搜档网
当前位置:搜档网 › 电动车制动能量回收.

电动车制动能量回收.

电动车制动能量回收.
电动车制动能量回收.

电控制动是趋势谈电动车制动解决方案

[汽车之家技术] 围绕电动车的话题更多的集中在续航里程、电池类型、充电方式及时间等一些使用的问题上,今天我们来聊聊别的话题,电动技术在代替了传统动力技术后,引发的变革确实是巨大的,这也影响到了车辆的技术开发,制动系统就是要谋变的其中一环。

图中所示为传统制动系统,驾驶员控制踏板,与踏板相连的是真空助力器,它负责将驾驶员施予踏板的力放大并推动主泵活塞进行制动压力,最后,制动分泵由活塞推动制动片夹紧制动盘,从而实现制动力。

这里面涉及到一个很重要的部件——真空助力器,如果它的工作状态不好,驾驶员踩制动踏板时就会觉得很硬,没有经验的驾驶员就会误以为没有制动功能了。而真空助力器的真空环境是由发动机提供的,较为传统的方式是从进气歧管处引出一根气管通向真空助力器,为了确保真空环境的稳定性,有些发动机还专门为

真空助力器设计了一个由凸轮轴驱动的机械真空泵,在此之前,还有厂商用电子真空泵来弥补“真空”。

传统动力汽车,制动系统可以从发动机处获得真空源从而让真空助力器为驾驶员提供辅助作用,那电动车的动力系统不具备制造真空的能力,制动助力的问题将如何解决?

解决这个问题现在有两种模式,一种是在现有的结构基础上去解决真空

源的问题,另一种则是采用新的技术原理,彻底舍弃真空在制动系统中的用途,重新设计制动系统技术结构。不仅是汽车行业,在各行各业面临新老更替时都少不了这样的做事逻辑。

● 利用现有基础进行技术改进

利用现有结构基础进行技术改进的方式是目前绝大多数厂商在新能源车中采用的方式,原有的真空助力器以及相关管路得到保留,管路的另一端连接的电子真空助力泵,当传感器监测到助力器真空度不足时,电子真空泵开始工作维持真空环境,通过这样的方式,确保真空助力器能够像原先一样为驾驶员提供辅助作用。不过,这样的电子真空助力泵的噪音较大,此外更重要的是,电子真空泵的工作稳定性以及寿命都不太适合当做主要及唯一的真空源供应部件(原先在传统汽车上,它只是辅助维持真空环境)。显然,这样的方案是来自传统的汽车研发理念,而并非是站在新能源车的开发角度来解决问题。

● 舍弃真空在制动系统中的用途

博世和大陆这两家公司在主动安全技术领域有着较丰富的研发经验,当然,它们在这个业务上也是直接的竞争关系,现阶段,两家公司的竞争主要是在自适应巡航、车道保持、ESC、城市安全系统等传统主动安全技术方面。而我们这篇文章所讨论的新能源车的制动系统解决方案尽管还没有全面推向市场,但在试验场上,这两家公司已经要掰掰手腕了。

先来说博世的技术成果。博世推出了一套名为iBooster的智能化助力器,从结构上来说,它代替了原先的真空助力器,从而彻底终结了制动系统对真空的依赖。尽管对技术原理进行了革新,但驾驶员在踩下制动踏板时对这样的变化不会有所察觉。

驾驶员在踩下踏板时推力仍旧作用于后方推杆上,不过,在踏板向后方移动的过程中,位置传感器会监测并向控制电脑传递踏板行程信息,以此为依据结合实际工况计算出所需制动力,随即将信号传递至伺服电机,伺服电机为直流无刷类型,事实上,这个伺服电机并不是直接作用于制动主缸,从中还有一个二级齿轮

装置对传递方向以及扭矩进行转化,之后再推动制动主缸,而建立制动油压的过程仍旧是延续传统制动液压结构。

博世推出的这个iBooster智能化助力器彻底代替了传统的真空助力器,不仅如此,采用电控方式后,在功能上通过与其它系统进行接合,又可以衍生出更多的功能。例如通过与电动车的动能回收系统相结合,我们都知道,电机在动能回收模式下也会使车辆出现制动效果,如何匹配这两种方式产生的制动效果就是个问题,比亚迪e6就装配了博世的这套iBooster技术,正好我们也能去感受一下。

不仅是电动车,这个技术也适用于传统汽车,在防碰撞技术就是个很好的“载体”,现在更多的是依靠ESC

进行主动制动,如果制动的动作能由制动主

缸亲自完成,那么,再接合ESC的使用,其反应速度以及制动力度可提升的空间就会更大。

同场竞技的大陆也拿出了它们的技术——MK C1电液制动系统,从技术原理上,与博世的iBooster类似,不过,大陆的这个MK C1的集成度更高,它的意义不仅仅是取代了真空助力器,更重要是,它将我们所熟悉的ESC集成到了同一个模块里。

目前,大陆推出的这套MK C1电液制动系统已经具备投入使用的条件,它们也在积极地与主机厂进行接洽,预计在明年就会有装配量产车的消息,我们也会技术关注此事。

编辑总结:

制动系统电子化是未来汽车发展的一个趋势,无论是电动车还是传统采用内燃机的汽车,这种制动系统都有着颠覆性的意义。当然,你可能会担心它的可靠性问题,对此我也向开发团队提出过质疑,这就像英菲尼迪在Q50车型上使用的线控转向一样,除了强大了防错逻辑外,硬件的保障也是必不可少的。此外,采用电控制动后,系统还可以适应不同驾驶模式的选择,从而为驾驶员提供不同脚感的制动感受。(图/文汽车之家李博旭)

