搜档网
当前位置:搜档网 › 产生稳定电压的基准电压元件

产生稳定电压的基准电压元件

产生稳定电压的基准电压元件
产生稳定电压的基准电压元件

产生稳定电压的基准电压元件

技术分类:电源技术 | 2010-12-28

Paul Rako,EDN技术编辑: EDN China

基准电压元件是低输出功率的线性稳压电源,它提供一个固定的(或恒定的)电压,而与器件负载、电源变动、温度变化以及时间无关。基准电压元件遍布于电源稳压器、数据采集系统、ADC、DAC,以及其它各种测量与控制系统中。虽然基准电压元件无处不在,但性能却有很大不同。例如,一款用于计算机电源的稳压器可能要将其值稳定在标称值附近的几个百分点以内,而实验室基准电压元器件的精度与稳定性要以百万分之一计。

几十年前的基准电压元器件提供的初始精度只有±10%,而现代的基准电压IC可以提供100 ppm(即0.01%)的初始精度。Analog Devices公司应用工程经理Reza Moghimi指出:“我们试图要让器件对线路、负载和温度的变动不敏感,以用于工业、科研与医疗市场中高要求的任务。”这些市场中的专业公司也可以很容易地进入对精度要求很严格军用市场与汽车市场。]

稳压芯片亦有串联与并联之分(图1与参考文献1)。串联稳压器有两只分别用于输入电源与地的管脚;第三只管脚输出一个固定的或可调的电压。双端并联稳压器工作在一个限流的固定电压下。实际上每个稳压器采用的都是并联架构,因为一个串联基准电压元件也不过是一个并联基准电压元件加上一个电流馈送电路和一个缓冲输出。

在电子业的早期,工程师们是采用霓虹辉光管作基准电压元件(图2)。霓虹辉光管是一个有两只导电端子的玻璃容器,其中填充了稀薄的惰性气体(具有类似特性的化学元素)。在标准情况下,惰性气体都是无嗅、无色的单原子气体,化学活性低。自然界存在的六种惰性气体是:氦、氖、氩、氪、氙和氡。当在这些气体上施加66V?200V的直流电压时,它们会被电离。一旦发生了离子击穿,则辉光管两侧的电压就降至直流48V?80V的维持电压。如果跨辉光管的电压跌至低于这个维持电压,灯就会熄灭,必须再次为其施加离子击穿电压,使之发光(图3)。一只霓虹辉光管工作时通过的电流低至10A?12A,或1 pA。1996年,Signalite做出了可以在±0.5V内稳压的辉光管(参考文献2)。

不过到了20世纪70年代,齐纳二极管(为并联式基准电压元件)取代了这些冷阴极辉光管(图4)。齐纳二极管的名称源于研究者Clarence Zener,他发现了这个效应(参考文献3)。虽然一些工程师将齐纳二极管看作雪崩二极管,但这两种二极管的物理原理并不相同(参考文献4、5、6)。齐纳击穿源于通过一个PN结产生量子力学隧道效应的电荷载流子。这种击穿出现在重掺杂的节点。PN结上的大电场加速电荷载流子,使之形成雪崩击穿。这些高速载流子造成碰撞电离,随之又造成了电荷载流子的倍增。这种效应出现在轻掺杂的PN结。齐纳二极管制造商通过改变PN

结的掺杂,利用这两种效应制造出不同击穿电压的二极管。在电压高至5.6V时,齐纳效应在二极管中占主导地位,而更高电压下的主导则是雪崩效应。两种效应在温度系数方面也有差别:齐纳器件为负击穿,而雪崩器件为正击穿。在5.6V时击穿的器件同时包含有两种效应,并且由于正、负温度系数互相抵消,而有小的温度系数。

随着IC在上世纪70年代的普及,并联基准电压元件的集成成为关键。Burr Brown、Analog Devices以及美国国家半导体这类公司都采用了在自己IC中置入齐纳二极管的方案(图5)。IC 工艺的进步使得在芯片的表层下制造器件成为可能。与置入JFET一样,置入的齐纳二极管并不触及芯片的表面缺陷,意味着这些二极管有低的工作噪声水平。

1971年,美国的一名线性模拟IC 设计的先驱,电子工程师Bob Widlar采用了一种基于带隙电压效应的基准电压元件,这种效应由飞兆半导体公司已故工程师DF Hilbiber于1964年发现。带隙基准元件天生固有1.2V输出电压,近似于硅在0°K时的带隙电压(图6)。要使用其它输出电压的器件只需要用内部增益电路,增加或减少电压。模拟IC设计师Bob Pease改进了Widlar 的设计,帮助美国国家半导体公司的IC设计师在很多芯片中采用了带隙电路(参考文献7)。Pease

评论道:“在80年代,我们推出的40%?60%带隙(电压效应基准)都有旧的失谐误差。很多此类误差都与IC布局有关,我们通过良好的设计审核,解决了这些问题。”

1974年,Paul Brokaw(现在是Integrated Device Technology公司的高级技术专家)设计了一款带隙基准电压元件,它采用反馈方法提高精度和减少误差(图7)。Brokaw说:“我在试制一款分立式电源时构造出了它,我希望使用一个较低的基准电压,而不是一只6.8V的齐纳二极管。”

除了置入式齐纳管与带隙型基准电压元件以外,还有一类基于JFET的器件,如Analog Devices公司的ADR440(图8)。置入JFET能辅助这些器件在0.1Hz?10Hz区间上实现1μV 峰峰值的噪声规格。Analog Devices公司的Moghimi也暗示该公司今年将推出一类新的基准电压元件,它们采用的是不同于本文前述任何技术的架构。

