搜档网
当前位置:搜档网 › 几种简单的占空比可调脉冲电路

几种简单的占空比可调脉冲电路

几种简单的占空比可调脉冲电路
几种简单的占空比可调脉冲电路

电子报/2006年/6月/4日/第017版

电子职校

几种简单的占空比可调脉冲电路

湖北汽车工业学院汪世文

常用的PWM电路的实质就是一个方波周期一定占空比可调电路,它的基本工作原理是将一个频率一定的锯齿波信号与一个直流控制电压在比较器进行比较,当直流控制电压改变时,输出占空比就跟随改变。在没有专用PWM电路的情况下,可以使用以下介绍的电路。

1.使用双比较器构成的占空比可调电路

图1是双比较器构成的占空比可调电路,电路使用一片双比较器,比较器(1)为一个方波振荡器,在其振荡电容上引出锯齿波送到比较器(2)的反相输入端,比较器(2)的同相输入端接控制电压,调节RP即可调节输出的占空比(即输出脉宽),其工作波形如图2所示。由图可知,直流控制电压越高,输出脉宽越宽,占空比越大;反之,脉宽变窄、占空比变小,而输出频率由锯齿波的频率决定。

2.使用单运放的占空比可调电路

电路如图3所示,单运放构成一个脉冲发生器电路,其振荡频率f=1/2RfC,电路中Rf=Rf1+Rf2,电容器C充电经D2、Rf2,放电经D1、Rfl,改变Rf1与Rf2的比例就可以改变输出的占空比,其占空比为:

q(%)=Rf1/Rf×100%

3.使用CMOS反相器的占空比可调电路

电路如图4所示,它是一个由奇数的CMOS反相器构成的多谐振荡器。图中的RP、C决定振荡频率。电容C的充、放电回路由D1、D2隔离,调节RP即可调节占空比。其振荡频率:f =1.4RPC

其占空比:q(%)=Rp1/RP×100%

4.使用555定时器的占空比可调电路

电路如图5所示,这是一个555构成的典型多谐振器电路,为使占空比可调,加入了二极管D。由图可知,电容C的充电回路经RP1→D→C;放电回路经C→RP2→555的⑦脚。其占空比如下:

q(%)=RP1/RP×100%

调节RP即可调节输出脉宽。

5.使用双定时器的占空比可调电路

电路如图6所示,图中555(1)为多谐振荡器,555(2)为单稳电路,只要单稳定时的脉宽小于多谐振荡器的振荡周期就能正常工作。调节单稳定时电阻RP,就可以调节占空比。其占空比为:q(%)=t/T×100%