制动能量回馈系统协调控制

制动能量回馈系统协调控制 张俊智,张鹏君,陆欣,陈鑫 清华大学汽车安全与节能国家重点实验室,北京,100084 【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环工况进行了道路测试。 【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制 Coordinated Control for Regenerative Braking System Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084 Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle.. Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control 1 介绍 车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制动过程所消耗[1,2]。因此,回馈制动是车辆提高燃油经济性并降低排放的有效方法,有助于缓解能源危机和环境污染。

电动汽车能量回馈的整车控制(1)

2005005 电动汽车能量回馈的整车控制 张 毅,杨 林,朱建新,冒晓建,卓 斌 (上海交通大学汽车电子研究所,上海 200030) [摘要] 以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。 关键词:电动汽车,能量回馈,控制策略 The Control Strategy of Energy Regeneration for Electric Vehicle Zhang Yi,Yang Lin,Zhu Jianxin,Mao Xiaojian&Zhuo Bin Instit ute of A utomotive Elect ronic Technology,S hanghai Jiaotong U niversity,S hanghai200030 [Abstract] The energy consumption in four typical vehicle testing cycles(FTP,HWEFT,ECE2EUDC and J P1015)is analyzed for EV.Based on the traditional vehicle braking system,a new regenerative braking scheme and its control strategy are designed.The road testing,calibration and optimization are performed.T est results show that the control scheme and strategy is safe,https://www.sodocs.net/doc/4911237607.html,ing the regenerating scheme,the energy consumption of battery can re2 duce by10percent and the driving range of EV in one charge can increase effectively. K eyw ords:Electric vehicle,E nergy regeneration,Control strategy 原稿收到日期为2003年12月29日,修改稿收到日期为2004年3月8日。 1 前言 电动汽车采用了新型的汽车动力,如何充分提 高车辆行驶能量效率,进而延长车辆续驶里程,是电 动汽车需要解决的一个关键问题。能量回馈是解决 该问题的主要技术措施。 能量回馈包括车辆制动能量回馈与车辆滑行能 量回馈两种。此时,驱动电机按发电机运行,将车辆 行驶动能转化为电能,可以起到3个作用:辅助制 动;回收能量给动力蓄电池充电,从而延长车辆续驶 里程;在车辆有供热需求时,直接利用这部分电能供 热取暖。 能量回馈制动与电动汽车其它电气制动方式 (主要有能耗制动、反接制动[1])比较,无须改变系 统硬件结构,回馈电流可柔性控制,可使制动效果与 能量回收效果综合最佳。因此,能量回馈是最适合 电动汽车的电气制动方式,其关键是能量回馈的过 程控制。电动汽车的能量回馈控制由整车控制与电 机控制交互作用而实现,作者在电动汽车制动能量 分析的基础上,设计一种能量回馈的整车控制方式, 并进行相应控制策略的研究。 2 制动能量分析 为了进行电动汽车能量回馈控制,需首先探明 其在各种用途中的制动能量回馈潜力。作者分别以 美国F TP工况、高速公路HFET工况、欧洲城市循 环ECE2EUDC工况和日本J P10154种循环工况为 例,进行制动能量的分析。 4种循环工况的驱动与制动能量如图1所示, 可见在这4种循环工况中,制动能量都占了不小的 比例,其中J P1015工况为2517%,ECE2EUDC工况 为18%,HFET工况为6%,F TP为25%。 回馈能量还与制动方式和回馈系统各环节的效 率因子有关[2]。电动汽车的制动方式包括:电气制2005年(第27卷)第1期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.1

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

纯电动汽车制动能量回收系统技术方案研究精选.

纯电动汽车制动能量回收系统技术方案研究 1、研究制动能量回收的背景和意义在电动汽车研究中,如何研制高性能储能设备、如何提高能量利用率,是所有研究中比较重要的两个方面。尽管蓄电池技术发展迅速,但受经济性、安全性等因素制约,难以在短时间内实现重大突破。因此如何提高电动汽车的能量利用率是一个非常关键的问题。研究制动能量再生对提高电动汽车的能量利用率非常有意义。汽车在制动过程中,汽车的动能通过摩擦转化为热量消耗掉,大量的能量被浪费掉。据有关数据研究表明,在几种典型城市工况下,汽车制动时由摩擦制动消耗的能量占汽车总驱动能量的50%左右。这对于改善汽车的能量利用效率、延长电动汽车的行驶里程具有重大意义。国外有关研究表明,在较频繁制动与起动的城市工况运行条件下,有效地回收制动能量,电动汽车大约可降低15%的能量消耗,可使电动汽车的行驶距离延长10%~30%。因此,对电动汽车制动能量进行回收,意义如下:在当前电动汽车电池储能技术没有重大突破的条件下,回收电动汽车制动能量可以提高电动汽车的能量利用率,增加电动汽车的行驶距离;机械摩擦制动与电制动结合,可以减少机械摩擦制动器的磨损,延长制动器使用寿命,节约生产成本;分担传统制动器部分制动强度,减少汽车在繁重工作条件下(例如长下坡)制动时产生的热量,降低了制动器温度,提高