其它基准元件(如Intersil公司的产品)采用浮动栅FET,它类似于闪存的结构,但可编程设定为一个模拟电压(参考文献8和图9)。Intersil在器件中做电压缓冲,因此没有源于ESD (静电放电)二极管的泄漏电流,不会放掉浮动栅上的电荷。这些器件几乎不消耗电流,但噪声性能优于采用传统架构的小功率基准电压元件。Intersil公司IC设计经理Barry Harvey指出,基准电压IC在工艺和设计方面都需要一些聪明的技巧。他说:“我们做到最优后,发现浮动栅的泄漏在阿托量级(10-18A),哪怕是在高温下。”

Intersil采用了浮动栅而不是带隙,因此可以对芯片编程设定,使器件提供数十种输出电压。

基准电压元件各种规格与特性

基准电压元件有两种基本特性:负载调整与线路调整特性。负载调整是当器件吸入更多电流时,输出的变化情况。线路调整是指当器件的电源变化时,输出的变化情况。与负载调整有关的还有瞬时调整或输出阻抗。输出电压必须保持在一定范围内,即使在系统突然从基准电压IC拉出脉冲电流情况下。有些现代ADC的基准元件输入端会从你的器件拉出大的瞬时电流。有时,解决这个问题的方法是增加一个高输出的滤波电容,但你必须很小心,勿使基准电压变得不稳定。

必须了解其各种特性与规格,才能正确地选择和使用基准电压元件。不需要关心其内部的架构问题。更重要的是了解器件的特性,而不是IC公司的内部设计方式。除了在并联稳压器与串联稳压器之间作选择以外,还必须确定您的系统中是否可以使用齐纳二极管。多数情况下,最好使用来自模拟芯片公司的专用基准电压元件IC。如果您需要超低功耗,则应使用串联基准电压元件,如Intersil公司的浮动栅器件。Linear Technology公司提供的双极LT665器件,可以工作在低于1 μA的供电电流下。

在考虑了自己的功率预算,并选定了串联或并联型基准器件以及输出电压后,还必须考虑器件的初始精度,即器件在室温下第一次加电时的精度。有些可调基准器件可以通过一两只电阻,自己设定输出电压或并联电压。这些电阻的精度与芯片的初始精度相组合,就确定了输出电压的总初始精度。更常见的情况是,选择一款输出电压固定为1.2V?12V的器件。器件的初始精度决定了所购买的各器件接近于理想电压输出的程度。采用分立齐纳二极管或较老的基准电压IC 时,可以实现10%的精度,这意味着必须在生产期间对电路作校准或调节。现代的器件(如Analog Devices 公司的AD588)都有接近于0.01%的初始精度。对于要求16、18甚至20 bit精度的数据采集系统来说,这个特性是关键。另外一种推动采用高初始精度器件的因素来自于可充电锂离子电池的要求。无论是充电IC的设计或对锂离子电池充电电压的测量过程,都要求总精度优于0.5%。因此,基准电压元件应有接近于0.2%的初始精度,才能使系统总精度保持在电池芯厂家规定的0.5%数值内。

设定了初始精度以后,就可以开始考虑输出电压漂移问题。温度漂移(设计者通常将其表述为一个温度系数,单位是百万分之一/每摄氏度)用于表示 IC输出电压随环境温度变化的大小。如果系统要工作在一个较大温度范围上,如汽车或军用电路,则必须查看器件在整个温度范围上的精度,并将其加到器件的初始精度上。

一旦确定了器件的初始精度和温漂,接下来就要看稳定性,即输出电压随时间的漂移情况。大多数器件会在运行的头六个月发生变化,然后稳定在一个较小的变化率。同样,输出漂移也会加到初始误差与温漂上。如果您希望系统在整个工作寿命内都有严格的精度,那么就必须采用有长期漂移规格的器件,从而将系统的基准电压保持在所要求的限度内。另外,也可以均化多只器件的输出,减少输出漂移的时间效应(参考文献9)。有些制造商采用额外的步骤来确定、设定与测量一只器件的温漂与长期稳定性,这些步骤要花时间,有一定成本。如,Analog Devices测试ADR425基准电压元件的长期稳定性为50 ppm/1000小时。

基准电压IC还有一种关键但不太受重视的特性是加电安定时间。一只IC的输出不会立即稳定在所设定的范围内,因此固件工程师不应在电路运行的前数毫秒内作读取或校正工作。很多器件都规定了加电后有一个10μs的延迟。

另外一个重要特性是噪声。由于串联基准元件仅是采用运放缓冲的并联基准元件,因此可以预期输出噪声特性与运放相近。噪声频谱在较高频率时是平坦的。不过,由于是对DC输出使用基准电压元件,因此大多数制造商都规定了自己产品(如在0.1 Hz?10 Hz频率范围内)的峰峰输出噪声电压。增加输出电容可以降低这种噪声,但必须非常小心,不能造成基准电压的不稳定。与所有运放电路一样,驱动一个大的电容负载会使放大器发生振荡。Analog Devices公司的Moghimi希望,模拟设计者应更仔细地阅读现代基准电压IC的数据表。他说:“有些客户仍然认为,最好在器件输出端放一个大的输出电容。但这样做即使不产生稳定问题,它也可能使温度系数恶化。”

另一种降低噪声的技巧是将多只基准电压元件并联,然后同时加在输出上。噪声是一种随机现象,因此每只基准电压IC的噪声贡献都是一个rms(均方根)形式。于是,10只并联的基准元件就可以将电压噪声降低至10的平方根分之一,即大约1/3(图10)。先进的基准电压IC(如凌特技术公司的 LTC6655)在0.1 Hz?10 Hz范围上有0.625 μV 峰峰值的噪声特性。

另外一种与温度系数相关的特性是滞后效应,这种效应是指:当器件先加热,再冷却到初始温度时,输出漂移到了另一个电平。制造商一般将其设定为在一个温度经过区间(如0°C?50°C 再?0°C)上的百万分之一值。与所有其它模拟电路类似,基准电压芯片也有PSRR(电源抑制比),即器件对供电电源中任何噪声或变动的衰减能力。这一特性现在很重要,因为越来越多系统采用开关型稳压器为基准电压IC供电。制造商一般将这种特性描述为在DC或一个频率范围上的电压分贝比率。