t:为单稳脉宽

T:为多谐振荡器周期

其工作过程(波形)如图7所示。

CCU6测试频率与占空比

1. 根据待测波形频率与占空比计算波形的周期值,正频宽时间,负频宽时间. 2. 选择合适的T12分频比,设置的分频比后时钟分辨率不能导致T12溢出. 例如:80HZ的周期为12.5ms;T12溢出时间设置为25ms.触发上升沿中断,触发下降沿中断,再次触发上升沿中断。假设设置分频比为fclk/8 = 0.333usec, 25,000/0.333 = 0x 1,24FF;超出T12计数范围.分频比选择不合适。Fclk/16 = 0.667, 25,000/0.6667 = 0x927A;T12计数器未溢出满足要求。 3. T12的溢出时间设置为待测波形周期的2倍时间. 4. 根据Dave工具配置工程. 4.1 使能CCU模块 4.2 配置采样引脚 4.3 配置T12定时器 4.4 配置中断 4.5 配置采样模式 4.6 配置函数双寄存器模式四:任意沿采样. CC6N任意沿将CC6nSR中的内容复制到CC6nR中,T12的实际计数值立即保存在映射寄存器CC6nSR 中。第一种计算方法: // USER CODE BEGIN (NodeI0,1) unsigned int HighWidth,LowWidth; // USER CODE END void SHINT_viXINTR10Isr(void) interrupt XINTR10INT { // USER CODE BEGIN (NodeI0,2) unsigned int uiCapRiseL, uiCapFallL,uiCapRiseH, uiCapFallH; // USER CODE END SFR_PAGE(_su3, SST0); // switch to page 3 // CCU6 Node 0 interrupt handling section... 读映射寄存器CC6nSR函数 读通道寄存器CC6nR函数 if (IRCON3 & 0x01) // if CCU6SR0 { IRCON3 &= ~(ubyte)0x01; // USER CODE BEGIN (NodeI0,3) // USER CODE END SFR_PAGE(_cc3, noSST); // switch to page 3 if(CCU6_ISL & 0x01) //if ISL_ICC60R { //capture, compare match rising edge detection an channel 0 SFR_PAGE(_cc0, noSST); // switch to page 0 CCU6_ISRL = 0x01; //clear flag ISL_ICC60R // USER CODE BEGIN (NodeI0,10) SFR_PAGE(_cc1,SST0); uiCapFallH = CCU6_CC60RLH; SFR_PAGE(_cc1,RST0); uiCapRiseH = CCU6_CC60SRLH; LowWidth = 0xFFFF + 1 + uiCapRiseH - uiCapFallH; // USER CODE END } SFR_PAGE(_cc3, noSST); // switch to page 3 if(CCU6_ISL & 0x02) //if ISL_ICC60F { //capture, compare match faling edge detection an channel 0

占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析 参考电路图5.12所示,测试电路,计算波形出差频率。 电容 图5.12 方波发生电路(multisim) 通过上述电路调试,发现为方波发生器。 一、电路组成 如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。 电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。电压传输特性如图6.8所示: U 0 U N U P U z U c R 3 R 2 R 1 R 图5.13方波发生电路 二、工作原理 从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。U O 通过R 对电容C 正向充电。反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;

当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。随后,U O 又通过R 对电容C 放电。 反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。 上述过程周而复始,电路产生了自激振荡。 三、波形分析及主要参数 由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。电容上电压U C 和电路输出电压U O 波形如图所示。矩形波的宽度T k 与周期T 之比称为占空比,因此U O 是占空比为1/2的矩形波。 利用一阶RC 电路的三要素法可列出方程,求出振荡周期。 3122(12/)T R C R R =+ 振荡频率为: 1/f T = 调整电压比较器的电路参数R 1,R 2和U Z 可以改变方波发生电路的振荡幅值,调整电阻R 1,R 2,R 3和电容C 的数值可以改变电路的振荡频率。 四、占空比可调电路 占空比的改变方法:使电容的反向和正向充电时间常数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图2-5所示,电容上电压和输出波形的如图 6.19 Z U ±O 图 5.14占空比可调电路 电路工作原理:当U O =+U Z 时,通过RW1,D1,和R3对电容C 正向充电,若忽略二极管导通时的等效电阻,则时间常数为:

占空比可调的方波函数发生器

西北民族大学电气工程学院课程设计说明书(2011/2012学年第二学期) 课程名称:模电课程设计 题目:正弦波发生器设计 专业班级:10级自动化一班 学生姓名:杨香林 学号:P101813404 指导教师:刘明华 设计成绩: 二〇一二年六月二十三日

目录 1.课程设计的目的 2.课程设计内容 2.1总体概述 2.11 设计任务 2.12 设计要求 2.2系统方案分析 2.3系统设计及仿真 2.4硬件设计 3.课程设计总结 4.参考文献

1、课程设计目的 1.掌握电子系统的一般设计方法。 2.理解迟滞比较器的设计原理,掌握方波函数发生器的设计原理。 3.理解555定时器的工作原理,掌握多谐振荡器的设计原理。 4.熟练运用multisim仿真软件设计和仿真电路。 5.提高综合应用所学知识来指导实践的能力。 2、课程设计总文 2.1总体概述 2.11 设计任务 使用集成运算放大器、稳压二极管、二极管、电阻等器件设计方波函数发生器。 2.12 设计要求 1、根据技术要求和现有开发环境,分析课设题目; 2、设计系统实现方案; 3、要求占空比可调;输出电压:8V<|Vo|<15V;周期:2ms

