搜档网
当前位置:搜档网 › 制动工况对对电动汽车制动回收能量影响的分析3

制动工况对对电动汽车制动回收能量影响的分析3

制动工况对对电动汽车制动回收能量影响的分析3
制动工况对对电动汽车制动回收能量影响的分析3

制动工况对电动汽车制动能量回收影响分析

前言

随着能源和环境问题日益突出,电动汽车已成为替代传统内燃机汽车的最佳选择。受限于当前技术条件,电动汽车续驶里程普遍较短,电动汽车节能技术成为电动汽车研究的重要方面,其中再生制动作为电动汽车节能主要手段,受到国内外学者广泛关注[1-2]。设计阶段的电动汽车结构和动力系统设计、运行阶段的控制策略和制动工况等都是影响再生制动能量回收效果的因素[3]。

目前,制动工况方面的分析研究,多集中对制动工况进行解耦,分别研究制动初速度和制动强度对制动回收能量效果的影响[4-6],并未综合分析制动工况各因素影响能量回收效果之间的耦合关系,或分析制动强度与制动初始速度对能量回收效果贡献大小。

制动工况分为两种,单次制动工况和循环制动工况[7],循环制动工况多用在试验条件下对电动车性能测试,日常驾驶中更多应用的是单次制动工况。单次制动工况为本文研究工况,其影响因素包含两个方面:制动强度(z )和制动初速度。

本文以较为普遍的集中电机前轴驱动电动汽车为研究对象,采用制动稳定性较好的理想制动力分配策略,利用Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE)。采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)对连续设计空间进行采样,分析制动回收能量与制动初速度和制动强度之间的关系,分析制动工况对制动能量回收的主效应和交互效应,和影响制动能量回收的主次因素。

1制动能量回收影响因素分析

再生制动时受各种阻力损耗、摩擦制动器消耗、电机和电池工作特性和效率、相关部件工作效率等方面的影响,未能将制动动能完全转化为电能存储在蓄电池中。综上各方面将主要因素分为一下三类:

(1)影响制动总能量的因素,制动总能量计算公式为()222

1e s v v m E -=(式中,E 为制动总能量,kJ ;m 为电动车整备质量,kg ;s v 和e v 分别为为车辆制动初始和终止速度,1s m -?),得出影响因素主要是制动初速度、电动汽车整备质量等。

(2)影响可回收能量的因素,如制动强度、车辆结构(滚动阻力消耗、空气阻力消耗等)、制动力分配策略(摩擦制动损耗)等。

(3)影响再生制动回收能量的因素,如驱动系统布置、电机和电池工作特性、传动系统特性、各部件及传递线路损耗、控制器损耗等。

以上影响因素主要归为四个方面:车辆结构、动力系统结构、制动工况、制动控制策略,在设计阶段车辆结构、动力系统结构和控制策略确定后,制动工况成为可根据驾驶员主观操纵的影响再生制动能量回收效果的唯一因素。

2仿真模型与验证

2.1理想再生制动力分配策略

本文采用文献[8]中制定的理想制动力分配策略。理想再生制动力分配策略可以保证前后轴制动力得到合理分配,制动稳定性好,该策略包含制动力在前后轴的分配及在电机制动力与摩擦制动力之间的分配两部分。分配电机制动力和摩擦制动力时要优先利用电机制动力,不足部分再由摩擦制动力补充。

2.2建立仿真模型

使用MATLAB/Simulink 建立整车、电机、电池和控制策略等模型,整车参数如表1所示。

表1整车参数Tab.1Vehicle Parameters

参数指标

驱动形式集中电机前轴独立驱动

整备质量/kg 1231

满载质量/kg 1531

轴距/m 2.6质心到前轴距离/m

1.04质心高度/m

0.54车轮滚动半径/m

0.304迎风面积/2

m 1.6风阻系数

0.343滚动阻力系数

0.016汽车旋转质量换算系数 1.044

为方便研究,建模时做如下假设:

(1)假定车辆行驶在平直路面上,忽略坡度和弯道带来的影响。(2)本模型主要研究制动工况对能量回收影响,不深入研究电机和电池效率带来的影响,依据试验数据,统一电机工作效率为92%,电池充放电效率为91%,电机转化的能量都能被电池存储。

(3)单次制动工况制动终止车速为零。

2.2.1整车模型

本文主要研究车辆制动过程,所以建模时不考虑横向和垂直力的影响,平直道路制动时电动车纵向动力学方程为:

b D F -v A C -mgf -dt dv m 22

1ρδ=(1)式中:b F 为整车需求制动力,N ;g 为重力加速度,2s m -?;f 为滚动阻力系数;D C 为空气阻力系数;A 为车辆迎风面积,2m ;ρ为空气密度;v 为车辆速度,1s m -?;δ为汽车旋转质量换算系数。

2.2.2电机模型

电机实现动能和电能之间的转换。理想电机转矩特性是:低于额定转速恒扭矩输出,高于额定转速恒功率输出[9],表示为:

?

