻醉深度的监护。但是白发脑电图的时域波形很不规则。不但它的节律随精神状态变化而改变,而且在基本节律的背景下还会不时地发生一些瞬态变化。传统的分析方法是用领域分析方法,用它的基本节律作为脑电图的基本特征量。 从信号中提取特征量的常用方法有谱分析、波形分析、建立模型等多种。有了特征量,就要根据它们进行诊断。诊断就是分类。现用的模式分类方法有统计模式识别、句法分析、模糊模式识别等。上述这些内容正是信号处理学科的主要研究对象,实际上这些方法现在也并不成熟。对于生物医学信号中大量存在的非线性、非平稳、多变量等问题的分析还很初步,还需深入地研究和探讨。 由于干扰的影响,生物医学信号往往埋藏在噪声中,因此造成信息丢失或产生虚假信息,所以通常在进行生物医学信号处理以前,要对信号施加某种处理来降低噪声、增强信息。例如,在研究大脑感觉机制,提取诱发响应时,常常采用重复刺激方法和相干平均技术来克服自发脑电活动,增强有用信息。污染信号的噪声可以是加性的(即观测等于信号的噪声之和)、相乘性的(即观测等于信号与噪声的积);也可能有用的信息仅与信号的一部分有关,而与有用信息非相关部分也被看成噪声。总之,噪声的性质是多种多样的。数字滤波器是增强信息、抑制噪声的常用方法,然而它对于频带重叠的信号与噪声无能为力。因此消噪问题是生物医学信号处理研究的又一个重要内容。 目前生物医学信号处理中应用的抑制噪声和信号增强技术,常需要信号与噪声统计特性的先验知识,先验知识越完整,增强信号的效果越显著。然而得到这些先验知识常常又是困难的,这种要求限制了诸如维纳滤波、卡尔曼滤波等技术的应用。自适应方法可以自动调节参数来适应信号统计特性而不依赖先验知识,因而引起了广泛的注意。 在某种情况下,需要将信号从一个地点传送到另一个地点。有不少突发性疾病对患者威胁极大,例如,猝死和呼吸障碍,为了及时抢救,在患者家里安装监护系统,监护系统采集的信息经电话电路传到监护中心,使患者处于医护人员的监护之下。为了保证传输效率,或为了方便地保存、记录患者病历,需要尽量减

生物医学信号处理

1、生物医学简述 1、1生物医学信号概述 生物医学信号就是人体生命信息得体现,就是了解探索生命现象得一个途径。因此,深入进行生物医学信号检测与处理理论与方法得研究对于认识生命运动得规律、探索疾病预防与治疗得新方法以及发展医疗仪器这一高新技术产业都具有极其重要得意义。国内外对于生物医学信号检测处理理论与方法得研究都给予极大得重视。人体给出得信号非常丰富,每一种信号都携带着对应得一个或几个器官得生理病理信息。由于人体结构得复杂性,因此可以从人体得不同得“层次”得到各类信号,如器官得层次、系统得层次以及细胞得层次,这些信号大致分为电生理信号、非电生理信号、人体生理信号、生化信号、生物信息以及医学图像[1]。 1、2生物医学信号得特点 生物医学信号属于强噪声背景下得低频微弱信号,它就是由复杂得生命体发出得不稳定得自然信号,从信号本身特征、检测方式到处理技术,都不同于一般得信号。 ⑴信号弱,如心电信号在mV级,脑电信号在μV级,而诱发电位信号得幅度更小。 ⑵噪声强,人体就是电得导体,易感应出工频噪声;其次就是信号记录时受试者移动所产生得肌电噪声,由此引起电极移动所产生得信号基线漂移。另外,凡就是记录中所含有得不需要成分都就是噪声,如记录胎儿心电时混入得母亲得心电。 ⑶随机性强且一般就是非平稳信号,由于生物医学信号要受到生理与心理得影响,因此属于随机信号。 ⑷非线性,非线性信号源于非线性系统得输出,人体体表采集到得电生理信号都就是细胞膜电位通过人体系统后在体表叠加得结果,因此这些信号严格地说都就是非线性信号,但目前都就是把她们当作线性信号来处理[2]。 2、生物医学信号得检测 生物医学信号检测就是对生物体中包含地生命现象、状态、性质与成分等信