2.2系统方案分析 迟滞比较器,是将集成运放比较器的输出电压通过反馈网络加到同相端,形成正反 馈,如图2.21(a )所示,待比较电压I 加在反相输入端。在理想情况下,它的比较特性 如图2.11(b )所示。由图可见,它有两个门限电压,分别称为上门限电压OH U 和下门限 电压 OL U ,两者的差值称为门限宽度。 图2.2(a ) 图2.2(b ) 设比较器输出高电平 OH U ,则 OH U 和 ref U 共同加到同相输入端的合成电压为

占空比

占空比 占空比的图例 占空比(Duty Ratio)在电信领域中有如下含义:在一串理想的脉冲周期序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。例如:脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0.25。在一段连续工作时间内脉冲占用的时间与总时间的比值。在CVSD调制(continuously variable slope delta modulation)中,比特“1”的平均比例(未完成)。引申义:在周期型的现象中,某种现象发生的时间与总时间的比。例如,在成语中有句话:「三天打渔,两天晒网」,如果以五天为一个周期,“打渔“的占空比则为0.6。 编辑本段定义 占空比是指高电平在一个周期之内所占的时间比率。方波的占空比为50%,占空比为0.5,说明正电平所占时间为0.5个周期。定义1:如果占空比定义为d=rTc。那么,分量F。为:F.一Ub(2d一1)及肛案sin(n)枷一江。脉宽调制波形同时应能明显看出从一个周期到另一个周期,傅里叶分量的幅值将随着占宽比发生的变化而变化。定义2:Dutycycle=Width(Delay+Width)含步进电机的CCD线阵列式位置传感器支架。传感器是CCD线阵列式位置传感器,它是一种新型的固体成像器件,是在大规模集成电路工艺基础上研制而成的模拟集成电路芯片。定义3:所谓占空比是指压缩机持续开启时间与控制周期之比。在确定占空比时必须满足压缩机两次开启时间间隔大于制冷系统高低压侧平衡所需最小时间。定义4:Ts为脉冲周期,Tw为脉冲宽度,定义τ=TwT's×100τ称为占空比。PWM根据输入信号的大小对脉冲宽度进行调制,使得在一个载波周期内输出占空比是输入的函数。定义5:可见改变电源加在负载上正弦电压波形的个数和关断正弦电压波形个数的比率,称为占空比,(占空比用n表示)。改变占空比可实现交流调压.这种微机控制交流调压法属有级调压,由于级数(对应占空比)可以做得很多,故电压级差可以做得很小。定义6:系统工作原理如下,占空比的设定所谓占空比是指直流电机在一个通电与断电周期中其通电时间所占的比例常用下述公式表示:式中Ti—通电时间。定义7:因此黑色区域是探测器的有效区域,与探测元的窗口面积之比称为占空比,此比率的大小直接影响探测器输出信号的大小。定义8:在忽略开关管T和续流二级管D 的正向压降的情况下:Uo=TONTON+TOFF·Ui式中TON为开关管T的导通时间

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算 作者:陶显芳发布时间:2011-07-04文章来源:华强北·电子市场价格指数浏览量:50466 下面是开关电源设计务必掌握的知识 1、开关电源占空比的选择与计算 2、开关变压器初次级线圈匝数比的计算 希望从事开关电源设计的工程师对此感兴趣 概述:占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。 开关电源占空比和开关电源变压器初、次级线圈的匝数比的正确选择涉及到对开关电源变压器初、次级线圈感应电动势的计算。因此,下面我们先从分析开关电源变压器初、次级线圈感应电动势开始。 1.1占空比的定义 占空比一般是指,在开关电源中,开关管导通的时间与工作周期之比,即: (1)式中:D为占空比,Ton为开关管导通的时间,Toff为开关管关断的时间,T为开关电源的工作周期。 对于一个脉冲波形也可以用占空比来表示,如图1所示。 在反激式开关电源中,开关管导通的时候,变压器次级线圈是没有功率输出的,如果把(1)中的D记为D1,(2)式中的D记为D2,则D1、D2有下面关系: 1.2开关变压器初次级线圈的输出波形