??>≤=rated max m rated max n n n /P n n T T 9550(2)式中:T 为电机转矩,m N ?;max T 为电机峰值转矩,m N ?;mmax P 为电机峰值功率,W k ;

n 为电机转速,1min r -?。电机模型依据试验数据采用查表方式建立,制动时依据实时车速查得所能提供最大再生制动力并输入到控制策略模块计算实际可提供电机制动力,并按控制策略分配制动力。选用电机的相关参数如表2所示。

表2电机参数

Tab.2Motor Parameters

参数

指标电机峰值(额定)转矩/m

N ?382(191)电机峰值(额定)功率/W

k 60(30)电机额定转速/1

min

r -?1500电机最高转速/1min r -?4500

2.2.3电池模型

本文忽略电池温度对电池性能的影响,采用电池Rint 模型[10],其充放/电特性:

()I

IR E P b ±=(3)

式中,b P 为电池充/放电功率,W k ;E 为电池开路电压,V ;R 为电池等效内阻,Ω;

I 为充/放电电流,A 。

电池充放/电SOC 计算选用Peukert 模型[10],其计算公式为:

dt C I SOC SOC p

k ?±=0(4)式中:0SOC 为SOC 初始值;p C 为电池容量,h A ;k 为Peukert 系数,选用为1.2。选用的电池模型参数如表3所示。

表3电池参数Tab.3Battery Parameters

参数指标

电池额定电压/V 320

电池额定容量/(A h ?)

80最大充电电流/A

100最大放电电流/A 180仿真时取路面附着系数为0.8,电池SOC 初值为0.8。

2.3再生制动能量流动

当轮毂电机处于发电状态时,符合以下功率平衡:

m

m

v P P η=(9)式中:v P 为输入电机的机械功率;m P 为电机发电输出功率,9550

Tn P m =;m

η为电机工作效率,受机械损耗、铁损、铜损等影响。

不考虑电机发出的电能在传递到电池过程的损失,则电池回收功率为:

r

m P P η?=b (10)式中:b P 为电池回收功率;r η为电池充电效率,受电池内阻等影响。

2.4模型验证

为验证模型准确性和精度,与CarSim 进行联合仿真,验证循环工况采用中国城市乘用车道路循环工况(CCDC),验证结果如图1所示:

图1联合仿真速度变化曲线

从图1可以看出,仿真模型速度与CCDC 标准速度差别不大,跟随性较好,说明模型准确可靠,精度较高,满足使用要求。

3制动工况对能量回收影响分析

为评价制动能量回收效果,采用制动能量回收率(r α)作为制动能量回收效果评价指标,定义为制动回收能量与总制动能量比值:

%E

dt P c b r 100?=?ηα(5)式中:v ?为制动过程车速变化,1-h km ?;dt 为仿真步长,s 。

基于Isight 与Matlab/Simulink 搭建的联合仿真平台,采用分布式计算方法实现对制动工

况与制动能量回收率之间规律研究。

3.1试验设计采样

试验设计可以探索设计空间,研究相关规律,并为下一步的优化提供数据支撑。对由制动初速度和制动强度各水平组成的连续设计空间进行DOE 采样,为保证试验精度和结果可靠性,采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)。OptLHD 可对连续设计空间进行均匀采样,具有较好的空间填充性和均衡性[11],考虑到计算成本和准确性,采样点数选为10000个,采样分布如图2

所示。

图2OptLHD 采样分布图

3.2仿真计算与结果分析

将采样点传递给MATLAB/Simulink 仿真模块,计算每一采样点的制动能量回收率,

DOE 试验设计目标和约束为:

)

(max r α(6)??

???≤≤≤?≤≤?--90800010120101

1.SOC .z .h km v h km .t .s 整个设计空间内能量回收率r α分布如图3

所示。

图3能量回收率分布

从图3可以得出,当制动强度z 和制动初速度s v 不同时,能量回收率r α差异较大,在整个设计空间内存在r α最高的z 与s v 组合(s v =44.61h km -?,z =0.55,r α=63.56%),另外r α较优区域(57.3%-64%)分布范围较大,这为应用试验分析结论提供了便捷性。

分别绘制满足试验设计目标下各因素主效应、交互效应和Pareto 图,分别如图4-6所示。主效应是因素在某个水平时所有试验中相应的平均值,反映单一因素对试验设计目标的影响;

交互效应反映多因素交互作用对试验设计目标的影响[12]。

Pareto 图反映各因素对试验设计目标的贡献情况,把各因素重要程度依次排列,并为后期分析提供数据和趋势的指导。

图4s v 与z 主效应图5s v 与z 交互效应图6Pareto 分布

图4可以看出,当s v 不变时随z 增大r α先增大后减小;z 不变时,随车速增大r α先增大后减小。两者变化皆为非线性,说明单一因素下并不是s v 和z 越大或者越小r α越高,而是在一定范围内存在最佳r α,符合图3表述。

从图5和6可以看出,交互效应图中两条曲线不平行,说明s v 与z 之间存在交互效应,且交互作用对r α的影响关系非线性。s v 与z 之间的交互效应对r α的贡献大于s v 或z 单一因素的影响,说明r α最优是两者综合影响的结果。从单因素角度考虑z 对r α的贡献要远大于s v ,是主要影响因素且为负影响,s v 为正影响。这说明制动时通过调节z 实现能量回收提高的潜力比改变s v 要高。

综上分析,在车辆结构、动力系统布置、电机电池工作特性、阻力、控制策略等因素限制下,r α受制动工况影响较大,且在不同制动工况下存在一定的变化规律。整个工况范围内最优r α是z 和s v 综合影响的效果,且在s v 固定时可以通过调节z 达到提高r α的目的,另外当s v 和z 都可变且只能改变单一因素时,调节z 可以更好地实现r α的提高。