PSRR在较高频率时总是下降的,通常在1 MHz时跌至20 dB或更低。如果您的基准电压芯片使用的电源中包含有在这些高频上工作的开关稳压器,则必须确保电源的纹波与噪声不会因为高频PSRR不良而混入基准电压输出中。一般解决这些问题的方法是在开关电源输出端放一个线性的前置稳压IC,然后再输出给基准电压芯片。另外,也可以在基准电压IC的电源端前面放RC(电阻/电容)或RLC(电阻/电感/电容)滤波器。这种方法可防止基准电压中出现高频噪声。

有些工程师会用到基准电压元件的Spice模型;但要记住,这些模型的质量变化很大。例如,Analog Devices公司在模型中模拟了大部分特性。其它公司则根本没有对基准元件建模。要确认您的模型考虑了会影响设计的所有规格与特性。也许必须做一次 Monte Carlo Spice运行,这能够看到精度的极限,但至少能了解所评估器件的极限。

在多种特性中权衡

基准电压元件的精度与噪声是系统设计中要权衡的两个重要方面。例如,液晶电视采用了D

类音频子系统。D类放大器与开关电源类似,效率高于普通的AB类放大器。不过,D类放大器的一个缺点是它们的PSRR差于线性输出级。因此,必须使用一只质量较好的电源,或用一种更昂贵的带反馈的D类IC,反馈可以校正由于电源电压变化所产生的误差。这种权衡直接影响着对基准电压元件的选择。在低纹波和调节好的电源电路中,可以使用低噪声的基准电压元件。然后,音频系统就能使用较廉价的开环式D类放大电路。另一方面还有一种成本较低的方法,就是用带反馈与良好PSRR的D类放大器 IC,这样就可以使用价格不高的电源电路。这种折中将随时代以及电视的功率与成本目标而改变。用更昂贵的基准电压电路可以节省其它费用,如对子系统,工厂校准或批量生产时的测试费用。

与模拟设计一样,基准电压元件的使用要比想象的复杂得多。虽然只有两到三只管脚,但很多特性都影响着它的质量(表1)。要确认您了解了所有规格与特性及其重要性。如果有任何疑问,一定要咨询基准电压IC和数据转换IC制造商的应用工程部门。他们会很乐意帮助您了解基

准电压IC使用方面的复杂问题。记住,在模拟世界中,一个初始精确的规格仅是一个开始。实际的精度要取决于时间、温度、电源质量,以及一系列其它因素。在设计开始时,要将基准电路的规格与特性考虑到误差预算中,以确保当电路进入批量生产时不会出现问题。然后,就可以举杯庆祝成功了,而不至忙着为基准元件的正常工作而下达ECO(工程变更指令)。

参考文献

1. “Series or Shunt Voltage Reference?” Application Note 4003, Maxim Integrated Products,

March 19, 2007.

2. Bauman, Edward, Applications of Neon Lamps and Gas Discharge Tubes, Carl ton Press, September

1966.

3. “Clarence Zener,” Wikipedia.

4. Van Zeghbroeck, Bart, “Principles of semiconductor devices,” 2007.

5. “ECE 3950,” Slides 25 to 29, Villanova University.

6. Kruger, Anton, “Zener and Avalanche Diodes."

7. Pease, Bob, “The Design of Band- Gap Reference Circuits: Trials and Tribulations,” 1990.

8. Rako, Paul, “Analog floating-gate technology comes into its own,” EDN, Dec 15, 2009, pg 29.

9. Pease, Bob, “What’s All This Long- Term Stability Stuff, Anyhow?” Electronic Design, July 20, 2010.

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

3.7、基准参考电压

3.7基准参考电压源的选择 大多数数字电路、混合信号和模拟电路需要使用电压基准源,因此了解基准源的工作原理、参数和选择方法,对於系统设计是一个很重要的。本节比较了齐纳二极管、隐埋齐纳二极管和带隙电压基准三种电压基准源的优点和缺点,列出了使用时潜在的问题,介绍了它们的应用范围。讨论了在设计系统时,选择电压基准源需要考虑的问题。 3.7.1基准源的类型 基准源主要有齐纳二极管、隐埋齐纳二极管和带隙电压基准三种,它们都可以设计成两端并联式电路或者三端串联式电路。齐纳二极管是工作在反向偏置的二极管,需要一个串联的限流电阻。在要求高精度和低功耗的情况下,齐纳二极管通常是不适合的。例如,BZX84C2V7LT1齐纳二极管的标称输出电压Vout是2.5V,有±8%的公差,各个器件之间的输出电压会在2.3V到2.7V的范围内变化。 理想的电压基准源应该是内阻为零,不论电流是流进去还是流出来,都应当保持输出电压恒定。内阻为零的基准源是不存在的,然而内阻只有毫欧数量级的基准源是可以做得到的。齐纳二极管的内阻较大,电流为5mA时内阻为100Ω,1mA时600Ω。齐纳二极管在电压箝位电路中很有用,它们的箝位电压范围宽,从2V至200V,功率可以从几毫瓦到几瓦。表1比较了这三种电压基准源的优点、缺点,列出了使用时潜在的问题。 表3.7.1. 三种电压基准源的比较

注1:带隙半导体、直接带隙和间接带隙 ZnO是一种直接带隙半导体材料,为什么说它是直接带隙的?直接带隙会导致它有什么样的特点? 直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置。电子要跃迁到导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。 间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。 间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。 采用带隙半导体材料制造的电压基准源温度稳定性好! 3.7.2电压基准源的选择 选择电压基准源时,应当针对系统的要求,综合考虑电压基准源的技术指标。电压基准源的技术指标很多,主要的指标是: ★初始精度 ★输出电压温度漂移 ★提供电流以及吸入电流的能力 ★静态电流 ★长期稳定性 ★输出电压温度迟滞 ★噪音 ★此外还有价格。 噪音是无法补偿的误差,因而基准源的噪音应当低。对于16位分辨率的数字系统,它的LSB值为1/65536,如果ADC是16位,满量程输入是0到5V,它能分辨的输入是1LSB,大约为76.3μV。可以选用MAX6150(35μVP-P),MAX6250(3μVP-P)