图2a是输出电压为交流的开关电源工作原理图。为了便于分析,我们假说变压器初次级线圈的变压比为1:1(即N1=N2,L1=L2),当开关K又导通转断开时,变压器初级、次 级线圈产生感应电动势为: (6)式中:为变压器初级线圈的励磁电流,由此可知,变压器初、次级线圈产生 的反电动势主要是由励磁电流产生的。我们从(5)可以看出,当变压器初、次级线圈的负载电阻R很大或者开路的情况下,变压器初、次级线圈产生的感应电动势峰值是非常高的,如果这个电压直接加到电源开关管两端,电源开关管一定会被击穿。 为了便于分析,我们引进一个半波平均值的概念,我们把Upa、Upa-分别定义为变压器初、次级线圈感应电动势正、负半周的半波平均值。半波平均值就是把反电动势等效成一 个幅度等于Upa或Upa-的方波,如图2b中的Upa-所示。

模拟电子技术课程设计产生正弦波,方波,三角波,且占空比可调,频率可调,幅度可调

模拟电子技术课程设计任务书 一、设计题目:波形发生器的设计(二) 方波/三角波/正弦波/锯齿波函数发生器 二、设计目的 1、研究正弦波等振荡电路的振荡条件。 2、学习波形产生、变换电路的应用及设计方法以及主要技术指标的测试方法。 三、设计要求及主要技术指标 设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。 1、方案论证,确定总体电路原理方框图。 2、单元电路设计,元器件选择。 3、仿真调试及测量结果。 主要技术指标 1、正弦波信号源:信号频率范围20Hz~20kHz 连续可调;频率稳定度较高。信号幅度可以 在一定范围内连续可调; 2、各种输出波形幅值均连续可调,方波占空比可调; 3、设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出 电压的范围。 四、仿真需要的主要电子元器件 1、运算放大电路 2、滑线变阻器 3、电阻器、电容器等 五、设计报告总结(要求自己独立完成,不允许抄袭)。 1、对所测结果(如:输出频率的上限和下限,输出电压的范围等)进行全面分析,总结振荡电路的振荡条件、波形稳定等的条件。 2、分析讨论仿真测试中出现的故障及其排除方法。 3、给出完整的电路仿真图。 4、体会与收获。

1.正弦波输出电路 ,方波输出电路

,在正弦波的基础上通过LM339AD比较器稳定输出方波,可通过R15小幅调节占空比,但方波幅值不可调。R15调节范围0/100~~2/100,占空比约为0/100~~50/100之间,通过正弦波发生器中的R13可大幅度调节占空比。

3.三角波和锯齿波发生器 通过LM741CN运放,且由R18和C3组成积分电路,在方波基础上输出三角波,通过调节方波占空比可以产生锯齿波,当方波占空比为50/100时,输出三波。 4.三种波形的综合输出 一.正弦波输出波形

555时基电路原理以及应用

555时基电路原理以及应用 大小[6494] 更新时间[] 阅读[6613]次/评论[3]次 555内部电原理图 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。 在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。

第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。 第三种(见图3)是压控振荡器。由于电路变化形式很复杂,为简单起见,只分成最简单的形式(3.3.1)和带辅助器件的(3.3.2)两个单元。图中举了两个应用实例。