信号与系统在生物医学中的应用

信号与系统论文 题目:信号与系统在生物医学中的应用 学号:121417010133 班级:生医121班 姓名:张小鲜

信号与系统在生物医学中的应用 摘要 随着计算机技术和现代信息技术的飞速发展,信号与系统在实际生活中的应用越来越广泛,本文在信号与系统中占有重要分量的数字信号处理技术为例,讨论其在生物医学中的应用,从而阐述信号与系统在生物医学中的应用。数字信号处理(Digital Signal Processing DSP)是利用计算机或专用处理芯片,以数值计算的方法对信号进行采集、分析、变换和识别等加工处理,从而达到提取信息和便于应用的目的。 数字信号处理技术一诞生就显示了强大的生命力,展现了极为广阔的应用前景。接下来主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:生物医学;信号与系统;数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科学的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(DigitalSignalProcessing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 1.1生物医学信号特性

关于现阶段生物医学信号处理的技术与进展

关于现阶段生物医学信号处理的技术与进展[摘要] 生物电子学的迅速发展也推动着生物医学信号处理的快速进步。本 文对生物医学信号处理的研究现状作出介绍,同时通过分析典型系统,给出基于DSP的生物医学信号采集和分析系统的模型,并对面对的技术问题做出分析。最后指出今后的发展趋势及展望。 [关键词] 生物医学信号DSP小波虚拟仪器 引言 随着生物学和医学的发展,越来越多的人体和生物信号需要测定以供科研和诊断之用。生物医学信号处理被应用于医学教学、科研、临床、监控等,并显示出越来越重要的地位。生物医学信号包括各种生理参数,如脑电、心电、肌电等生物电信号;心跳、血压、呼吸、血流量、脉搏、心音等的非电量信号。这些信号均是强噪声背景下的低频(小于200Hz)微弱信号(幅度小于100 mV) ,这就对信号采集系统有很高的精度要求[1]。正由于采集的信号具有生物信号特有的特点:高背景噪声,且随机性大,即影响因素很多并且不可能用确定性的数学函数来表达,信号弱等[2],故需采用各种数字信号处理的方法来提取我们需要的信号。所以人体信号采集和分析系统的地位显得越来越重要。 一、生物医学信号处理的研究现状 1.基于DSP的生物医学信号采集和分析系统 现有的生物信号采集和分析系统大部分都是以PC机或工作站为核心的。其缺点是仅适合固定场合,灵活性差。并且计算机上用软件实现信号算法,虽然软件可以是自己编写的,也可以使用现成的软件包,但这种方法的缺点是速度太慢,不能用于实时系统,只能用于教学与仿真。如近些年发展迅速的Matlab,几乎可以实现所有数字信号处理的仿真[3]。便携式系统目前往往多是基于单片机系统,但由于单片机采用的是冯·诺依曼总线结构,所以单片机系统复杂,尤其是乘法运算速度慢,在运算量大的实时系统中很难有所作为,难以实现复杂的算法,特别是各种数字信号处理方面的大规模运算。近年来,随着大规模集成电路的发展,半导体制造厂商推出了高速低功耗特别适合于数字信号处理的嵌入式DSP处理器(如TI 的TMS320C2000/C5000等)和高增益、高共模抑制比的集成化仪用放大器等高性能芯片[4]。为研制新一代的采集和实时分析系统提供了物质基础。 2.基于虚拟仪器技术的生物医学信号采集和分析系统 作为一种新兴的计算机技术,虚拟仪器技术的发展为生物医学仪器的发展带来了广阔的前景。建立在通用计算机和数据采集(DAQ)设备基础上的虚拟仪器技术具有开发周期短、