制动强度变化影响制动距离,所以驾驶员在不考虑制动距离单次制动时或是滑行制动时,可以用分析结论控制制动状况或制定优化策略,回收更多能量。

4结论

(1)制动初速度和制动强度对能量回收率的交互影响非线性,在其他因素固定下,整个工况范围内,最高能量回收率是制动初速度和制动强度组合影响,能量回收率较优区域较大,另外不同制动初速度下均存在能量回收最优制动强度。

(2)当只能改变一个影响因素时,改变制动强度对提高能量回收率的贡献率要大于改变制动初速度。同时,在制动强度或者制动初速度不变时,均存在能量回收率较优的最优制动强度或最优制动初速度。

(3)驾驶员制动时,依据试验设计结论,可以选择合适制动工况,提高制动能量回收效果。

制动能量回馈系统协调控制

制动能量回馈系统协调控制 张俊智,张鹏君,陆欣,陈鑫 清华大学汽车安全与节能国家重点实验室,北京,100084 【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环工况进行了道路测试。 【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制 Coordinated Control for Regenerative Braking System Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084 Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle.. Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control 1 介绍 车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制动过程所消耗[1,2]。因此,回馈制动是车辆提高燃油经济性并降低排放的有效方法,有助于缓解能源危机和环境污染。

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

电动汽车能量回馈的整车控制(1)

2005005 电动汽车能量回馈的整车控制 张 毅,杨 林,朱建新,冒晓建,卓 斌 (上海交通大学汽车电子研究所,上海 200030) [摘要] 以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。 关键词:电动汽车,能量回馈,控制策略 The Control Strategy of Energy Regeneration for Electric Vehicle Zhang Yi,Yang Lin,Zhu Jianxin,Mao Xiaojian&Zhuo Bin Instit ute of A utomotive Elect ronic Technology,S hanghai Jiaotong U niversity,S hanghai200030 [Abstract] The energy consumption in four typical vehicle testing cycles(FTP,HWEFT,ECE2EUDC and J P1015)is analyzed for EV.Based on the traditional vehicle braking system,a new regenerative braking scheme and its control strategy are designed.The road testing,calibration and optimization are performed.T est results show that the control scheme and strategy is safe,https://www.sodocs.net/doc/549575648.html,ing the regenerating scheme,the energy consumption of battery can re2 duce by10percent and the driving range of EV in one charge can increase effectively. K eyw ords:Electric vehicle,E nergy regeneration,Control strategy 原稿收到日期为2003年12月29日,修改稿收到日期为2004年3月8日。 1 前言 电动汽车采用了新型的汽车动力,如何充分提 高车辆行驶能量效率,进而延长车辆续驶里程,是电 动汽车需要解决的一个关键问题。能量回馈是解决 该问题的主要技术措施。 能量回馈包括车辆制动能量回馈与车辆滑行能 量回馈两种。此时,驱动电机按发电机运行,将车辆 行驶动能转化为电能,可以起到3个作用:辅助制 动;回收能量给动力蓄电池充电,从而延长车辆续驶 里程;在车辆有供热需求时,直接利用这部分电能供 热取暖。 能量回馈制动与电动汽车其它电气制动方式 (主要有能耗制动、反接制动[1])比较,无须改变系 统硬件结构,回馈电流可柔性控制,可使制动效果与 能量回收效果综合最佳。因此,能量回馈是最适合 电动汽车的电气制动方式,其关键是能量回馈的过 程控制。电动汽车的能量回馈控制由整车控制与电 机控制交互作用而实现,作者在电动汽车制动能量 分析的基础上,设计一种能量回馈的整车控制方式, 并进行相应控制策略的研究。 2 制动能量分析 为了进行电动汽车能量回馈控制,需首先探明 其在各种用途中的制动能量回馈潜力。作者分别以 美国F TP工况、高速公路HFET工况、欧洲城市循 环ECE2EUDC工况和日本J P10154种循环工况为 例,进行制动能量的分析。 4种循环工况的驱动与制动能量如图1所示, 可见在这4种循环工况中,制动能量都占了不小的 比例,其中J P1015工况为2517%,ECE2EUDC工况 为18%,HFET工况为6%,F TP为25%。 回馈能量还与制动方式和回馈系统各环节的效 率因子有关[2]。电动汽车的制动方式包括:电气制2005年(第27卷)第1期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.1