了制动系统抗热衰退的能力,提高了汽车的安全性和可靠性。电动汽车再生制动的基本原理是:通过具有可逆作用的电动机/发电机来实现电动汽车动能和电能的转化。在汽车减速或制动时,可逆电机以发电机形式工作,汽车行驶的动能带动发电机将汽车动能转化为的电能并储存在储能器(蓄电池或超级电容)中;汽车起步或加速时,可逆电机以电动机形式工作, 将储存在储能器中的电能转化为机械能给汽车。2、国内外制动能量再生领域研究状况美国Texas A&M大学:Yimin Gao 提出了评价制动能量回收效率的三种制动力分配控制策略,在此基础上建立了纯电动汽车的制动能量仿真实验模型,针对不同的制动强度进行了仿真实验。YImin Gao和Mehrdad Ehsani提出了一种基于制动能量回收系统的纯电动汽车和混合动力汽车ABS系统的控制策略,通过精确设计电机制动力门限值,使得再生制动系统与ABS系统可兼容工作。Wicks 等建立了城市客车在市区行驶循环工况下的数学模型,研究再生制动系统的节能效果。Hongwei Gao等提出了混合动力汽车基于开关磁阻电机再生制动的神经网络控制系统,并在行驶循环工况下进行了能量回收效率的分析。Panagiotidis等建立了并联式混合动力汽车的再生制动模型,对再生制动的效果进行仿真计算和影响因素的分析比较。Hoon Yeo采用Ⅰ曲线作为前后制动力分配策略,但是该分配策略加大了后轮制动器制动力,减小了电机制动力,从而降低了能量回收率,增

新能源电动汽车回收系统

现代汽车电子技术 题目:电动助力转向系统 摘要 本文从全球环境污染和能源短缺等严峻问题阐述了发展电动汽

车的重要性和必要性,着重分析概括了电动汽车制动能量回收系统的研究现状 关键字电动汽车制动能量回收系统 1 引言 目前,普通燃油汽车在国内外仍占据绝大部分汽车市场。汽车发动机燃烧燃料产生动力的同时排放出大量尾气,其成分主要有二氧化碳(CO2),一氧化碳(CO),氮氧化合物(NO X)和碳氢化合物(HC),还有一些铅尘和烟尘等固体细微颗粒物,虽然现代汽车技术已经使汽车尾气排放降到很低,但由于汽车保有量持续高速增加,汽车排放的尾气还是会对人类的生存环境造成很严重的影响,例如近年来不断加剧的温室效应,光化学烟雾,城市雾霾等大气污染现象。 内燃机汽车消耗的能源主要来自石油,石油属于不可再生资源,目前全球已探明的石油总量为12000.7亿桶,按现在的开采速度将只够开采40.6年左右,即使会不断发现新的油田,但总会有消耗的一天。全球交通领域的石油消耗占石油总消耗的57%,由于汽车的保有量持续快速增长(主要来自发展中国家),到2020年预计这一比例将达到62%以上,2010年我国的石油对外依存度已达到53.8%,到2030年预计这一比例将达到80%以上,可见石油资源的短缺将会直接影响我国的能源安全,经济安全和国家安全,不利于我国长期可持续的发展,因此探索石油以外的汽车动力能源是21世纪迫切需要解决的问题。 电动汽车具有无污染,已启动,低噪声,易操纵等优点,相关的技术研究已趋成熟,是公认的未来汽车的主流。自1997年10底丰田推出混合动力车型Prius 以来,电动汽车越来越受市场的欢迎,近年来不少国内外汽车生厂商已向市场推出不少种类的电动汽车,在混合动力汽车领域,日本的丰田和本田不管从技术研发还是在市场销售,宣传等方面已经走在世界的前列,推出了诸如Pius,Insight,Fit,Civic 等量产化混合动力车型,其他国外汽车制造商在本田和丰田之后也相继推出相应的车型,例如宝马3系,5系,7系,8系都推出了相应的混合动力车型,大众途锐的混合动力版,特斯拉推出的MODEL S 纯电动车,国内汽车生产商比亚迪在电动汽车领域已经走在前列,相继推出包含“秦”在内的许多种混合动力车型。

电动汽车制动能量回馈研究开题报告

学院 毕业设计开题报告 学生姓名:学号: 专业: 设计题目:电动汽车制动能量回馈研究 指导教师: 年月日

1.本课题的研究意义,国内外研究现状、水平和发展趋势 目前用于车载的电储能装置主要是蓄电池储能装置,储能装置既可以作为驱动系统提供能量,又可以作为回馈系统回收制动能量。 制动能量的回馈已经应用于少数豪华跑车,作为噱头,真正的效果并不尽如人意。但是这是一个必然的发展趋势,节能减排是整个世界的共同主题。从1990年起,世界各地的大型汽车公司如美国的通用、福特,日本的本田、丰田与日产等都加大了对电动汽车研究的资金投入。这些公司很快就制造出了概念电动汽车及电动汽车,而且很多概念车在当时就配置了制动能量回馈系统。 可持续发展是人类社会的共同目标。为了解决日益匮乏的原油煤炭资源以及尾气排放等问题,混合动力型汽车是现在及以后需大力发展及推广的重要举措。如今混动汽车,纯电动公交车已经推广至社会中的大街小巷。然而电动汽车在频繁的制动过程中有许多能量流失浪费,本次设计的任务就是在现有的技术基础上,研究电动汽车在行车制动时能量的回馈吸收,使能量得到进一步的利用,延长行驶里程。首先阐释如今电动汽车的能量运转方式,分析制动能量回馈的可行性,在现有技术基础上展开研究,阐述先进性。