电压基准芯片的参数解析及应用技巧(精)

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

串并联电路电流电压特点

串并联电路电流的特点练习 1、如图甲所示,小强用电流表探究串联电路中的电流关系,他分别用电流表测电路中A、B、C三处的电流,得知I A=0.2A,则I B=_______,I C=_______,他实验的结论是_____ 。 (2)如图乙所示,L1、L2是______联的。若要测量通过L1的电流,应把电流表接在_____点上;测量L2时,电流表应接在______点上;若要测干路电流应把电流表接在_____或______点上。请在图中标出三只电流表的正、负接线柱。 甲乙 (3)按图甲把丙图用笔画线代替导线连接起来, (4)按图乙把丁图用笔画线代替导线连接起来。 丙丁 2、如图所示:如果A1的示数为0.9A,A3的示数为0.4A,则通过L1的电流是______,通过L2的电流是______,通过干路的电流是_______。 3、有一种节日小彩灯上串联着20只小灯泡,如果电源插头处的电流为200mA,则通过小灯泡的电流是_______A。 4、某家庭中正有一盏电灯和电钣锅在工作,已知通过家庭室外线的总电流为0.5A,通过电灯泡的电流为0.15A,那么通过电饭锅的电流为A. 5、如图所示,已知两电流表的示数分别是0.4A和1.2A,通过灯L1的电流是A,通过灯L2的电流是A. 6、三个相同的灯泡L1、L2、L3组成如图所示的电路,电流表A1、A2、A3的示数分别为I1、I2、I3,则它们之间的关系是() A、I1=I2 B、I3=I1+I2 C、I1=I2+I3 D、I2=I3 7、如图所示,电路中能正确测出通过灯L2的电流的是:() 8、如图所示,用电流表测干路中电流的电路图,正确的是:() 9、如图三个电流表A1、A2、、A3的示数分别为I1、I2、I3,它们的大小关系是() A、I1=I2=I3 B、I1>I2=I3 C、I1>I2>I3 D、I1> I3> I2 10、如右图所示,L1 L2 联,通过A1的电流1.2A,通过A2的电流0.5 A, 则通过的L1电流为A,通过L2的电流为 A ,干路电流为A。 11、如图,把L1和L2连成并联电路,用电流表测L2的电流,并画出它的电路图。

TL431可调电压基准的接法

TL431可调电压基准的接法 TL431是一个小个头(如同普通小三极管封装)而又便宜的可调电压基准芯片。具体的参数大家可以参考其pdf文档说明,这里给出其两种最常用的接法。 1.这种接法提供 2.5V基准电压,简单适用。 2.该接法可以提供一个可以调节的基准电压。电压输出为2.5×(1+R2/R1)。

TL431的几种基本用法 TL431的几种基本用法 作者:Panic2006年10月9日 TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。 图(1)是TL431的典型接法,输出一个固定电压值,计算公式是:Vout = (R1 +R2)*2.5/R2, 同时R3的数值应该满足1mA < (Vcc-Vout)/R3 < 500mA 当R1取值为0的时候,R2可以省略,这时候电路变成图(2)的形式,TL431在这里相当于一个2.5V稳压管。 利用TL431还可以组成鉴幅器,如图(3),这个电路在输入电压Vin < (R1+R2) *2.5/R2 的时候输出Vout为高电平,反之输出接近2V的电平。需要注意的是当Vin在(R1+R2)*2.5/R2附近以微小幅度波动的时候,电路会输出不稳定的值。

TL431可以用来提升一个近地电压,并且将其反相。如图(4),输出计算公式为:Vout = ( (R1+R2)*2.5 - R1*Vin )/R2 特别的,当R1 = R2的时候,Vout = 5 - Vin。这个电路可以用来把一个接近地的电压提升到一个可以预先设定的范围内,唯一需要注意的是TL431的输出范围不是满幅的。 TL431自身有相当高的增益(我在仿真中粗略测试,有大概46db),所以可以用作放大器。 图(5)显示了一个用TL431组成的直流电压放大器,这个电路的放大倍数由R1和Rin决定,相当于运放的负反馈回路,而其静态输出电压由R1和R2决定。这个电路的优点在于,它结构简单,精度也不错,能够提供稳定的静态特性。缺点是输入阻抗较小,Vout的摆幅有限。