纯电动汽车制动能量回收技术定稿版

纯电动汽车制动能量回 收技术 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,

使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

电动汽车用直流无刷电机能量回馈研究

电动汽车用直流无刷电机能量回馈研究 摘要本文对电动汽车用直流无刷电机能量回馈的种类进行了深入探讨,针对不同种类能量回馈的特点进行了详细分析,提出了各种回馈适用的条件。最后简要提出了能量回馈的控制方式,通过在产品中的成功应用,证明这种控制方式具有可行性。 关键词直流无刷;能量回馈;回馈制动 0 引言 随着能源供应的紧张,汽油的价格越来越高,使用电能作为汽车的动力将会是未来发展的大趋势。但是目前车用动力电池的储能低、充电时间长是制约其应用和普及的瓶颈。而采用能量回馈的方式,可以将电动汽车刹车时的能量回馈给电池,这就变相的增加了动力电池的储能大小,延长了电池一次充电的续驶里程,具有重要的现实意义。本文将专门探讨直流无刷电机在电动汽车中使用的能量回馈方式。 1 系统构成 1.1 整车动力系统组成 整车动力系统主要由蓄电池、直流无刷电机、电机控制器和霍尔位置传感器组成,见图1。蓄电池作为整车的电量储存设备,为电动汽车的运行提供电能。位置传感器采用120°电角度的霍尔传感器。电机控制器根据电机运行时的位置传感器信号,按照霍尔序列与三相全桥开关的对应顺序进行功率管的开关变换。霍尔信号与三相全桥的顺序如表1所列,通过图2所示的功率变换电路,将蓄电池的直流电转换成电机工作的交流电流。 功率变换部分主要由蓄电池、功率变换电路和直流无刷电机组成,如图2所示。假设电动汽车正向行驶时开关桥的顺序按照表1中的对应顺序,则开关桥和对应的感生电动势波形为图3所示变化。 1.3 回馈控制方式的分类 按照回馈的不同方式,将直流无刷的能量回馈分为自然回馈、全桥回馈和半桥回馈三种类型。 1.3.1 自然回馈方式 当电动汽车处于下坡位置,由于重力加速度使车速不断加快,电机转速随之升高。根据直流无刷电机的特性,当电机转速n大于时,线圈所产生的感生电动势就会超过电池电压U,将产生的电量自然的回馈到电池中。此时三相全桥中的六个mosfet均处于截止状态,mosfet的续流二极管处于三相整流工作状态。 1.3.2 全桥回馈方式 全桥回馈以t0~t2区间为例,此时T1和T4全部进行PWM调制。 当T1和T4均为导通状态下,选电池的负极为参考点,此时三相中点的电压U0=U/2,D6一直处于截止状态,电流运行方向为:电池正极→T1→A相线圈→B相线圈→T4→电池负极。 当T1和T4处于关断状态,此时三相中点的电压U0=-Ec,电流的运行方向为:电池负极→D2→A相线圈→B相线圈→D3→电池正极,由电机向电池回馈能量。 可以看出在t0~t1区间,D6虽然处于正向压降,但电路中并没有回路;在t1~t2区间,D6处于反向压降截止状态。所以在t1~t2整个周期内,D6一直处

电动汽车制动能量回收控制策略的研究

摘要:电动汽车的驱动电机运行在再生发电状态时,既可以提供制动力,又可以给电池充电回收车体动能,从而延长电动车续驶里程。对制动模式进行了分类,并详细探讨了中轻度刹车时制动能量回收的机制和影响因素。提出了制动能量回收的最优控制策略,给出了仿真模型及结果,最后基于仿真模型及XL型纯电动车对控制算法的效果进行了评价。关键词:制动能量回收电动汽车镍氢电池Simulink模型电动汽车(EV)的研究是在环境保护问题及能源问题日益受到关注的情况下兴起的。在EV性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。尽管蓄电池技术有了长足进步,但由于受安全性、经济性等因素的制约,近期不会有大的突破。因此如何提高EV能量利用率是一个非常关键的问题。制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长百分之十到百分之三十。目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。1制动模式电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。1.1急刹车急刹车对应于制动加速度大于2m/s2的过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。1.2中轻度刹车中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程与停止过程。电刹车负责减速过程,停止过程由机械刹车完成。两种刹车的切换点由电机发电特性确定。1.3汽车长下坡时的刹车汽车长下坡一般发生在盘山公路下缓坡时。在制动力要求不大时,可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。限制因素主要为电池的最大可充电时间。由于电动汽车主要工作在城市工况下,所以本文将研究重点放在中轻度电刹车上。2制动能量回收的约束条件实用的能量回收系统应满足以下要求:(1)满足刹车的安全要求,符合驾驶员的刹车习惯。刹车过程中,对安全的要求是第一位的。需要找到电刹车和机械刹车的最佳覆盖区间,在确保安全的前提下,尽可能多地回收能量。具有能量回收系统的电动汽车的刹车过程应尽可能地与传统的刹车过程近似,这将保证在实际应用中,系统有吸引力,可以为大众所接受。(2)考虑驱动电机的发电工作特性和输出能力。电动汽车中常用的是永磁直流电机或感应异步电机,应针对不同的电机的发电效率特性,采取相应的控制手段。(3)确保电池组在充电过程中的安全,防止过充。电动汽车中常用的电池为镍氢电池、锂电池和铅酸电池。充电时,避免因充电电流过大或充电时间过长而损害电池。由以上分析可得能量回收的约束条件:(1)根据电池放电深度的不同,电池可接受的最大充电电流。(2)电池可接受的最大充电时间。(3)能量回收停止时电机的转速及与此相对应的充电电流值。本项目原型车为XL型纯电动车,驱动采用异步交流电机,额定功率为20kW,峰值功率为60kW,额定转矩为53Nm,峰值转矩为290Nm,持续输出三倍额定转矩时间不小于30s,额定转速为3600r/min,最高转速为9000r/min。蓄电池采用24节100Ah镍氢电池,其瞬时充电电流可达1.5C(C为电池放电倍率),即150A。在充电电流为0.5C时,可持续安全充电。实验表明,在电机转速为500r/min时,充电电流小于6A。可设此点为电刹车与机械刹车的切换点。3制动能量回收控制算法3.1制动过程分析经推导可得,一次刹车回收能量E=K1K2K3(ΔW-FfS)。特定刹车过程中,车体动能衰减ΔW为定值。特定车型的机械传动效率K1和滚动摩擦力Ff基本上是固定的。对蓄电池来说,制动能量回收对应于短时间(不超过20s)、大电流(可达100A)充电,因此能量回收约束条件(2)可忽略,充电效率K3也可认为恒定。对于电机来说,在制动过程