2.本课题的基本内容,预计可能遇到的困难,提出解决问题的方法和措施 主要内容 1.电动汽车制动能量回馈的研究现状。 2. 电动汽车制动能量回馈的主要关键技术有哪些。 3.现有电动汽车能量回馈系统及回馈控制方法有哪些,各有什么特点。 4.熟悉电动汽车制动能量回馈的工作原理。 5.提出一种电动汽车制动能量回馈系统,阐述所提出系统的先进性。 可能遇到困难: 1. 供电电源的电压必须大于电机的感应电动势。当电机的感应电动势较大时,供电电源的电压较高,使得电源系统体积较大,成本较高。 2. 在电机的转速变化范围较大的场合,从电机的感应电动势到电源电压的变换范围较大,使得变换效率较低。 3. 在制动能量回馈系统中,当制动速度较低时,产生的感应电动势较小,由于功率变换器具有一定的变压比,感应电动势无法升压到电源电压,从而不能回馈能量,在频繁低速制动的城市公交车中,回馈效率低或几乎不能回馈能量。 4. 利用电机绕组电感作为升压电感,使得电感电流波动较大,产生的热量较大,增加了电机本身的损耗,且当电机绕组电感较小时,需要串联电感以平滑电流的波动,使得结构复杂。 5.电池寿命短。 为了解决上述问题,需要我们多多查阅资料,利用相关软件进行模拟设计,在不

电动车制动能量回收.

电控制动是趋势谈电动车制动解决方案 [汽车之家技术] 围绕电动车的话题更多的集中在续航里程、电池类型、充电方式及时间等一些使用的问题上,今天我们来聊聊别的话题,电动技术在代替了传统动力技术后,引发的变革确实是巨大的,这也影响到了车辆的技术开发,制动系统就是要谋变的其中一环。 图中所示为传统制动系统,驾驶员控制踏板,与踏板相连的是真空助力器,它负责将驾驶员施予踏板的力放大并推动主泵活塞进行制动压力,最后,制动分泵由活塞推动制动片夹紧制动盘,从而实现制动力。 这里面涉及到一个很重要的部件——真空助力器,如果它的工作状态不好,驾驶员踩制动踏板时就会觉得很硬,没有经验的驾驶员就会误以为没有制动功能了。而真空助力器的真空环境是由发动机提供的,较为传统的方式是从进气歧管处引出一根气管通向真空助力器,为了确保真空环境的稳定性,有些发动机还专门为

真空助力器设计了一个由凸轮轴驱动的机械真空泵,在此之前,还有厂商用电子真空泵来弥补“真空”。 传统动力汽车,制动系统可以从发动机处获得真空源从而让真空助力器为驾驶员提供辅助作用,那电动车的动力系统不具备制造真空的能力,制动助力的问题将如何解决? 解决这个问题现在有两种模式,一种是在现有的结构基础上去解决真空 源的问题,另一种则是采用新的技术原理,彻底舍弃真空在制动系统中的用途,重新设计制动系统技术结构。不仅是汽车行业,在各行各业面临新老更替时都少不了这样的做事逻辑。 ● 利用现有基础进行技术改进 利用现有结构基础进行技术改进的方式是目前绝大多数厂商在新能源车中采用的方式,原有的真空助力器以及相关管路得到保留,管路的另一端连接的电子真空助力泵,当传感器监测到助力器真空度不足时,电子真空泵开始工作维持真空环境,通过这样的方式,确保真空助力器能够像原先一样为驾驶员提供辅助作用。不过,这样的电子真空助力泵的噪音较大,此外更重要的是,电子真空泵的工作稳定性以及寿命都不太适合当做主要及唯一的真空源供应部件(原先在传统汽车上,它只是辅助维持真空环境)。显然,这样的方案是来自传统的汽车研发理念,而并非是站在新能源车的开发角度来解决问题。 ● 舍弃真空在制动系统中的用途