电压基准及时间基准解析

01电压基准及时间基准 所有模数转换器(ADC )和数模转换器(DAC )都需要一个基准信号,通常为电压基准 。ADC 的数字输岀表示 模拟输入相对于它的基准的比率; DAC 的数字输入表示模拟输 岀相对它的基准的比率。有些转换器有内部 基准,有一些转换器需要外部基准。不管怎样所 有转换器都必须有一个电压(或电流)基准。 数据转换器的最早应用是用于缓慢变化信号的直流测量。在这种情况下,测 量的精确定时并不重要。当 今大多数数据转换器是应用在数据采集系统, 在这种系统中必须处 理大量等间隔的模拟采样值, 而且频谱 信息与幅度信息同样重要,这里涉及到的采样频率或 时间基准(采样时钟或重建时钟)与电压基准一样重 要。 电压基准 问:一个电压基准怎样才算好 ? 答:电压基准与系统有关。在要求绝对测量的应用场合,其准确度受使用基准值 的准确度的限制。但是在 许多系统中稳定性和重复性比绝对精度更重要; 而在有些数据采集系统中电压基准的长期准确度几乎完全 不重要,但是如果从有噪声的系统电源中派生基准就 会引起误差。单片隐埋齐纳基准 (如AD588和AD688) 在10 V 时具有1 mV 初始准确度(0 01 %或100 ppm ),温度 系数为1 5 ppm/ ° C 。这种基准用于未调 整的12位系统中有足够的准确度(1 LSB=244 ppm ),但 还不能用于14或16位系统。如果初始误差调整 到零,在限定的温度范围内可用于 14位和16位系统(AD588或AD688限定40C 温度变化范围,1 LSB=61 ppm )。 对于要求更高的绝对精度,基准的温度需要用一个恒温箱来稳定,并对照标准校准。在 许多系统中,12 位绝对精度是不需要这样做的,只有高于 12位分辨率才可能需要。对于准确 度较低(价格也会降低)的应 用,可以使用带隙基准。 问:这里提到的“隐埋齐纳”和“带隙”基准是什么意思 ? 答:这是两种最常见的用于集成电路中的精密基准。“隐埋”或表层下齐纳管比 较 稳定和精确。它是由 一个具有反向击穿电压修正值的二极管组成, 这个二极管埋在集成电路 芯片的表层下面,再用保护扩散层 覆盖以免在表面下击穿,见图 1 1。 图1-1我层齐抽二极管与睫埋齐纳二扱省结鞫图 图1 1表层齐纳二极管与隐埋齐纳二极管结构图 硅芯片表面和芯片内部相比有较多的杂质、 机械应力和晶格错位。这是产生噪声和长期 不稳定性的原因之 一,所以隐埋式齐纳二极管比表层式齐纳二极管的噪声小, 而且稳定得多,因此它被优先采用于芯片基准 源上作为精密的集成电路器件。 E- 1 厂 隐埠齐纳二械野

电压基准源选型

摘要:电压基准源简单、稳定的基准电压,作为电路设计的一个关键因素,电压基准源的选择需要考虑多方面的问题并作出折衷。本文讨论了不同类型的电压基准源以及它们的关键特性和设计中需要考虑的问题,如精确度、受温度的影响程度、电流驱动能力、功率消耗、稳定性、噪声和成本。 几乎在所有先进的电子产品中都可以找到电压基准源,它们可能是独立的、也可能集成在具有更多功能的器件中。例如: 在数据转换器中,基准源提供了一个绝对电压,与输入电压进行比较以确定适当的数字输出。在电压调节器中,基准源提供了一个已知的电压值,用它与输出作比较,得到一个用于调节输出电压的反馈。在电压检测器中,基准源被当作一个设置触发点的门限。 要求什么样的指标取决于具体应用,本文讨论不同类型的电压基准源、它们的关键指标和设计过程中要综合考虑的问题。为设计人员提供了选择最佳电压基准源的信息。 理想情况 理想的电压基准源应该具有完美的初始精度,并且在负载电流、温度和时间变化时电压保持稳定不变。实际应用中,设计人员必须在初始电压精度、电压温漂、迟滞以及供出/吸入电流的能力、静态电流(即功率消耗)、长期稳定性、噪声和成本等指标中进行权衡与折衷。 基准源的类型 两种常见的基准源是齐纳和带隙基准源。齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。 齐纳二极管和并联拓扑 齐纳二极管优化工作在反偏击穿区域,因为击穿电压相对比较稳定,可以通过一定的反向电流驱动产生稳定的基准源。 齐纳基准源的最大好处是可以得到很宽的电压范围,2V到200V。它们还具有很宽范围的功率,从几个毫瓦到几瓦。

齐纳二极管的主要缺点是精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。例如:BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V之间变化,即精确度为±8%,这只适合低精度应用。 齐纳基准源的另一个问题是它的输出阻抗。上例中器件的内部阻抗为5mA时100Ω和1mA时600Ω。非零阻抗将导致基准电压随负载电流的变化而发生变化。选择低输出阻抗的齐纳基准源将减小这一效应。 埋入型齐纳二极管是一种比常规齐纳二极管更稳定的特殊齐纳二极管,这是因为采用了植入硅表面以下的结构。 作为另一种选择,可以用有源电路仿真齐纳二极管。这种电路可以显著改善传统齐纳器件的缺点。MAX6330就是一个这样的电路。负载电流在10 0μA至50mA范围变化时,具有1.5% (最大)的初始精度。此类IC的典型应用如图1所示。 图1.

电压基准源的选择

电压基准源的选择 在DAC和DAC里面都有电压基准源,它可以是芯片内部提供的基准也可以是外接的电压基准芯片。 基准源的类型 两种常见的基准源是齐纳和带隙基准源。齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。选择依据如下表: 并联结构的齐纳基准与串联结构的带隙基准的对照表。 表1.电压基准对照表 齐纳二极管缺点: 1)精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。例如: BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V 之间变化,即精确度为±8%,这只适合低精度应用。 2)齐纳基准源的另一个问题是它的输出阻抗。上例中器件的内部阻抗为5mA 时100Ω和1mA时600Ω。非零阻抗将导致基准电压随负载电流的变化而发生变化。选择低输出阻抗的齐纳基准源将减小这一效应。 所以在高精度应用的场合通常用带隙基准源。如14bit,210MSPS(刷新速率 UpDate Rate)的DAC9744内部就带一个2.1V的带隙基准源。

AD9744内部基准源配置 AD9744外部基准源配置 AD9744基准源配置管脚 (这个是AD9742的基准源配置管脚,AD9744的我怀疑错了,AD9742是与AD9744同系列的,一样管脚,只是AD9742是12bit,AD9744 16bit) REFLO——内部参考基准源地端。当使用内部1.2V参考基准源时,接AGND。当使用外部参考源时,接AVDD REFIO——参考基准源输入输出/输入端。 REFLO=AVDD,内部参考基准源无效,REFIO用作外部参考基准源输入。 REFLO=AGND=ACOM,REFIO用作内部基准源1.2V输出(100nA),REFIO 接0.1μF接ACOM(AGND)。