生物医学信号处理-小论文

基于Matlab的心电信号分析与处理 摘要: 本课题设计了一个简单的心电信号分析系统。直接采用Matlab语言编程对 输入的原始心电信号进行处理,并通过matlab语言编程设计对其进行时域和频 域的波形频谱分析,根据具体设计要求完成系统的程序编写、调试及功能测试, 得出一定的结论。 (This topic has designed a simple ECG analysis system. Direct use of Matlab programming language original ECG signal input is processed, and its waveform spectrum analysis of the time domain and frequency domain matlab language programming through design, prepared in accordance with specific design requirements to complete the system of procedures, debugging and functional testing, too a certain conclusion.) 关键字:matlab、心电信号、滤波 一、课题目的及意义 心电信号是人类最早研究并应用于医学临床的生物信号之一,它比其它生物 电信号更易于检测,并且具有较直观的规律性,因而心电图分析技术促进了医学 的发展。 然而,心电图自动诊断还未广泛应用于临床,从国内外的心电图机检测分析 来看,自动分析精度还达不到可以替代医生的水平,仅可以为临床医生提供辅助 信息。其主要原因是心电波形的识别不准,并且心电图诊断标准不统一。因此,探索新的方法以提高波形识别的准确率,寻找适合计算机实现又具诊断价值的诊 断标准,是改进心电图自动诊断效果,扩大其应用范围的根本途径。如何把心电 信号的特征更加精确的提取出来进行自动分析,判断出其异常的类型成了亟待解 决的焦点问题。本课题通过matlab语言编程,对原始心电信号进行一定的分析 处理。(ECG is the first human study and one biological signal applied to clinical medicine, it is easier to detect than other biological signals, and has a more intuitive regularity, thus ECG analysis technology for the development of medical science. However, ECG automatic diagnosis has not been widely used in clinical, ECG machine detection analysis from home and abroad, the accuracy of the automatic analysis can replace the doctor has not yet reached the level of aid can only provide information to the clinician. The main reason is not allowed to identify the ECG waveform and ECG diagnostic criteria are not uniform. Therefore, to explore new ways to improve the accuracy of waveform recognition, searching for computer-implemented but also with the diagnostic value of the diagnostic criteria,

生物医学信号处理期末重点

一、生物医学信号处理绪论 生物医学信号处理的对象:由生理过程自发产生的;把人体作为通道,外界施加于人体产生的电生理信号和非电生理信号。 生物信号的主要特点:复杂性,随机性强,噪声干扰强,非平稳性等 二、数字信号处理基础 傅立叶变换的意义:把一个无论多复杂的输入信号分解成复指数信号的线性组合,那么系统的输出也能通过图2.1的关系表达成相同复指数信号的线性组合,并且在输出中的每一个频率的复指数函数上乘以系统在那个频率的频率响应值。使得分析、处理信号变得简单。 数字滤波器的设计:IIR滤波器的设计:利用传统的模拟滤波器设计方法。 切比雪夫低通滤波器: %低通滤波器设计0~35Hz wp=35;ws=45; %WP通带截止频率,WS阻带截止频率 Rp=1;Rs=71; %Rp通带内的最大衰减,Rs阻带内的最小衰减 fs=1000; %采样频率 [N,wn]=cheb1ord(wp/(fs/2),ws/(fs/2),Rp,Rs); [B,A]=cheby1(N,Rp,wn); freqz(B,A,[],fs) %幅频特性 FIR滤波器设计:多采用窗函数和频率取样设计法。椭圆带通滤波器 [b_alpha,a_alpha] = ellip(5,1,40,[8 13]*2/500); freqz(b_alpha,a_alpha,[],500) 例题2-11选择合适的窗设计FIR低通滤波器,画出滤波器的单位脉冲响应和该滤波器的幅度响应: 解: wp = 0.2*pi; ws = 0.3*pi; %给出通带频率和阻带频率 tr_width = ws-wp; %求过渡带宽度 %,hamming window即可满足该条件,查表求得窗长度 M = ceil(6.6*pi/tr_width) ; n=[0:1:M-1]; wc = (ws+wp)/2; %求截止频率 b= fir1(M,wc/pi); %求FIR低通滤波器的系数,默认就是hamming window h=b(1:end-1); [hh,w] = freqz(h,[1],'whole'); %求滤波器的频率响应 hhh=hh(1:255);ww=w(1:255); %由于对称性,画一半图即可 % 画图 subplot(1,2,1); stem(n,h);title('实际脉冲响应') axis([0 M-1 -0.1 0.3]); xlabel('n'); ylabel('h(n)') subplot(1,2,2); plot(ww/pi,20*log10(abs(hhh)));title('幅度响应(单位:dB)');grid axis([0 1 -100 10]); xlabel('频率(单位:pi)'); ylabel('分贝') set(gca,'XTickMode','manual','XTick',[0,0.2,0.3,1]) set(gca,'YTickMode','manual','YTick',[-50,0]) 例2-12】最常碰到的信号处理任务是平滑数据以抑制高频噪声。求几个数据点的平均值是减弱高频噪声的一种简单方法,这种滤波器被称为平滑滤波器或中值滤波器。 Y = MEDFILT1(X,N), 如果没有给出N的值,则默认N=3;