制动工况对对电动汽车制动回收能量影响的分析3

制动工况对电动汽车制动能量回收影响分析 前言 随着能源和环境问题日益突出,电动汽车已成为替代传统内燃机汽车的最佳选择。受限于当前技术条件,电动汽车续驶里程普遍较短,电动汽车节能技术成为电动汽车研究的重要方面,其中再生制动作为电动汽车节能主要手段,受到国内外学者广泛关注[1-2]。设计阶段的电动汽车结构和动力系统设计、运行阶段的控制策略和制动工况等都是影响再生制动能量回收效果的因素[3]。 目前,制动工况方面的分析研究,多集中对制动工况进行解耦,分别研究制动初速度和制动强度对制动回收能量效果的影响[4-6],并未综合分析制动工况各因素影响能量回收效果之间的耦合关系,或分析制动强度与制动初始速度对能量回收效果贡献大小。 制动工况分为两种,单次制动工况和循环制动工况[7],循环制动工况多用在试验条件下对电动车性能测试,日常驾驶中更多应用的是单次制动工况。单次制动工况为本文研究工况,其影响因素包含两个方面:制动强度(z )和制动初速度。 本文以较为普遍的集中电机前轴驱动电动汽车为研究对象,采用制动稳定性较好的理想制动力分配策略,利用Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE)。采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)对连续设计空间进行采样,分析制动回收能量与制动初速度和制动强度之间的关系,分析制动工况对制动能量回收的主效应和交互效应,和影响制动能量回收的主次因素。 1制动能量回收影响因素分析 再生制动时受各种阻力损耗、摩擦制动器消耗、电机和电池工作特性和效率、相关部件工作效率等方面的影响,未能将制动动能完全转化为电能存储在蓄电池中。综上各方面将主要因素分为一下三类: (1)影响制动总能量的因素,制动总能量计算公式为()222 1e s v v m E -=(式中,E 为制动总能量,kJ ;m 为电动车整备质量,kg ;s v 和e v 分别为为车辆制动初始和终止速度,1s m -?),得出影响因素主要是制动初速度、电动汽车整备质量等。 (2)影响可回收能量的因素,如制动强度、车辆结构(滚动阻力消耗、空气阻力消耗等)、制动力分配策略(摩擦制动损耗)等。 (3)影响再生制动回收能量的因素,如驱动系统布置、电机和电池工作特性、传动系统特性、各部件及传递线路损耗、控制器损耗等。 以上影响因素主要归为四个方面:车辆结构、动力系统结构、制动工况、制动控制策略,在设计阶段车辆结构、动力系统结构和控制策略确定后,制动工况成为可根据驾驶员主观操纵的影响再生制动能量回收效果的唯一因素。 2仿真模型与验证 2.1理想再生制动力分配策略 本文采用文献[8]中制定的理想制动力分配策略。理想再生制动力分配策略可以保证前后轴制动力得到合理分配,制动稳定性好,该策略包含制动力在前后轴的分配及在电机制动力与摩擦制动力之间的分配两部分。分配电机制动力和摩擦制动力时要优先利用电机制动力,不足部分再由摩擦制动力补充。 2.2建立仿真模型 使用MATLAB/Simulink 建立整车、电机、电池和控制策略等模型,整车参数如表1所示。

纯电动汽车ABS制动能量回收讲解

基于自寻优控制的纯电动汽车制动能量 回收策略可行性分析 倪兰青,南京航空航天大学 本课题应从三部分入手,一是汽车建模部分;二是ABS 自寻优控制部分;三是再生制动部分。 一:车辆动力学建模(以单轮模型为例) 1.1 单轮车辆模型 车辆运动方程:Fx v M -=? 车辆运动方程:Tb Tg Tb rFx I -=-=? ω 车轮纵向摩擦力:=x F μN 其中,M:汽车质量,Fx:轮胎和底面间的附着力,I :车轮转动惯量,ω:车轮角速度,r:车轮有效半径,Tg:地面制动力矩,Tb :制动器制动力矩,μ:地面摩擦系数,N :车轮对地面压力 1.2 轮胎模型 ⑴由于主要研究纵向制动特性,可以选用参数较少并能反映纵向附着系数μb 与滑移率S 关系的Burckhardt 模型。 s c e c s c 31)1(2 --=-μ 式中c1、c2、c3为参考系数,下表给出了其在不同路面条件下的取值及该路面最佳滑移率Sopt 和最大附着系数μmax 。 ⑵双线性模型 在一些情况下,为了获得一种解析解,用这种双线形模型来简化轮胎模型, 如下图所示:

c s s h μμ= c g h c h g s s s s --- --= 11h μμμμμ,其中,c s :最佳滑移率,g μ:滑移率为1时的附着系 数:s:车轮滑移率; h μ:峰值附着系数。 1.3 液压制动系统部分 液压制动系统包括两部分:一部分是液压传动系统;另一部分是制动器。为进行实时模拟计算,可以建立经验式的l 、2阶模型系统。为简化系统,忽略了电磁阀弹簧的非线性因素及压力传送的延迟,其传递函数为: ) 1(+= TS S K G 式中:K 为系统的增益,K=100;T 为系统时间常数,T=0.01。制动器力学模型描述了制动轮缸压力输入及制动力矩输出间的力学特性。为了简化仿真研究,在进行仿真时假设制动器为理想元件,如果忽略非线性和温度的影响,制动力矩瓦可以看作是制动压力P 的线性函数: Tb=kP 式中:Tb 为车轮制动力矩;k 为制动器制动效能因数(通过试验可以得到);P 为液压传动系统输出压力。 1.4 滑移率的计算 滑移即为汽车制动时出现车轮速度小于汽车车身速度而导致车轮即滚动又滑动的现象。车轮的滑移率定义为: %100?-=v r v ωλ