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

电压基准及时间基准

电压基准及时间基准The document was prepared on January 2, 2021

电压基准及时间基准 所有模数转换器(ADC)和数模转换器(DAC)都需要一个基准信号,通常为电压基准。 ADC的数字输出表示模拟输入相对于它的基准的比率;DAC的数字输入表示模拟输出相对它的基准的比率。有些转换器有内部基准,有一些转换器需要外部基准。不管怎样所有转换器都必须有一个电压(或电流)基准。 数据转换器的最早应用是用于缓慢变化信号的直流测量。在这种情况下,测量的精确定时并不重要。当[下载自.管理资源吧]今大多数数据转换器是应用在数据采集系统,在这种系统中必须处理大量等间隔的模拟采样值,而且频谱信息与幅度信息同样重要,这里涉及到的采样频率或时间基准(采样时钟或重建时钟)与电压基准一样重要。 电压基准 问:一个电压基准怎样才算好 答:电压基准与系统有关。在要求绝对测量的应用场合,其准确度受使用基准值的准确度的限制。但是在许多系统中稳定性和重复性比绝对精度更重要;而在有些数据采集系统中电压基准的长期准确度几乎完全不重要,但是如果从有噪声的系统电源中派生基准就会引起误差。单片隐埋齐纳基准(如AD588和 AD688)在10 V时具有1 mV初始准确度(001 %或100 ppm),温度系数为1 5 ppm/°C。这种基准用于未调整的12位系统中有足够的准确度(1 LSB=244 ppm) ,但还不能用于14或16位系统。如果初始误差调整到零,在限定的温度范围内可用于14位和16位系统(AD588或AD688限定40℃温度变化范围,1 LSB=61 ppm)。 对于要求更高的绝对精度,基准的温度需要用一个恒温箱来稳定,并对照标准校准。在许多系统中,12位绝对精度是不需要这样做的,只有高于12位分辨

基准电压模块mc1403

MC1403简介 MC1403是低压基准芯片。一般用作8~12bit的D/A芯片的基准电压等一些需要基本精准的基准电压的场合。 输出电压: 2.5 V +/- 25 mV 输入电压范围: 4.5 V to 40 V 输出电流: 10 mA 芯片引脚图: .........+--+--+--+ ...Vin.|1.+---+.8|.NC .Vout.|2..........7|.NC .GND.|3..........6|.NC ....NC.|4..........5|.NC .........+---------+ 因为输出是固定的,所以电路很简单。就是Vin接电源输入,GND 接底,Vout加一个0.1uf~1uf的电容就可以了。Vout一般用作8~12bit的D/A芯片的基准电压。 MC1403是美国摩托罗拉公司生产的高准确度、低温漂、采用激光修正的带隙基准电压源,国产型号为5G1403和CH1403。它采用

DIP-8封装,引脚排列如图7-1-2所示。UI=+4.5V~+15V,UO =2.500V(典型值),αT可达10×10-6/℃。为了配8P插座,还专门设置了5个空脚。其输出电压UO=Ug0(R3+R4)/R4= 1.205× 2.08=+2.5V。 MC1403的输入-输出特性 输入电压UI/V 10 9 8 7 6 5 4.5 输出电压UO/V 2.5028 2.5028 2.5028 2.5028 2.5028 2.5028

2.5027 当UI从10V降至4.5V时,UO只变化0.0001V,变化率仅为-0.0018%。

产生稳定电压的基准电压元件

产生稳定电压的基准电压元件 技术分类:电源技术 | 2010-12-28 Paul Rako,EDN技术编辑: EDN China 基准电压元件是低输出功率的线性稳压电源,它提供一个固定的(或恒定的)电压,而与器件负载、电源变动、温度变化以及时间无关。基准电压元件遍布于电源稳压器、数据采集系统、ADC、DAC,以及其它各种测量与控制系统中。虽然基准电压元件无处不在,但性能却有很大不同。例如,一款用于计算机电源的稳压器可能要将其值稳定在标称值附近的几个百分点以内,而实验室基准电压元器件的精度与稳定性要以百万分之一计。 几十年前的基准电压元器件提供的初始精度只有±10%,而现代的基准电压IC可以提供100 ppm(即0.01%)的初始精度。Analog Devices公司应用工程经理Reza Moghimi指出:“我们试图要让器件对线路、负载和温度的变动不敏感,以用于工业、科研与医疗市场中高要求的任务。”这些市场中的专业公司也可以很容易地进入对精度要求很严格军用市场与汽车市场。] 稳压芯片亦有串联与并联之分(图1与参考文献1)。串联稳压器有两只分别用于输入电源与地的管脚;第三只管脚输出一个固定的或可调的电压。双端并联稳压器工作在一个限流的固定电压下。实际上每个稳压器采用的都是并联架构,因为一个串联基准电压元件也不过是一个并联基准电压元件加上一个电流馈送电路和一个缓冲输出。

在电子业的早期,工程师们是采用霓虹辉光管作基准电压元件(图2)。霓虹辉光管是一个有两只导电端子的玻璃容器,其中填充了稀薄的惰性气体(具有类似特性的化学元素)。在标准情况下,惰性气体都是无嗅、无色的单原子气体,化学活性低。自然界存在的六种惰性气体是:氦、氖、氩、氪、氙和氡。当在这些气体上施加66V?200V的直流电压时,它们会被电离。一旦发生了离子击穿,则辉光管两侧的电压就降至直流48V?80V的维持电压。如果跨辉光管的电压跌至低于这个维持电压,灯就会熄灭,必须再次为其施加离子击穿电压,使之发光(图3)。一只霓虹辉光管工作时通过的电流低至10A?12A,或1 pA。1996年,Signalite做出了可以在±0.5V内稳压的辉光管(参考文献2)。 不过到了20世纪70年代,齐纳二极管(为并联式基准电压元件)取代了这些冷阴极辉光管(图4)。齐纳二极管的名称源于研究者Clarence Zener,他发现了这个效应(参考文献3)。虽然一些工程师将齐纳二极管看作雪崩二极管,但这两种二极管的物理原理并不相同(参考文献4、5、6)。齐纳击穿源于通过一个PN结产生量子力学隧道效应的电荷载流子。这种击穿出现在重掺杂的节点。PN结上的大电场加速电荷载流子,使之形成雪崩击穿。这些高速载流子造成碰撞电离,随之又造成了电荷载流子的倍增。这种效应出现在轻掺杂的PN结。齐纳二极管制造商通过改变PN