生物医学信号处理

1.生物医学简述 1.1生物医学信号概述 生物医学信号是人体生命信息的体现,是了解探索生命现象的一个途径。因此,深入进行生物医学信号检测与处理理论与方法的研究对于认识生命运动的规律、探索疾病预防与治疗的新方法以及发展医疗仪器这一高新技术产业都具有极其重要的意义。国内外对于生物医学信号检测处理理论与方法的研究都给予极大的重视。人体给出的信号非常丰富,每一种信号都携带着对应的一个或几个器官的生理病理信息。由于人体结构的复杂性,因此可以从人体的不同的“层次”得到各类信号,如器官的层次、系统的层次以及细胞的层次,这些信号大致分为电生理信号、非电生理信号、人体生理信号、生化信号、生物信息以及医学图像[1]。 1.2生物医学信号的特点 生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。 ⑴信号弱,如心电信号在mV级,脑电信号在μV级,而诱发电位信号的幅度更小。 ⑵噪声强,人体是电的导体,易感应出工频噪声;其次是信号记录时受试者移动所产生的肌电噪声,由此引起电极移动所产生的信号基线漂移。另外,凡是记录中所含有的不需要成分都是噪声,如记录胎儿心电时混入的母亲的心电。 ⑶随机性强且一般是非平稳信号,由于生物医学信号要受到生理和心理的影响,因此属于随机信号。 ⑷非线性,非线性信号源于非线性系统的输出,人体体表采集到的电生理信号都是细胞膜电位通过人体系统后在体表叠加的结果,因此这些信号严格地说都是非线性信号,但目前都是把他们当作线性信号来处理[2]。 2.生物医学信号的检测 生物医学信号检测是对生物体中包含地生命现象、状态、性质和成分等信息进行检测和量化地技术,涉及到人机接口技术、低噪声和抗干扰技术、信号拾取、分析与处理技术等工程领域。绝大部分生物医学信号都是信噪比很低地微弱信号,

数字信号处理在生物医学的应用

数字信号处理在生物医学领域的应用 作者:张春强 安徽农业大学工学院 车辆工程 13720482 摘要:在生物医学研究中有各种各样待提取和处理的信号,信号处理立即成为解决这些问题的有效方法之一。主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(Digital Signal Processing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。 而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 2 数字信号处理在生物医学工程中的应用 2.1 信号处理在DNA 序列中的应用 生物序列数据在数学上以字符串表示,每个字符对应于字母表中的一个字母。如 DNA 序列中,用 A,T,C,G 四个字母代表组成 DNA 序列的四种碱基。对数值化后的DNA 序列进行频谱分析发现基因序列蛋白质编码区存在周期 3行为,即其功率谱在1/3频率处有一谱峰。用傅利叶变换来分析基因序列的功率谱可以发现其蛋白质编码区,可以预测基因位置和真核细胞基因中独特的外显子。 1.1 DFT 求 DNA 序列功率谱 在对基因组序列进行计算分析之前,先将其转化为数值序列。设字母表Λ = {A ,C ,G ,T } ,取长度为N 的DNA 序列x[n],对于Λ中每个不同的字母都形成一个指示器序列[]n x α(0≤n ≤N-1,α∈Λ),在序列[]n x α中的某一个位置i 有: []其他)(01i n x ααα=???=(位置i 处的碱基为α) 该指示器的DFT 变换为 [][]n jw N n DFT k e n x k X --=∑=1 0αα,)10(-≤≤N k (1) 于是可以求得DNA 序列的功率谱:

生物医学信号处理习题集详解

生物医学信号处理习题集 第一章 生物医学信号处理绪论 ..................................................................................................... 1 第二章 数字信号处理基础 ............................................................................................................. 1 第三章 随机信号基础 ..................................................................................................................... 5 第四章 数字卷积和数字相关 ......................................................................................................... 9 第五章 维纳滤波 ........................................................................................................................... 10 第六章 卡尔曼滤波 ....................................................................................................................... 13 第七章 参数模型 ........................................................................................................................... 16 第八章 自适应信号处理 (19) 第一章 生物医学信号处理绪论 1. 生物医学信号处理的对象是什么信号? 解答: 包括生理过程自发产生的信号,如心电、脑电、肌电、眼电、胃电等电生理信号和血压、体温、脉搏、呼吸等非电生理信号;还有外界施加于人体的被动信号,如超声波、同位素、X 射线等。 2. 生物信号的主要特点是什么? 解答: 随机性强,噪声背景强。 第二章 数字信号处理基础 You can use Matlab where you think it ’s appropriate. 1.FIR 滤波器和IIR 滤波器的主要区别是什么? 解答: FIR 滤波器的单位脉冲响应是有限长的序列,该滤波器没有极点,具有稳定性。 IIR 滤波器的单位脉冲响应是无限长的序列,该滤波器有极点,有可能不稳定。 2.两个滤波器级联,第一个的传递函数为2-11z 2z 1)z (H -++=,第二个为-12z 1)z (H -=,当输入为单位脉冲时,求输出序列,画出级联滤波器的频率响应。 解答: )z 1)(z 2z 1()z (H 12-1---++==32-1z z z 1----+ h(n)=[1,1,-1,-1],n=0,1,2,3。即输入单位脉冲时的输出序列值。 freqz(h,1)

生物医学信号处理方法综述

小波变换与生物医学信号处理 摘要:生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。小波变换是近年来应用数学中发展壮大起来的新领域,由于小波的多分辨率分析具有良好的空间域和频率域局部化特性,因此特别适合于图像信号这一类非平稳信号的处理。作为数字信号处理领域的一个重要分支, 生物医学信号处理理论与技术的研究一直受到国内外科技工作者的高度重视。本文结合生物医学信号与小波变换的特点,探讨了小波变换在生物医学信号处理领域的应用前景。 关键词:傅立叶变换;小波变换;生物医学信号处理 心血管病是危害人民身体健康的一大常见病,是人类的头号杀手,约占2003年全 球总死亡人数的29.2%,死亡人数达1670万人。由心脏病引发的死亡约80%发生在中低 收入国家,且多在壮年时期侵袭人们的健康。 在中国等国家,因心脏病而产生的花费将十分庞大,这不仅是因为治疗心脏病需要 巨额花费,对患者及其家庭来讲,由此引发的经济负担也很严重。心血管疾病会带来巨 大的经济和社会负担。如果我们现在不采取措施,像中国这样的国家将会面临急剧增长 的用于心脏病发作和中风的急救费用,另外还需支付每年数百万人的康复费用,再加上 长期的治疗费用,可能还包括家庭护理开支,由此将会引发诸多问题。预计2010年以前 的中国,中年人患心脏病的机率将会和美国人持平,与我们以前的数据相比较,这是一 个巨大的增长,心血管疾病必须引起亚洲地区的优先关注。更重要的是,应该立即引起 重视,因为在今后的二十年中,它将给亚洲人的健康和亚洲的经济带来很大威胁。因此, 对心脏病的治疗刻不容缓,而对心电信号的研究是治疗心脏病的依据。 因此,心脏病的治疗不仅关系到人类的生命健康,而且关系到国家的经济发展"ECG 信号的参数提取和波形识别是ECG分析诊断系统的关键,其准确性、可靠性的好坏决定 着诊断与治疗心脏病患者的效果,乃至挽救病人生命的成败。因此,心电信号的处理对 于提高我们国家的社会效益和经济效益有重要的意义。 1 生物医学信号的简介[1] 1.1生物医学信号的特点 生物医学信号由于受到人体诸多因素的影响,因而有着一般信号所没有的特点。(1)信号弱。例如从母体腹部取到的胎儿心电信号10~50μV,脑干听觉诱发响应信号小于1μV。(2)噪声强。由于人体自身信号弱,加之人体又是一个复杂的整体,因此信号易受噪声的干扰。如胎儿心电混有很强噪声,它一方面来自肌电、工频等干扰;另一方面,在胎儿心电中不可避免地含有母亲心电,母亲心电相对我们要提取的胎儿心电则变成了噪声。(3)频率范围一般较低。除心音信号频谱成份稍高外,其他电生理信号频谱一般较低。(4)随机性强。生物医学信号不但是随机的,而且是非平稳的。正是因为生物医学信号的这些特点,使得生物医学信号处理成为当代信号处理技术最可发挥其威力的一个重要领域。 1.2生物医学信号的分类 生物信号如从电的性质来讲,可以分成电信号和非电信号。如心电、肌电、脑电等属于电信号;其它如体温、血压、呼吸、血流量、脉搏、心音等属于非电信号,非电信号又可分为:(1)机械量,如振动(心音、脉搏、心冲击、血管音等)、压力(血压、气压和消化道内压等)、力(心