新能源电动汽车回收系统

现代汽车电子技术 题目:电动助力转向系统 摘要 本文从全球环境污染和能源短缺等严峻问题阐述了发展电动汽

车的重要性和必要性,着重分析概括了电动汽车制动能量回收系统的研究现状 关键字电动汽车制动能量回收系统 1 引言 目前,普通燃油汽车在国内外仍占据绝大部分汽车市场。汽车发动机燃烧燃料产生动力的同时排放出大量尾气,其成分主要有二氧化碳(CO2),一氧化碳(CO),氮氧化合物(NO X)和碳氢化合物(HC),还有一些铅尘和烟尘等固体细微颗粒物,虽然现代汽车技术已经使汽车尾气排放降到很低,但由于汽车保有量持续高速增加,汽车排放的尾气还是会对人类的生存环境造成很严重的影响,例如近年来不断加剧的温室效应,光化学烟雾,城市雾霾等大气污染现象。 内燃机汽车消耗的能源主要来自石油,石油属于不可再生资源,目前全球已探明的石油总量为12000.7亿桶,按现在的开采速度将只够开采40.6年左右,即使会不断发现新的油田,但总会有消耗的一天。全球交通领域的石油消耗占石油总消耗的57%,由于汽车的保有量持续快速增长(主要来自发展中国家),到2020年预计这一比例将达到62%以上,2010年我国的石油对外依存度已达到53.8%,到2030年预计这一比例将达到80%以上,可见石油资源的短缺将会直接影响我国的能源安全,经济安全和国家安全,不利于我国长期可持续的发展,因此探索石油以外的汽车动力能源是21世纪迫切需要解决的问题。 电动汽车具有无污染,已启动,低噪声,易操纵等优点,相关的技术研究已趋成熟,是公认的未来汽车的主流。自1997年10底丰田推出混合动力车型Prius 以来,电动汽车越来越受市场的欢迎,近年来不少国内外汽车生厂商已向市场推出不少种类的电动汽车,在混合动力汽车领域,日本的丰田和本田不管从技术研发还是在市场销售,宣传等方面已经走在世界的前列,推出了诸如Pius,Insight,Fit,Civic 等量产化混合动力车型,其他国外汽车制造商在本田和丰田之后也相继推出相应的车型,例如宝马3系,5系,7系,8系都推出了相应的混合动力车型,大众途锐的混合动力版,特斯拉推出的MODEL S 纯电动车,国内汽车生产商比亚迪在电动汽车领域已经走在前列,相继推出包含“秦”在内的许多种混合动力车型。

纯电动汽车再生制动系统的建模与仿真_张亚军

第32卷 第15期2010年8月 武 汉 理 工 大 学 学 报 JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vo l.32 N o.15 A ug.2010 DOI:10.3963/j.issn.1671-4431.2010.15.022 纯电动汽车再生制动系统的建模与仿真 张亚军,杨盼盼 (长安大学电子与控制工程学院,西安710064) 摘 要: 为提高纯电动汽车的再生制动能量回收率,通过分析制动系统的工作原理,建立了纯电动汽车制动力分配的数学模型,并根据制动强度和储能元件荷电状态的大小,设计了基于模糊逻辑的制动力分配控制策略,以实现制动能量的高效回收利用。结合典型道路循环工况,利用电动汽车仿真软件ADV ISOR2002对制动力分配的模糊控制策略进行了整车运行仿真验证。结果表明,该制动力分配控制策略改善了制动能量回收率,有利于合理利用其有限的能量延长电动汽车的续驶里程。 关键词: 纯电动汽车; 再生制动系统; 制动力分配; 控制策略中图分类号: U 469.72 文献标识码: A 文章编号:1671-4431(2010)15-0090-05 Modeling and S imulation of Regenerative Braking System for Pure Electric Vehicle Z H ANG Ya -j un,YANG Pan -p an (School of Electronic and Contr ol Engineer ing ,Chang .an U niversity,Xi .an 710064,China) Abstract: In or der to enhance the recycling efficiency of reg enerative braking energy for pure electr ic vehicles (PEV ),the br aking system model of P EV is proposed on the basis of analyzing the braking oper at ion principle.T og ether with t he br aking severity and the state of charge (SOC)of energ y storage element,a nov el contro l strateg y of braking force distribution based o n fuzzy log ic is desig ned,which can realize the high efficiency recycling of braking energ y.T he simulat ion of the fuzzy control strategy for br aking force distribution is carried out in typical driving cycle by the electric vehicle simulatio n software A DVI -SOR 2002.T he simulation results show that t he braking force distribution co ntrol strategy can improve the recy cling efficiency of regenerative br aking energ y,and prolong PEV .s driv ing rang e by rational use of the limited energy. Key words: pure electr ic vehicle; regenerativ e braking system; br aking force distribution; control str ategy 收稿日期:2010-02-04.作者简介:张亚军(1982-),男,硕士生.E -mail:zyajun2010@163.co m 电动汽车作为一种新型的交通工具,以其清洁无污染、驱动能量源多样化、能量效率高等优点成为现代汽车的发展趋势[1]。但其续驶里程不足成为阻碍电动汽车商品化的瓶颈,因此,提高电动汽车续驶里程是亟待解决的一个关键问题。再生制动是电动汽车的特有技术,其功能是在保证电动汽车行驶稳定性的前提下,将电动汽车制动时的一部分机械能经再生制动系统转换为电能存储到储能单元中[2] 。因此再生制动对 降低电动汽车的能耗,延长续驶里程,提高其经济性能有重要的作用。文献[3,4]基于制动安全性要求,通过对电动汽车再生制动系统中保留摩擦制动的必要性展开研究,提出了一种新的再生制动控制策略,所提出的控制策略可通过检测电动汽车制动强度的大小,将电动汽车制动时总制动力需求在驱动轮与从动轮之间分配。文献[5]分析了在制动稳定性条件下,电动汽车再生制动系统制动能量回收能力,并从动力学角度建立了驱动轮电气制动力和摩擦制动力制动份额随制动强度变化的模型。但上述文献在分析电动汽车再生制动