无稳电路的输入端一般都有两个振荡电阻和一个振荡电容。只有一个振荡电阻的可以认为是特例。例如:3.1.2单元可以认为是省略RA的结果。有时会遇上7.6.2三端并联,只有一个电阻RA的无稳电路,这时可把它看成是3.2.1单元电路省掉RB后的变形。 以上归纳了555的3类8种18个单元电路,虽然它们不可能包罗所有555应用电路,古话讲:万变不离其中,相信它对我们理解大多数555电路还是很有帮助的。 各种应用电路 555触摸定时开关 集成电路IC1是一片555定时电路,在这里接成单稳态电路。平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。 当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。 当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。 定时长短由R1、C1决定:T1=1.1R1*C1。按图中所标数值,定时时间约为4分钟。D1可选用1N4148或1N4001。

脉冲宽度调制(PWM)技术

脉冲宽度调制(PWM)技术 在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。 1. 面积等效原理 在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。因此,冲量等效原理也可以称为面积等效原理。 从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。由此进一步证明了面积等效原理的正确性。 2. 脉冲宽度调制技术

依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。 图2所示的矩形波的电压平均值: 此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。 采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。为了明确脉冲宽度调制技术对负载产生的影响,且考虑此分析结果便于以后章节引用,可将图2所示的等幅脉冲序列描述为 式中,G(t)为开关函数,其波形如图3所示。 在此式中,第一项DUi是等幅脉冲序列的直流成分,也即输出电压的平均值。可见,输出电

555芯片各种应用电路

各种应用电路 555触摸定时开关 集成电路IC1是一片555定时电路,在这里接成单稳态电路。平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。 当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。 当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。 定时长短由R1、C1决定:T1=1.1R1*C1。按图中所标数值,定时时间约为4分钟。D1可选用1N4148或1N4001。 相片曝光定时器 附图电路是用555单稳电路制成的相片曝光定时器。用人工启动式单稳电路。 工作原理:电源接通后,定时器进入稳态。此时定时电容CT的电压为:VCT=VCC=6V。对555这个等效触发器来讲,两个输入都是高电平,即VS=0。继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。

按一下按钮开关SB之后,定时电容CT立即放到电压为零。于是此时555电路等效触发的输入成为:R=0、S=0,它的输出就成高电平:V0=1。继电器KA吸动,常开接点闭合,曝光照明灯点亮。按钮开关按一下后立即放开,于是电源电压就通过RT向电容CT充电,暂稳态开始。当电容CT上的电压升到2/3VCC既4伏时,定时时间已到,555等效电路触发器的输入为:R=1、S=1,于是输出又翻转成低电平:V0=0。继电器KA释放,曝光灯HL熄灭。暂稳态结束,有恢复到稳态。 曝光时间计算公式为:T=1.1RT*CT。本电路提供参数的延时时间约为1秒~2分钟,可由电位器RP调整和设置。 电路中的继电器必需选用吸合电流不应大于30mA的产品,并应根据负载(HL)的容量大小选择继电器触点容量。 单电源变双电源电路 附图电路中,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:1 的方波。3脚为高电平时,C4被充电;低电平时,C3被充电。由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC的双电源。本电路输出电流超过50mA。 简易催眠器

占空比可调的脉冲发生器

沈阳航空航天大学 课程设计报告 课程设计名称:微机系统综合课程设计课程设计题目:占空比可调的脉冲发生器 院(系):计算机学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师:张维君 完成日期:2012年7月15日

沈阳航空航天大学课程设计报告 目录 第1章总体设计方案 (1) 1.1课程设计的内容和要求 (1) 1.2课程设计原理 (1) 1.3方案设计 (1) 1.4方案论证 (2) 1.5设计环境 (2) 第2章详细设计方案 (3) 2.1模块设计 (3) 2.2程序流程图 (4) 2.3硬件连线图 (6) 第3章调试及结果分析 (7) 3.1调试步骤及方法 (7) 3.2实验结果 (7) 3.3结果分析 (8) 参考文献 (9) 附录(源程序) (10)