电动汽车制动能量回收系统仿真及控制器设计

电动汽车制动能量回收系统仿真及控制器设计 发表时间:2019-01-18T14:53:14.830Z 来源:《建筑模拟》2018年第31期作者:王金英[导读] 制动能量回收系统包括与车型相适配的发电机、蓄电池以及可以监视电池电量的智能电池管理系统。制动能量回收系统回收车辆在制动或惯性滑行中释放出的多余能量,并通过发电机将其转化为电能,再储存在蓄电池中,用于之后的加速行驶。 王金英 身份证号码:1202221984****3468摘要:制动能量回收系统包括与车型相适配的发电机、蓄电池以及可以监视电池电量的智能电池管理系统。制动能量回收系统回收车辆在制动或惯性滑行中释放出的多余能量,并通过发电机将其转化为电能,再储存在蓄电池中,用于之后的加速行驶。这个蓄电池还可为车内耗电设备供电,降低对发动机的依赖、燃耗及二氧化碳排放。本文对电动汽车制动能量回收系统仿真及控制器设计进行了阐述。 关键词:电动汽车;制动能量;回收系统;仿真;控制器设计 1、电动汽车制动能量回收系统原理分析 制动能量回收是现代电动汽车与混合动力车重要技术之一,也是它们的重要特点。在一般内燃机汽车上,当车辆减速、制动时,车辆的运动能量通过制动系统而转变为热能,并向大气中释放。而在电动汽车与混合动力车上,这种被浪费掉的运动能量已可通过制动能量回收技术转变为电能并储存于蓄电池中,并进一步转化为驱动能量。例如,当车辆起步或加速时,需要增大驱动力时,电机驱动力成为发动机的辅助动力,使电能获得有效应用。一般认为,在车辆非紧急制动的普通制动场合,约1/5的能量可以通过制动回收。制动能量回收按照混合动力的工作方式不同而有所不同。在发动机气门不停止工作场合,减速时能够回收的能量约是车辆运动能量的1/3。通过智能气门正时与升程控制系统使气门停止工作,发动机本身的机械摩擦(含泵气损失)能够减少约70%。回收能量增加到车辆运动能量的2/3。 2、电动汽车制动能量回收控制方式 在制动能量回收控制方式中,制动踏板提供制动信号,信号传递到整车电控单元,整车电控单元根据车辆运行状况及其他电控单元的状态,决定是否进行制动能量回收,并分配制动能量回收时辅助制动力矩的大小。车辆在高速滑行或下坡滑行时,具有极大的动能,许多情况下驾驶人都会通过踩下制动踏板对车辆实现机械制动,达到缩短滑行距离或限制车速的目的,但这部分动能以热量的形式被散失掉了。采用图2所示的控制方式,可方便地实现车辆处于滑行状态时减速能量的回收。 3、制动能量回收要考虑的几个因素 电动汽车制动能量回收,是提高电动汽车能源效率的一个主要因素。制动能量回收要考虑到制动效果、制动能量分配、储能电池的特性、储存能量的利用等几个方面,然后确定制动储能系统如何实现。 3.1储能电池的特点 电动汽车制动时有时缓慢,有时很突然,这就要求储能电池能够迅速转换充放模式而对电池无害,而且能够高倍率充放电,以及时储存制动能量,也能将储能电池里的能量及时利用。 电动汽车主流的驱动电池是锂离子电池,锂离子电池的充放电原理是化学反应,它在充放电之间转换需要时间,不是随意的,不然就会对锂电池有害。因此,锂电池是不适合做制动能量回收储能电池的,更不适合用电动汽车的驱动电池简单地用作对制动能量回收的储存(目前此观点有争议)。目前只有超级电容具有高倍率充放电和迅速转换充放电模式的特点,是真正适合用作制动能量回收的储存部件。 3.2储存能量的利用 储存在制动能量回收储存部件里的能量,要赶在下次制动前及时释放出去,牵涉到放电分配,储能超级电容应该优先释放能量。超级电容的内阻比锂电池大,要使超级电容先放电,就得使超级电容储能部件的电压比驱动电池的电压高,当电动汽车停下来一定时间时,把超级电容里的能量馈送给锂电池。 3.3制动效果和制动能量分配: 司机踩下刹车,用力不同,需要的制动效果不同,能量回收的程度不同。缓慢刹车,可以100%用电子刹车,停止驱动,把电机的能量馈送到超级电容里。如果刹车狠,就要在回收能量的同时,加上机械刹车,不同的用力,按照不同的比例分配。 从上面的分析中可以看出,电动汽车制动能量回收应该是这样一个过程:司机刹车,制动能量回收系统迅速回收能量,根据采集司机踩下制动器力量的大小,分配机械制动力的大小,以达到刹车效果。 回收的能量,通过DC-DC储存在超级电容做成的制动能量回收储存部件中。当车辆停下或熄火一定的时间后,通过放电DC-DC馈送到驱动电池中。如果车辆没有停,或着随后继续行驶,则首先由回收在超级电容里的能量,通过放电DC-DC驱动电机,不够的能量,由驱动电池及时补上,随后由驱动电池继续供电。 4、电动汽车制动能量回收系统仿真及控制器设计 4.1前轮驱动制动能量回收系统

纯电动汽车ABS制动能量回收

纯电动汽车ABS制动能量回收

————————————————————————————————作者:————————————————————————————————日期:

基于自寻优控制的纯电动汽车制动能量 回收策略可行性分析 倪兰青,南京航空航天大学 本课题应从三部分入手,一是汽车建模部分;二是ABS 自寻优控制部分;三是再生制动部分。 一:车辆动力学建模(以单轮模型为例) 1.1 单轮车辆模型 车辆运动方程:Fx v M -=? 车辆运动方程:Tb Tg Tb rFx I -=-=? ω 车轮纵向摩擦力:=x F μN 其中,M:汽车质量,Fx:轮胎和底面间的附着力,I :车轮转动惯量,ω:车轮角速度,r:车轮有效半径,Tg:地面制动力矩,Tb :制动器制动力矩,μ:地面摩擦系数,N :车轮对地面压力 1.2 轮胎模型 ⑴由于主要研究纵向制动特性,可以选用参数较少并能反映纵向附着系数μb 与滑移率S 关系的Burckhardt 模型。 s c e c s c 31)1(2 --=-μ 式中c1、c2、c3为参考系数,下表给出了其在不同路面条件下的取值及该路面最佳滑移率Sopt 和最大附着系数μmax 。 ⑵双线性模型 在一些情况下,为了获得一种解析解,用这种双线形模型来简化轮胎模型, 如下图所示:

c s s h μμ= c g h c h g s s s s --- --= 11h μμμμμ,其中,c s :最佳滑移率,g μ:滑移率为1时的附着系 数:s:车轮滑移率;h μ:峰值附着系数。 1.3 液压制动系统部分 液压制动系统包括两部分:一部分是液压传动系统;另一部分是制动器。为进行实时模拟计算,可以建立经验式的l 、2阶模型系统。为简化系统,忽略了电磁阀弹簧的非线性因素及压力传送的延迟,其传递函数为: ) 1(+= TS S K G 式中:K 为系统的增益,K=100;T 为系统时间常数,T=0.01。制动器力学模型描述了制动轮缸压力输入及制动力矩输出间的力学特性。为了简化仿真研究,在进行仿真时假设制动器为理想元件,如果忽略非线性和温度的影响,制动力矩瓦可以看作是制动压力P 的线性函数: Tb=kP 式中:Tb 为车轮制动力矩;k 为制动器制动效能因数(通过试验可以得到);P 为液压传动系统输出压力。 1.4 滑移率的计算 滑移即为汽车制动时出现车轮速度小于汽车车身速度而导致车轮即滚动又滑动的现象。车轮的滑移率定义为: %100?-=v r v ωλ

纯电动轿车制动能量回收系统研究

纯电动轿车制动能量回收系统研究摘要:目前国对于电动汽车回收制动能量的技术还处于初级研究阶段。具备能量回收的电动汽车上的制动系统,要求在最大限度回收制动能量的同时还得保证汽车良好的制动性能。因此,需要综合考虑汽车动力学特性/电机发电特性和蓄电池安全充电等多方面的问题,研制一种具有实际效用的制动系统具有一定的难度。本文主要对纯电动轿车制动能量回收系统进行了分析研究。 关键词:纯电动汽车;制动能量回收;测试 一、制动能量回收系统的结构及原理 电动汽车的制动能量回收系统是将制动时的动能转换成电能回馈给电池充电,使得能量能够被再生利用,该功能是由驱动电机的控制电路实现的。因此,电动汽车上的制动系统是再生-液压混合制动系统,本文以此为例介绍混合制动系统的结构和原理。如图 1 所示。 图 1 是典型的再生-液压混合制动系统,此系统中将前轮的制动能量进行回收,电机产生的再生制动力与传统制动系统产生的摩擦制动力共同作用实现对前轮的制动。再生制动力和传统制动系统产生的液压制动力的大小是由制动控制器与电机控制器协同工作确定的。制动能量由再生制动控制模块回收并回馈给电池,电动汽车仍装有 ABS,其作用与传统燃油车上的相同。

图 1. 再生-液压混合制动系统的结构 再生制动系统的基本原理是通过电机驱动的自感电动式/反电动势将存储在电枢中的磁场能量以及车体的动能保存至蓄电池中。 二、制动能量回收的影响因素分析 影响制动能量回收的因素有以下四个方面:(1)电机的制动能力与可回收的能量多少有重要关系。电机的制动能力越强,可以回收的制动能量就越多,续驶里程提高的就越多。电机的外特性决定了电机在当前转速下可输出的最大再生制动比例,如图 2 所示,电机在转速较高时处于恒功率发电状态,转速较低时处于恒转矩发电状态;其次电机的发电能力直接制约再生能量的多少。 图 2. 再生制动时电动机外特性

汽车减震器能量回收装置设计概要

目录 1 绪论 (1) 1.1 能量回收装置简介 (1) 1.2 研究的背景及意义 (1) 1.3 国内外发展现状及趋势 (2) 1.3.1国外发展现状 (2) 1.3.2国内发展趋势 (2) 2 理论基础 (3) 2.1 减震器 (3) 2.2 电磁发电技术 (4) 2.2.1法拉第电磁感应定律 (4) 2.2.2电磁感应发电装置结构 (4) 2.3 压电发电技术 (5) 2.3.1压电材料 (5) 2.3.2压电效应 (5) 3 基于压电叠堆储能的新式能量回收装置的结构及工作原理 (7) 3.1 压电叠堆发电装置的结构 (7) 3.2 能量回收装置的工作原理 (7) 4 能量回收装置的等效模型分析 (8) 4.1 模型假设 (8) 4.2 等效模型 (8) 4.3 发电装置的性能分析 (8) 4.4油压频率f对回收装置输出特性的影响 (9) 4.5 压电叠堆长度对输出特性的影响 (9) 4.6 压电叠堆截面面积S对输出特性的影响 (10) 4.7 本章小结 (11) 5 能量回收装置输出电路 (11) 6 结论与展望 (12) 参考文献 (13)