车辆制动能量回收

低碳世博,能源再利用—— 基于超级电容的城市轨道车辆制动能量回收 1 概述 由于城市轨道车辆具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点,世界各国普遍认识到,解决城市交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。随着我国经济的高速发展、城市化进程的不断加快,城市轨道交通将在我国城市公共交通运输中占有越来越越重要的地位。到目前为止我国已有北京、上海、广州、深圳、武汉等城市已经运行,截至2009年9月,我国有27个城市正在筹备建设城市轨道交通,其中22个城市的轨道交通建设规划已经获得国务院批复。至2015年,北京、上海、广州、深圳等22个城市将建设79条轨道交通线路,总长度为2259.84公里,计划总投资8820.03亿元。 城市轨道交通列车的特点就是线路的站间距短,列车运行时频繁地起动、制动,基本上在列车达到最高速时很快就会制动。目前,我国地铁列车大都采用接触网/轨直流供电, 牵引系统大都是变压变频的交流传动系统。列车牵引时从电网吸收能量,制动时采用反馈制动把制动能量反馈回电网, 根据经验,地铁再生制动产生的能量除了一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其他相邻列车吸收利用外,剩余部分将主要被列车的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。当列车发车密度较低时,再生能量被其他车辆吸收的概率将大大降低。资料表明,当列车发车间隔大于10 min 时,再生制动能量被吸收的概率几乎为零,此时绝大部分制动能量将被车辆吸收电阻吸收,变成热能并向四外散发,这必将使隧道和站内的温度升高。目前国内城市轨道交通在地面采用电阻能耗吸收装置处理列车运行过程中的再生能量,这不仅浪费能量,而且也增加了站内空调通风装置的负担,并使城轨建设费用和运行费用增加。如能将这部分能量储存再利用,这些问题将迎刃而解。 2 可行性分析 城市轨道交通车辆制动能量是否具有回收的可行性,需要对制动能量进行合理计算,并根据其大小确定制动能量是否具有实际回收价值。现以一列上海轨道交通2号线6节车辆编组为例(4节动车,2节拖车),设轨道车辆的制动初速度为70km/h (V1) ,制动末速度为8km/h (V2),M为车辆和载客质量,则利用公式(1)计算电制动能量。(1)

纯电动车能量回馈悬架系统设计

纯电动车能量回馈悬架系统设计 发表时间:2019-12-30T13:26:44.930Z 来源:《科学与技术》2019年 15期作者:刘毅 [导读] 本次研究中主要是从建模入手,不断开展仿真与研究工作 摘要:本次研究中主要是从建模入手,不断开展仿真与研究工作,进而在汽车设计中应用被动悬架进行对减震器机械能的优化,应用了LQG,通过优化设计的形式明确了主动悬架的能量需求以及其悬架在能力回收方面存在的潜力与价值,依照该方向与角度开展工作,研究并讨论。 关键词:电动主动悬架;能量回收;可行性研究 1 引言 在当前能量紧张以及可持续发展理念的影响下,节能减排已经成为了我国汽车及其零部件设计的重要方向与内容,而在悬架设计工作中如果可以将能量顺利的扩散并且降低汽车对于能量的吸收效果,就能实现对汽车动能消耗的减少,实现节能减排的效果[1]。 2 悬架系统主动控制算法研究 2.1悬架动行程反馈控制设计 工作中首先应当开展相应悬架的东形成反馈控制算法工作,实现动行程的反馈控制分离化,通过微分进行计算,但是在计算分析中容易受到一些高频或者一些连贯频率的干扰。而干扰效果主要是基于串联滤波器抑制高频干扰效果,形成对过程器形成中反馈控制器的干扰效果,最终形成不完全微分的计算与分析,这也是整个微分计算中可能存在的主要缺点。但是通过微分可以实现对不同周期中变化趋势的改变,解决了原先悬架动行程反馈控制点中存在的控制器周期差异变化趋势的问题,形成微分频率均匀的输出,真正形成微分作用,改善系统的性能,并且避免电机出现的频繁动作[2]。 微分数字在悬架动行程的反馈控制中可以采用传递函数进行表示,表示效果应当通过分散化的后阶向差进行输出,输出公式为: 在公式中,如果为1的话,采用微积分计算常数则应当尽量变小,比如说0.0001等类的值,同时基于采样周期T进行稳定性的提高。 2.2 单轨半车模型的建立 路面的输入关系与输出关系对于车辆的整体影响较大,前后车轮之间的轨迹对于输入与输出的相关性影响较大,圆柱状的路面可以更好的实现对车辆对称性仿真研究的要求,进而实现对称性,更加全面的考虑车在完全相同方式中运动的效果与运动形式。单轨半车模型的建立可以更加直观的展现出车辆的仿真效果与稳定性情况,如下图1。 图 1单轨半车模型 车身为刚体的时候,依照牛顿定律可以更好的实现对车身整体的研究与计算,进而得出相应公式: ( 系统状态中的内容主要可以基于方程内容进行研究体现,而用微积分的形式也可以很好地展现出来,形式如下:

电动汽车制动能量回馈研究开题报告

学院 毕业设计开题报告 学生姓名:学号: 专业: 设计题目:电动汽车制动能量回馈研究 指导教师: 年月日

1.本课题的研究意义,国内外研究现状、水平和发展趋势 目前用于车载的电储能装置主要是蓄电池储能装置,储能装置既可以作为驱动系统提供能量,又可以作为回馈系统回收制动能量。 制动能量的回馈已经应用于少数豪华跑车,作为噱头,真正的效果并不尽如人意。但是这是一个必然的发展趋势,节能减排是整个世界的共同主题。从1990年起,世界各地的大型汽车公司如美国的通用、福特,日本的本田、丰田与日产等都加大了对电动汽车研究的资金投入。这些公司很快就制造出了概念电动汽车及电动汽车,而且很多概念车在当时就配置了制动能量回馈系统。 可持续发展是人类社会的共同目标。为了解决日益匮乏的原油煤炭资源以及尾气排放等问题,混合动力型汽车是现在及以后需大力发展及推广的重要举措。如今混动汽车,纯电动公交车已经推广至社会中的大街小巷。然而电动汽车在频繁的制动过程中有许多能量流失浪费,本次设计的任务就是在现有的技术基础上,研究电动汽车在行车制动时能量的回馈吸收,使能量得到进一步的利用,延长行驶里程。首先阐释如今电动汽车的能量运转方式,分析制动能量回馈的可行性,在现有技术基础上展开研究,阐述先进性。

2.本课题的基本内容,预计可能遇到的困难,提出解决问题的方法和措施 主要内容 1.电动汽车制动能量回馈的研究现状。 2. 电动汽车制动能量回馈的主要关键技术有哪些。 3.现有电动汽车能量回馈系统及回馈控制方法有哪些,各有什么特点。 4.熟悉电动汽车制动能量回馈的工作原理。 5.提出一种电动汽车制动能量回馈系统,阐述所提出系统的先进性。 可能遇到困难: 1. 供电电源的电压必须大于电机的感应电动势。当电机的感应电动势较大时,供电电源的电压较高,使得电源系统体积较大,成本较高。 2. 在电机的转速变化范围较大的场合,从电机的感应电动势到电源电压的变换范围较大,使得变换效率较低。 3. 在制动能量回馈系统中,当制动速度较低时,产生的感应电动势较小,由于功率变换器具有一定的变压比,感应电动势无法升压到电源电压,从而不能回馈能量,在频繁低速制动的城市公交车中,回馈效率低或几乎不能回馈能量。 4. 利用电机绕组电感作为升压电感,使得电感电流波动较大,产生的热量较大,增加了电机本身的损耗,且当电机绕组电感较小时,需要串联电感以平滑电流的波动,使得结构复杂。 5.电池寿命短。 为了解决上述问题,需要我们多多查阅资料,利用相关软件进行模拟设计,在不

制动工况对对电动汽车制动回收能量影响的分析3

制动工况对电动汽车制动能量回收影响分析 前言 随着能源和环境问题日益突出,电动汽车已成为替代传统内燃机汽车的最佳选择。受限于当前技术条件,电动汽车续驶里程普遍较短,电动汽车节能技术成为电动汽车研究的重要方面,其中再生制动作为电动汽车节能主要手段,受到国内外学者广泛关注[1-2]。设计阶段的电动汽车结构和动力系统设计、运行阶段的控制策略和制动工况等都是影响再生制动能量回收效果的因素[3]。 目前,制动工况方面的分析研究,多集中对制动工况进行解耦,分别研究制动初速度和制动强度对制动回收能量效果的影响[4-6],并未综合分析制动工况各因素影响能量回收效果之间的耦合关系,或分析制动强度与制动初始速度对能量回收效果贡献大小。 制动工况分为两种,单次制动工况和循环制动工况[7],循环制动工况多用在试验条件下对电动车性能测试,日常驾驶中更多应用的是单次制动工况。单次制动工况为本文研究工况,其影响因素包含两个方面:制动强度(z )和制动初速度。 本文以较为普遍的集中电机前轴驱动电动汽车为研究对象,采用制动稳定性较好的理想制动力分配策略,利用Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE)。采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)对连续设计空间进行采样,分析制动回收能量与制动初速度和制动强度之间的关系,分析制动工况对制动能量回收的主效应和交互效应,和影响制动能量回收的主次因素。 1制动能量回收影响因素分析 再生制动时受各种阻力损耗、摩擦制动器消耗、电机和电池工作特性和效率、相关部件工作效率等方面的影响,未能将制动动能完全转化为电能存储在蓄电池中。综上各方面将主要因素分为一下三类: (1)影响制动总能量的因素,制动总能量计算公式为()222 1e s v v m E -=(式中,E 为制动总能量,kJ ;m 为电动车整备质量,kg ;s v 和e v 分别为为车辆制动初始和终止速度,1s m -?),得出影响因素主要是制动初速度、电动汽车整备质量等。 (2)影响可回收能量的因素,如制动强度、车辆结构(滚动阻力消耗、空气阻力消耗等)、制动力分配策略(摩擦制动损耗)等。 (3)影响再生制动回收能量的因素,如驱动系统布置、电机和电池工作特性、传动系统特性、各部件及传递线路损耗、控制器损耗等。 以上影响因素主要归为四个方面:车辆结构、动力系统结构、制动工况、制动控制策略,在设计阶段车辆结构、动力系统结构和控制策略确定后,制动工况成为可根据驾驶员主观操纵的影响再生制动能量回收效果的唯一因素。 2仿真模型与验证 2.1理想再生制动力分配策略 本文采用文献[8]中制定的理想制动力分配策略。理想再生制动力分配策略可以保证前后轴制动力得到合理分配,制动稳定性好,该策略包含制动力在前后轴的分配及在电机制动力与摩擦制动力之间的分配两部分。分配电机制动力和摩擦制动力时要优先利用电机制动力,不足部分再由摩擦制动力补充。 2.2建立仿真模型 使用MATLAB/Simulink 建立整车、电机、电池和控制策略等模型,整车参数如表1所示。