示波器测定电流和电压特性

示波器测定电流和电压特性 研发问题 通过分析电流和电压特性,可以快速识别出现故障的器件。为此,可使用操作方便的器件测试仪功能。它可快速测试电容、电阻、晶体管、半导体闸流管、电感、稳压二极管、其他二极管及包含此类元器件的电路,如整流器等。但是,器件测试仪功能在某些情况下并不可用。 测试与测量解决方案 R&S?RTC1000示波器内置器件测试仪。它包括一个信号发生器,可为被测设备施加一个自定义幅度(最大9V)和有限电流(最大10mA)的50Hz或200 Hz正弦波信号。在此模式下,示波器使用模数转换器对受到器件影响的信号进行数字化处理,并将其以电流与电压对比的形式进行显示。 工作原理 以线性无源器件为例,简单说明其工作原理。图1显示了连接至器件测试仪的2.1kΩ电阻器的I/V特性曲线。该器件的线性特性清晰可见。电流随电压上升而呈线性增长。例如,电压为4V时,电流约为2mA。根据欧姆定律,电阻值约为2kΩ。

可以使用第二个电阻来检查真实电阻的电流和电压之间的线性关系。图2显示了另一个连接至器件测试仪的器件的I/V特性曲线。该曲线的斜率更大,表明与2.1kΩ的电阻器相比,电压相同时此器件中流经的电流更大。根据欧姆定律,第二个器件的电阻更低。电压为0.9V时,电流约为8mA。电阻值约为110Ω。R&S?RTC1000示波器的器件测试仪还可以显示电容器等非线性无源器件的特性。图3显示了连接至测试仪的0.1μF电容器,并以50Hz信号进行初始激励。可以通过所生成的椭圆型曲线轻松确定非线性特性。

可以将激励频率更改为200Hz,简单说明I/V特性的频率相关性。可以通过以下公式计算电容器电抗: 这表示当电容恒定时,电抗会随着频率上升而下降。图4曲线表示使用200Hz 信号激励0.1μF电容器的结果。该椭圆形曲线明显更小,与用于计算电容器电抗的公式相对应。

电压基准芯片大全

LM236D-2-5:2.5V基准电压源 400uA~10mA宽工作电流 LM236DR-2-5:2.5V基准电压源 400uA~10mA宽工作电流 LM236LP-2-5:2.5V基准电压源 400uA~10mA宽工作电流 LM285D-1-2:微功耗电压基准. 10uA~20mA宽工作电流 LM285D-2-5:微功耗电压基准. 10uA~20mA宽工作电流 LM285LP-2-5:微功耗电压基准. 10uA~20mA宽工作电流 LM336BD-2-5:2.5V基准电压源. 10uA~20mA宽工作电流 LM336BLP-2-5:2.5V基准电压源 LM385BD-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流 LM385BD-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流 LM385BLP-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流LM385BLP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流LM385BPW-1-2:微功耗电压基准. 15uA~20mA宽工作电流 LM385BPW-2-5:微功耗电压基准. 15uA~20mA宽工作电流 LM385D-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流 LM385DR-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流 LM385DR-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流 LM385LP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流 LM385PW-1-2:1.2V微功率基准电压源. 15uA~20mA宽工作电流LM385PW-2-5:2.5V微功率基准电压源. 15uA~20mA宽工作电流REF02AP:+5V精密电压基准 REF02AU:+5V精密电压基准 REF02BP:+5V精密电压基准 REF02BU:+5V精密电压基准 REF1004I-2.5:+2.5V精密电压基准 REF102AP:10V精密电压基准 REF102AU:10V精密电压基准 REF102BP:10V精密电压基准 REF200AU:双电流基准 REF2912AIDBZT:1.2V电压基准 REF2920AIDBZT:2V电压基准 REF2925AIDBZT:2.5V电压基准 REF2930AIDBZT:3V电压基准 REF2933AIDBZT:3.3V电压基准 REF2940AIDBZT:4V电压基准 REF3012AIDBZT:1.25V,50ppm/℃,50uASOT23-3封装电压基准REF3020AIDBZT:2.048V,50ppm/℃,50uASOT23-3封装电压基准REF3025AIDBZT:2.5V,50ppm/℃,50uASOT23-3封装电压基准

电压基准的特性及选用

电压基准的特性及选用 摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。 关键词齐纳基准带隙基准 XFET基准初始精度温度系数 一、电压基准及其应用领域 电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。电压稳压器除了向负载输出一个稳定电压外还要供给功率。电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。 电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。 二、电压基准的主要参数 1. 初始精度(Initial Accuracy) 初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时,其输出电压偏离其正常值的大小。通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。例如,一个标称电压为2.5V的基准,初始精度为±1%,则其电压精度范围为: 5.2~ 5.2 = 1 × ± = ± % .2 5.2 V 475 V525 .0 025 .2 在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。对于电压基准而言,初始精度是一个最为重要的性能指标之一。 2. 温度系数(Temperature Coefficient) 温度系数(简称TC)用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/℃表示(ppm是英文part per million的缩写,1ppm表示百万分之一)。例如,一个基准标称电压为10V,温度系数为10ppm/℃,则环境温度每变化1℃,其输出电压改变10V×10×10-6=100μV。需注意的是,温度系数可能是正向的,即基准的输出电压随温度的升高而变大,也可能是负向的,即基准的输出电压随温度的升高而变小,具体可查看厂商数据手册中的温度曲线图表。 3. 热迟滞(Temperature Hysteresis) 当电压基准的温度从某一点开始经受变化,然后再次返回该温度点,前后二次在同一温度点测得的电压值之差即为热迟滞。该参数虽不如温度系数重要,但对于温度同期性变化超过25℃的情况仍是需引起重视的一个误差源。 4. 长期漂移(Long-term Drift) 在数日、数月或更长持续的工作期间,电压基准输出电压的慢变化称为长期漂移或稳定性,通常用ppm/1000h表示。当我们选用一个电压基准,要求它在持续数日、数周、数月基至数年的工作条件下保持输出电压精度,那么长期漂移便是一个必须考虑的性能参数。 5. 噪声(Noise)