(书)生物医学信号处理

《生物医学信号处理》课程教学大纲 刘海龙、曾绍群、黄敏 一、名称:生物医学信号处理Biomedical Signal processing 二、课程编码:0700942 三、学时与学分:40/2.5 四、先修课程:随机过程与数理统计、微机原理、信号与线性系统、 数字信号处理 五、课程教学目标 本课程为生物医学工程专业的一门专业课,它是在随机信号的基本分析方法基础上,结合生物医学信号的特点介绍常用的统计处理方法,包括生物电磁信号的起源及测量、离散随机信号、检测、估计、匹配滤波、维纳滤波、参数模型与自适应处理方法及上述方法的具体应用。通过本课程的学习,使学生理解信号处理在提取生物弱电信号中的作用,并掌握运用计算机数据处理技术分析处理心电、脑电等随机生理信号。 六、适用学科专业 生物医学工程专业 七、基本教学内容与学时安排 ●前言(0.5学时) 物医学信号处理的任务 物医学信号的特点 ●检测方法的基本概念(1.5学时) 各种检测准则(检测判椐) 极大后验概率准则 最小失误率准则 贝叶斯准则 ●纽曼—皮尔逊准则(2学时) 纽曼—皮尔逊准则 多次观察 观察是离散型随机变量时的情况 观察是连续型随机变量时的情况 多元检测 ●参数估计的基本原理(2学时) 贝叶斯估计 极大似然估计 矢量引申 应用举例 估计的进一步举例 估计量的性质 非随机参数的克拉美-劳下限和极大似然估计 随机参数的克拉美-劳不等式及极大后验概率估计 均方估计的无偏性质 ●线性估计(2学时) 线性估计概述