QCT电动汽车再生制动系统测试和评价方法征求意见稿

QC/T《电动汽车再生制动系统测试和评价方法》 征求意见稿-编制说明 (一)工作简况(包括任务来源、主要工作过程、主要参加单位和工作组成员及其所做的工作等: 制动能量回收作为电动汽车提高能源利用效率的重要技术之一,是体现电动汽车优势和特点的重要技术,是决定多种形式电动汽车能耗经济性、整车安全性的一项共性关键技术。2012年国家发布了《节能与新能源汽车产业发展规划(2012—2020年)》,电动汽车将在未来得到长足发展,在此背景下,“制动能量回收”这一基础节能技术也将会得到大力发展和推广应用。为促进电动汽车技术发展,在2013年底,“再生制动系统测试和评价方法”的行业标准由全国汽车标准化技术委员会电动车辆分委会立项(计划号:2013 - 2106T - QC),开展制定研究。 2013年11月19日,在标准研究计划下达后,全国汽车标准化技术委员会电动车辆分委会电动汽车整车标准工作组在第四次工作会议上启动了《电动汽车再生制动能量回收系统测试和评价方法》的研究和起草工作。 2014年7月29日,电动汽车整车标准工作组换届会议暨第一次工作会议上,标准起草人就《电动汽车再生制动系统测试和评价方法》标准的“背景”、“国内外研究现状”、“制动回收系统评价指标的确定”、“测试评价方法制定”、“试车验证试验”等方面进行介绍,与会专家就测量精度和方法等方面展开讨论,形成标准第一版草案并发到工作组征求意见。 2015年7月23日,结合前期工作组意见反馈情况,起草人完善了标准草案,在本次会议上再次就标准制定的背景、技术内容和计算方法进行汇报,工作组内部达成一致意见。 2015年8月至今,在工作组内部进行了数轮讨论和意见征求,形成标准征求意见稿。 (二)标准编制原则和主要内容(如技术指标、参数、公式、性能要求、试验方法、检验规则等)的论据,解决的主要问题,修订标准时应列出与原标准的主要差异和水平对比: (1)编制原则 本标准主要根据已有课题研究成果、参考美国加州技术支持文件“轻型电动汽车Ⅲ温室气体非试验循环规定”(“LEV Ⅲ GREENHOUSE GAS NON-TEST CYCLE PROVISIONS”)中关于电动汽车制动能量回收方面的部分技术内容,以及国内现有的电动汽车标准法规GB/T 19596《电动汽车术语》、GB/T《18386电动汽车能量消耗率和续驶里程试验方法》、GB《7258机动车运行安全技术条件》、GB《21670乘用车制动系统技术要求及试验方法》中的相关技术内容进行了修改及丰富。 标准编制过程充分调研了国内外相关标准的情况,对制动系统原理、测试方法和评价指标进行了深入对比研究和试验验证,工作组内企业对修订内容进行多次征求意见,并在会上

关于制动能量回收

第一篇章:制动能量回收系统简介 制动能量回收系统定义 制动能量回收系统是指一种应用在汽车或者轨道交通上的系统,能够将制动时产生的热能转换成机器能、并将其存储在电容器内,在使用时可迅速将能量释放,又名MINI Clubman。MINI Clubman从一开始就凭借独特的概念,外向的设计以及别具魅力的发动机脱颖而出,为新一代MINI开发的三款高技术发动机确保了无时不在的运动驾驶乐趣和非凡的高效。而且MINI Clubman的所有发动机当然也标准装备了2008年车型为最大降低燃油消耗量而推出的全部新技术。 制动能量回收系统的优点 这些智能技术提高了发动机的效率,适度降低了耗油量,同时也进一步提高了驾驶乐趣。这里一个很好的例子就是制动能量回收系统,能源管理系统确保发动机的输出功率主要被转化成为驱动力,只有在应用制动时或发动机处于超速状态时才会转化成电能供车载系统使用。为了达到这个效果,发电机会在发动机输出功率,即加速或牵引汽车时自动与发动机脱离。因此,传统模式下发电机消耗和从汽车那里获得的动力现在全部用以实现更快更具动态的加速。因为在MINI回到超速状态或驾驶者应用制动时,发电机就会再次启动,从而确保车载系统能够得到充足的电力供应。 制动能量回收问题解决方案 可以通过在发动机与电机之间设置在车辆减速时,使发动机停止输出功率而得以解决。但制动能量回收还涉及到混合动力车的液压制动与制动能量回收的复杂平衡或条件优化的协调控制。那么,为什么可以通过驱动电机能够回收车辆的运动能量呢?概要地说,其原因就是电机工作的逆过程就是发电机工作状态。一般电学基础理论早已阐明,表示电机驱动的工作原理是Fleming(英籍工程师佛莱明)的左手定则,而表示发电原理的则

相关主题