稳压芯片大全

5v 3.3 1.2 1.5 1.8 2.5V稳压电源芯片大全LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A) LM337T 三端可调-1.2V to -37V稳压器(1.5A) LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) LM350T 三端可调1.2V to 32V稳压器(3A) LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源

LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to40V稳压器 MC1403 2.5V基准电压源 MC34063 DC-DC直流变换器 SG3524 脉宽调制开关电源控制器 TL431 精密可调2.5V to 36V基准稳压源 TL494 脉宽调制开关电源控制器 TL497 频率调制开关电源控制器 TL7705 电池供电/欠压控制器

基准电压芯片

基准电压芯片 lm236d-2-5:2.5v基准电压源400ua~10ma宽工作电流lm236dr-2-5:2.5v基准电压源400ua~10ma宽工作电流lm236lp-2-5:2.5v基准电压源400ua~10ma宽工作电流lm285d-1-2:微功耗电压基准.10ua~20ma宽工作电流 lm285d-2-5:微功耗电压基准.10ua~20ma宽工作电流 lm285lp-2-5:微功耗电压基准.10ua~20ma宽工作电流 lm336bd-2-5:2.5v基准电压源.10ua~20ma宽工作电流lm336blp-2-5:2.5v基准电压源 lm385bd-1-2:1.2v精密电压基准.15ua~20ma宽工作电流lm385bd-2-5:2.5v精密电压基准.15ua~20ma宽工作电流lm385blp-1-2:1.2v精密电压基准.15ua~20ma宽工作电流lm385blp-2-5:2.5v精密电压基准.15ua~20ma宽工作电流lm385bpw-1-2:微功耗电压基准.15ua~20ma宽工作电流

lm385bpw-2-5:微功耗电压基准.15ua~20ma宽工作电流 lm385d-1-2:1.2v精密电压基准.15ua~20ma宽工作电流 lm385dr-1-2:1.2v精密电压基准.15ua~20ma宽工作电流 lm385dr-2-5:2.5v精密电压基准.15ua~20ma宽工作电流 lm385lp-2-5:2.5v精密电压基准.15ua~20ma宽工作电流 lm385pw-1-2:1.2v微功率基准电压源.15ua~20ma宽工作电流lm385pw-2-5:2.5v微功率基准电压源.15ua~20ma宽工作电流ref02ap:+5v精密电压基准 ref02au:+5v精密电压基准 ref02bp:+5v精密电压基准 ref02bu:+5v精密电压基准 ref1004i-2.5:+2.5v精密电压基准 ref102ap:10v精密电压基准 ref102au:10v精密电压基准 ref102bp:10v精密电压基准

AD转换基准电压总结(飞思卡尔电磁组)

基准电压总结 通常AD/DA芯片都有两个电压输入端,一个是Vcc,一个是Vref,上图所示的芯片是DAC0832,Vcc是芯片的工作电压,Vref是DA转换的基准电压,AD/DA芯片对Vcc 的要求不是很高,但对基准电压Vref的要求就比较高。 S12的VRH引脚就是AD转换的基准电压输入端,在最小系统板上通过0Ω电阻和Vcc连在了一起。 一、什么叫基准电压 我们知道,AD/DA转换时需要一个电压参考值,而且要求这个参考值要稳定,这个稳定的电压参考值就叫做基准电压。比如AD(8位)转换时,假设参考电压时5V,输入量是2V,则转换后得到的数字量就是(2/5)*255=102。 二、智能车制作过程中遇到的问题 最开始我们组是利用LM2940稳压芯片输出的5V电压作为S12芯片内部AD转换的电压参考值,但采集回来的电磁信号AD值时常出现跳变,为什么?经过排除其他原因后,我们发现原因就在于基准电压不稳定,夸张地举个例子(8位AD),假设参考电压是5V,采集到的电磁模拟信号是2V,那么得到的数字量是102,但是由于某种原因参考电压突然变为4V,那么得到的数字量就突变为127,转换不准确,使得S12单片机产生误动作,要是时常发生这类突变,后果可想而知,车子根本跑不了!!! 三、LM2940与MC1403芯片 通过上面举的例子,我想说的是,LM2940输出的5V电压并非稳定,因为LM2940属于功率型稳压芯片,就是说其输出的电压会受流过LM2940的电流的影响,电流短时间发生较大变化时,其输出电

压也会相应发生变化(1V以内,典型值是0.5V),由于挂在LM2940上的负载较多,电流值变化较大,也就是说输出电压也会变化,而AD转换需要的却是一个稳定的参考电压,显然LM2940无法满足这个条件,因此AD值跳变是肯定的; 那么用哪个芯片作为基准电压更为恰当呢,答案肯定是有很多的,我们后来采用的芯片是MC1403,其输出电压很稳定,输出电压值为2.5V,关键在于即使输入电压变化较大,MC1403的输出误差也在1%以内,显然这可以满足我们AD转换所需基准电压的要求。下图是MC1403芯片的一个简介。 但是,2.5V作为基准电压显然是太低啦,因此我们需要对其进行升压,利用运算放大器的放大功能,采用的运算放大器是LMV358,电路图如下:

相关主题