线性均方估计 ●递归的线性最小均方误差估计(2学时) 递归线性估计的初步概念 递归线性估计算法的推导 最小二乘估计 ●功率谱估计的现代方法(2学时) 谱估计的参数模型方法 AR 模型的Yule-Walker 方程 Levinson-Durbin 算法 ● AR 模型的稳定性及其阶的确定(2学时) AR 谱估计的性质 AR 谱估计隐含着自相关函数的外推 AR 谱估计与线性预测谱估计等效 AR 谱估计与最大熵谱估计等效) AR 谱估计等效于最佳白化处理 AR 谱估计的界 …… ●格形滤波器(2学时) AR 模型参数提取方法 Yule-Walker 法 协方差法 Burg 法 ● AR 谱估计的异常现象及其补救措施(2学时) 虚假谱峰 谱线分裂 噪声对AR 谱估计影响 MA 和ARMA 模型谱估计 ●白噪声背景下的匹配滤波器(2学时) 概论 离散时间形式下的匹配滤波器 相关检测——似然比检验的扩展 ●非白噪声下的匹配滤波器(2学时) 预白化滤波器)(1z H 的设计 匹配滤波器)(2z H 的设计 应用实例 相干平均法提取诱发响应 基本原理 噪声相关的情况 响应波形随机性的影响 潜伏期随机性的影响 减少累加次数 ●波形线性均方估计的正交原理(2学时) 维纳——霍夫(Wiener-Horf )积分方程 非因果的维纳滤波器

生物医学信号处理方法综述

生物医学信号处理方法综 述报告 姓名:武振宇____ 学校:山东科技大学__ 专业名称:信号与信息处理_ 学号: 151320042_ _ 指导教师:刘守山______ 完成日期:2015年12月24日 提交日期:2015年12月26日 小波变换与生物医学信号处理 武振宇 (山东科技大学电子通信与物理学院 151320042 山东青岛 266500) 摘要:生物医学信号属于强噪声背景下的低频微弱信号,它是由复杂的生命体发出的不稳定的自然信号,从信号本身特征、检测方式到处理技术,都不同于一般的信号。小波变换是近年来应用数学中发展壮大起来的新领域,由于小波的多分辨率分析具有良好的空间域和频率域局部化特性,因此特别适合于图像信号这一类非平稳信号的处理。作为数字信号处理领域的一个重要分支, 生物医学信号处理理论与技术的研究一直受到国内外科技工作者的高度重视。本文结合生物医学信号与小波变换的特点 ,探讨了小波变换在生物医学信号处理领域的应用前景。 关键词:傅立叶变换;小波变换;生物医学信号处理

心血管病是危害人民身体健康的一大常见病,是人类的头号杀手,约占2003年全 球总死亡人数的29.2%,死亡人数达1670万人。由心脏病引发的死亡约80%发生在中低 收入国家,且多在壮年时期侵袭人们的健康。 在中国等国家,因心脏病而产生的花费将十分庞大,这不仅是因为治疗心脏病需要 巨额花费,对患者及其家庭来讲,由此引发的经济负担也很严重。心血管疾病会带来巨 大的经济和社会负担。如果我们现在不采取措施,像中国这样的国家将会面临急剧增长 的用于心脏病发作和中风的急救费用,另外还需支付每年数百万人的康复费用,再加上 长期的治疗费用,可能还包括家庭护理开支,由此将会引发诸多问题。预计2010年以前 的中国,中年人患心脏病的机率将会和美国人持平,与我们以前的数据相比较,这是一 个巨大的增长,心血管疾病必须引起亚洲地区的优先关注。更重要的是,应该立即引起 重视,因为在今后的二十年中,它将给亚洲人的健康和亚洲的经济带来很大威胁。因此, 对心脏病的治疗刻不容缓,而对心电信号的研究是治疗心脏病的依据。 因此,心脏病的治疗不仅关系到人类的生命健康,而且关系到国家的经济发展"ECG 信号的参数提取和波形识别是ECG分析诊断系统的关键,其准确性、可靠性的好坏决定 着诊断与治疗心脏病患者的效果,乃至挽救病人生命的成败。因此,心电信号的处理对 于提高我们国家的社会效益和经济效益有重要的意义。 1 生物医学信号的简介[1] 1.1 生物医学信号的特点 生物医学信号由于受到人体诸多因素的影响,因而有着一般信号所没有的特点。(1)信号弱。例如从母体腹部取到的胎儿心电信号10~50μV,脑干听觉诱发响应信号小于1μV。(2)噪声强。由于人体自身信号弱,加之人体又是一个复杂的整体,因此信号易受噪声的干扰。如胎儿心电混有很强噪声,它一方面来自肌电、工频等干扰;另一方面,在胎儿心电中不可避免

相关主题