沈阳航空航天大学课程设计报告错误!未指定书签。第 1章总体设计方案 第1章总体设计方案 1.1课程设计的内容和要求 一、课程设计内容: 具体内容如下: 1.用8255和8253产生脉宽可调的脉冲信号; 2.用实验箱上键盘中的两个按键调节脉冲; 3.按脉宽增加键脉宽逐渐增大,按脉宽减小键脉宽逐渐减小; 二、课程设计要求: 1.认真查阅相关资料; 2.独立设计、调试并通过指导教师现场验收; 3.撰写课程设计报告。 1.2 课程设计原理 根据课设要求,要实现通过键盘按键调节脉宽的脉冲信号发生器。本次设计中主要使用了8259可编程中断控制器,8255可编程并行接口芯片,8279键盘/显示芯片,8253定时/计数器以及部分连线来实现以上功能。利用8253芯片产生一定频率的脉冲信号,并用8255芯片以程序查询方式,检测该信号上高、低电平的持续时间,还要利用8259芯片的中断信号扫描信号,通过改变高电平的持续时间来调节占空比。最后,应用8279芯片将结果显示到数码管上。 1.3 方案设计 根据本次课程设计要求,用8253芯片计数器0产生低频率的方波信号,然后叠加一个矩形波,使之成为一个改变分频就可以改变占空比的矩形波。再将该矩形波作为计数器1产生的输入信号,使计数器1产生脉宽可调的脉冲信号,并把该脉冲信号接到8255的一个引脚(PB0),运用程序查询方式循环检测这个引脚高、低电平持续时间。利用芯片8259的中断功能循环扫描芯片8253计数器1的分频数,通过分频数计算占空比的值。在BX中存放分频数NUM,在CX中

555芯片设计占空比可调的方波信号发生器

占空比可调的方波信号发生器 三、实验原理: 1、555电路的工作原理 (1)555芯片引脚介绍 图1 555电路芯片结构和引脚图 555定时器是一种应用极为广泛的中规模集成电路,该电路使用灵活、方便,只需外接少量的阻容原件就可以构成单稳、多谐和施密特触发器。因而广泛用于信号的产生、变换、控制和检测。 1脚:外接电源负极或接地(GND)。 2脚:TR触发输入。 3脚:输出端(OUT或Vo)。 4脚:RD复位端,移步清零且低电平有效,当接低电平时,不管TR、TH输

入什么,电路总是输出“0”。要想使电路正常工作,则4脚应与电源相连。 5脚:控制电压端CO(或VC)。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF 电容接地,以防引入干扰。 6脚:TH 高触发端(阈值输入)。 7脚:放电端。 8脚:外接电源VCC (VDD )。 (2)555功能介绍 555定时器的功能主要是由两个比较器C1和C2的工作状况决定的。由图1可知,当V6>VA 、V2>VB 时,比较器C1的输出VC1=0、比较器C2的输出VC2=1,基本RS 触发器被置0,TD 导通,同时VO 为低电平。 当V6VB 时,VC1=1、VC2=1,触发器的状态保持不变,因而TD 和输出的状态也维持不变。 当V6V A V B >V B 不变 导通

555定时器构成的占空比可调的方波发生器

电子技术课程设计说明书 题目:555定时器构成的占空比可调的方波发生器系部: 专业: 班级: 学生姓名: 学号: 指导教师: 年月日

目录 1 设计任务与要求 (1) 1.1 设计内容: (1) 1.2 任务: (1) 2 实验目的: (1) 3 实验器材: (1) 4 实验原理: (2) 4.1 555电路的工作原理 (2) 4.1.1 555芯片引脚介绍 (2) 4.1.2 上述CB555定时器的工作原理可列表说明: (4) 4.1.3 占空比可调的方波信号发生器 (4) 4.2本电路能达到的实用功能 (6) 5 实验内容及实验数据 (6) 5.1 设计内容及任务 (6) 5.2 实验数据 (6) 5.2.1 100HZ仿真电路图 (6) 5.2.2 100HZ 仿真电路结果 (7) 5.2.3 1000HZ仿真电路图 (8) 5.2.4 1000HZ 仿真电路结果 (9) 6 结论: (11) 6.1收获 (11) 6.2体会................................................. 错误!未定义书签。 6.3建议................................................. 错误!未定义书签。 7 参考文献 (11)