汽车减震器能量回收装置设计 摘要:传统的被动悬架以及半主动悬架只能起到加速车架和车身震动的衰减作用,而起不到对振动能量回收的作用。当汽车对减震器施加力时,减震器孔壁与油液间的摩擦及液体分子内的摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,被油液和减振器壳体所吸收,并散到大气中,这一部分能量被白白浪费掉。设计一种能量回收装置,能量回收装备将减震器内部的部分压力能转化为电能储存起来。通过查阅大量关于能源转化的资料,并对各种能量回收方案进行比较,最终确定用压电叠堆能量回收的装置对减震器内部的压力能进行回收。本文主要对压电能量回收装置的工作原理、理论设计、及数学模型的分析进行概述。 关键词:能量回收;储存;压电叠堆 1绪论 1.1能量回收装置简介 目前,大多数的混合动力车和电动车都配有制动能量回收装置,该装置有推广到非混合动力车的趋势,国际汽联也希望通过KERS系统在F1中的推广,树立环保先锋的形象。制动能量的回收通常有两种途径,一是以高速旋转的飞轮储存能量,二是车轮在制动时带动发电机,产生的电能储存于电池组中。制动产生的额外能量可以回收,那么汽车行驶中产生的其它能量也可以回收。减震器是悬架的重要组成部分,悬架的好坏关系到汽车的舒适性。在能源短缺的今天,节能减排越来越受到人们的重视。消费者在选择汽车时,在考虑动力性、舒适性、美观的同时,经济性也是一个重要的原因。减震器能量回收装置,能够回收减震器在伸张、压缩行程产生的能量,通过压电能量回收原理将机械能转变为电能储存于蓄电池之中,为其他用电设备供电。1.2研究的背景及意义 从汽车发明以来,汽车工业带动了各个国家经济的发展,但在其发展过程中,一系列的问题不断出现。能源短缺、环境污染、气候变暖成为各个国家面临的共同挑战。如何采用新的技术创造出一种新型的汽车成为各国企业不断攻克的难题。 当前内燃机汽车普遍采用的是普通的液力减震器。由于传统的减震器只起到缓解汽车振动的作用,并不能回收汽车在振动过程中的能量,这就造成了能量的浪费。 众所周知,在经过不平的路面时,汽车车身会发生振动,并且路面越不平稳,汽车振动的越厉害。通常情况下,振动的能量会以减震器内部机油摩擦生热而损耗,如果能将汽车振动作用在减震器上的能量加以回收再利用,为汽车的其他电器提供能量,已达到节能的目的。

电动汽车制动能量回收技术研究

10.16638/https://www.sodocs.net/doc/4911237607.html,ki.1671-7988.2019.02.003 电动汽车制动能量回收技术研究 胡建国,龚春忠,张永,何浩 (浙江合众新能源汽车有限公司试制试验中心,浙江嘉兴314000) 摘要:文章研究锂离子动力电池为储能系统且采用协调式制动策略的纯电动汽车,从制动工况上看,纯电动汽车可看成是电能回收和机械制动器的混合动力汽车。文章首先研究该类汽车的能量流,再研究制动策略的力矩分配及其受限因素,最后确定各因素与能量回收利用率的定量关系及其经验公式。 关键词:电动汽车;制动策略;能量回收率;能量消耗率 中图分类号:U461.3 文献标志码:A 文章编号:1671-7988(2019)02-10-03 Research on electric vehicle braking energy recovery technology Hu Jianguo, Gong Chunzhong, Zhang Yong, He Hao ( Zhejiang Hozon New Energy Automobile Co., Ltd. trial production test department, Zhejiang Jiaxing 314000 ) Abstract: In this paper, pure electric vehicle with Li-ion battery as energy storage system and coordinated braking strategy is studied. From the braking condition, pure electric vehicle can be regarded as hybrid electric vehicle with electric energy recovery and mechanical brake. Firstly, this paper studies the energy flow of this kind of vehicle, then studies the moment distribution of braking strategy and its constraints, and finally determines the quantitative relationship between each factor and energy recovery efficiency and its empirical formula. Keywords: Electric vehicle; braking strategy; energy recovery rate; Energy consumption rate CLC NO.: U461.3 Document Code: A Article ID: 1671-7988(2019)02-10-03 前言 汽车行驶的过程中,根据行驶工况的不同,约有35%~ 80%的能量损失在制动过程中[1]。为了降低汽车行驶能量消耗率,将汽车的制动过程能量回收从新利用,能带来明显的经济效益。可能量回收的悬架系统可以将汽车在颠簸路上的振动能量回收利用,但相比将汽车行驶动能回收,其经济效益更小,且成本高[2]。在纯电动汽车逐渐普及的情况下,分析研究制动能量回收的原理及影响因素,对进一步提高汽车制动能量回收利用率具有重大的意义。因此,本文研究制动能量回收系统。 汽车制动能量回收的方式有很多,根据回收储能装置的不同,可以分为超级电容、锂离子动力电池、飞轮、机械发条等形式[3]。而当前技术成熟且能大规模应用的混合动力汽车后纯电动汽车,储能单元大多是锂离子动力电池。因此,本文研究的是锂离子动力电池为储能单元的制动能量回收系统。 根据制动力分配形式不同,可分为叠加式(部分文献称为并联式)与协调式(部分文献称为串联式)能量回收系统[4]。协调式能量回收比叠加式硬件上增加一个制动踏板开度传感器,在软件上增加了一套制动分配力控制策略,成本更高,但能提高汽车制动能量的回收利用率。在未来的可能量回收制动系统中,协调式能量回收将成为主要的方向。因此,本文重点研究协调式能量回收系统。 作者简介:胡建国,浙江合众新能源汽车有限公司,研究生学历,助理工程师,研究方向:新能源汽车综合管理;龚春忠,本科,浙江合众新能源汽车有限公司试制试验中心主管试验工程师,初级工程师,主要从事电动汽车三电系统开发、整车动力性经济性试验;张永,浙江合众新能源汽车有限公司,学士学位,中级工程师,新能源汽车整车试制与试验;何浩,浙江合众新能源汽车有限公司,学士学位,中级工程师,研究方向:新能源汽车动力性经济性测试。 10

相关主题