1 设计任务与要求 1.1 设计内容: 1 给出集成电路芯片的主要技术参数,熟悉555 IC芯片各引脚的功能,并逐个说明. 2 简要说明电路的工作原理及本电路能达到的实用功能.. 3 完成下列参数要求的电路设计。(其中,实验室提供1000Hz的频率信号) A.当方波输出频率f=100HZ时,占空比D=50%、D<50%、D>50%时的输出波形; B.当方波输出频率f=1KHZ时,占空比D=50%、D<50%、D>50%时的输出波形; 1.2 任务: 1 设计电路原理图; 2 在实验室提供的设备上安装电路并模拟运行; 3 撰写实验报告。 2 实验目的: 1 熟悉555型集成时基电路结构、工作原理及其特点。 2 掌握555型集成时基电路的基本应用。 3 掌握由555集成时基电路组成的占空比可调的方波信号发生器。 3 实验器材: 电阻:二极管:电容:555芯片:示波器:等

占空比可调的矩形波发生电路

占空比可调的矩形波发生电路实验二占空比可调的矩形波发生器实验 一、实验目的 1.掌握Im741芯片的使用方法; 2.了解占空比可调的矩形波发生器的设计方法。 二、实验原理 1」m741介绍 LM741系列是通用型运算放大器.其目的是为广泛的模拟应用高增益和宽工作电压范围在积分器,求和放大器,和一般反馈应用提供卓越的性能。其特点有:短路保护,出色的温度稳定性,内部频率补偿,高输入电压范围,空偏移。

图1丄M741应用电路图

LM741,LM741(芯片引脚和工作说明1和5为偏置(调零端),为正向 输入端,3为反向输入端,4接地,6为输出,7接电源,8空脚 1输出端A 2反向输入端A 3正向输入端A 4接地5正向输入端B 6 反向输入端B 7输出端B 8电源+ 741运算放大器使用时需于7、4脚位供应一对同等大小的正负电 源电压+ Vdc 与—Vdc , —旦于2、3脚位即两输入端间有电压差存在, 压差即会被放大于输出端,唯 Op 放大器具有一特色,其输出电压值 决不会大于正电源电压+ Vdc 或小于负电源电压一Vdc ,输入电压差 经放大后若大于外接电源电压+ Vdc 至-Vdc 之范围,其值会等于+ Vdc 或—Vdc,故一般运算放大器输出电压均具有如图 3之特性曲线, 输出电压于到达+ Vdc 和—Vdc 后会呈现饱和现象。 Balance \ 1 __ 1 8 Input — a 1 \ 7 Input + □ 八 4 5 NC Output Balance -15V

图3.放大器输出入电压关系图 741运算放大器之基本动作如图4所示,若在非反相输入端输入电压,会于输出端得到被放大的同极性输出;若以相同电压信号在反相输入端输入,则会在输出端获得放大相同倍率后但呈逆极性之信号输出。而当对放大器两输入端同时输入电压时,则是以非反相输入端电压值(V1)减去反相输入端电压值(V2),可于输出端得到(V1 —V2) 经过倍率放大后之输出。

几种简单的占空比可调脉冲电路

电子报/2006年/6月/4日/第017版 电子职校 几种简单的占空比可调脉冲电路 湖北汽车工业学院汪世文 常用的PWM电路的实质就是一个方波周期一定占空比可调电路,它的基本工作原理是将一个频率一定的锯齿波信号与一个直流控制电压在比较器进行比较,当直流控制电压改变时,输出占空比就跟随改变。在没有专用PWM电路的情况下,可以使用以下介绍的电路。 1.使用双比较器构成的占空比可调电路 图1是双比较器构成的占空比可调电路,电路使用一片双比较器,比较器(1)为一个方波振荡器,在其振荡电容上引出锯齿波送到比较器(2)的反相输入端,比较器(2)的同相输入端接控制电压,调节RP即可调节输出的占空比(即输出脉宽),其工作波形如图2所示。由图可知,直流控制电压越高,输出脉宽越宽,占空比越大;反之,脉宽变窄、占空比变小,而输出频率由锯齿波的频率决定。 2.使用单运放的占空比可调电路 电路如图3所示,单运放构成一个脉冲发生器电路,其振荡频率f=1/2RfC,电路中Rf=Rf1+Rf2,电容器C充电经D2、Rf2,放电经D1、Rfl,改变Rf1与Rf2的比例就可以改变输出的占空比,其占空比为:

q(%)=Rf1/Rf×100% 3.使用CMOS反相器的占空比可调电路 电路如图4所示,它是一个由奇数的CMOS反相器构成的多谐振荡器。图中的RP、C决定振荡频率。电容C的充、放电回路由D1、D2隔离,调节RP即可调节占空比。其振荡频率:f =1.4RPC 其占空比:q(%)=Rp1/RP×100% 4.使用555定时器的占空比可调电路 电路如图5所示,这是一个555构成的典型多谐振器电路,为使占空比可调,加入了二极管D。由图可知,电容C的充电回路经RP1→D→C;放电回路经C→RP2→555的⑦脚。其占空比如下: q(%)=RP1/RP×100% 调节RP即可调节输出脉宽。 5.使用双定时器的占空比可调电路 电路如图6所示,图中555(1)为多谐振荡器,555(2)为单稳电路,只要单稳定时的脉宽小于多谐振荡器的振荡周期就能正常工作。调节单稳定时电阻RP,就可以调节占空比。其占空比为:q(%)=t/T×100%

555芯片应用电路大全

555内部电原理图

将分别介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。 双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。

第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。 无稳类电路 第三类是无稳工作方式。无稳电路就是多谐振荡电路,是555电路中应用最广的一类。电路的变化形式也最多。为简单起见,也把它分为三种。 第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。 第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。

利用PWM控制占空比

什么就是占空比 占空比(Duty Cycle)在电信领域中意思: 在一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。 例如:脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0、25。 在一段连续工作时间内脉冲占用的时间与总时间的比值。 在CVSD调制(continuously variable slope delta modulation)中,比特“1”的平均比例(未完成)。 在周期型的现象中,现象发生的时间与总时间的比。 负载周期在中文成语中有句话可以形容:「一天捕渔,三天晒网」,则负载周期为0、25。 占空比就是高电平所占周期时间与整个周期时间的比值。 占空比越大,高电平持续的时间越长,电路的开通时间就越长 PWM值增加则占空比减少!!!!!!!(请先瞧下面关于PWM的定义)PWM值增加应该就是周期变大,那么占空比就减小了(此为个人见解如有不同见解请发邮箱1250712643@qq、com) 占空比的图例 什么就是占空比(另一种解释) 占空比就是指高电平在一个周期之内所占的时间比率。方波的占空比为50%,占空比为0、1,说明正电平所占时间为0、1个周期。 正脉冲的持续时间与脉冲总周期的比值。例如:正脉冲宽度1μs,信号周期10μs的脉冲序列

占空比为0、1。 什么就是PWM 1、脉冲宽度调制(PWM)就是英文“Pulse Width Modulation”的缩写,简称脉宽调制。 它就是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。 脉冲宽度调制(PWM)就是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM 信号仍然就是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源就是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即就是直流供电被加到负载上的时候,断的时候即就是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 2、PWM控制的基本原理 理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,就是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以瞧出,在i(t)的上升段,i(t)

555单稳态占空比可调触发器

1Protues简介 Protues软件是一个EDA 工具软件。它具有EDA工具软件的仿真功能,还能仿真单片机及外围器件。 Protues具有四大功能模块:(1)智能原理图设计(ISIS);(2)完善的电路仿真功能(Prospice);(3)独特的单片机协同仿真功能(VSM);(4)实用的PCB设计平台。这就保证protues的强大功能。 Protues软件具有原理布图,PCB自动或人工布线等功能。Protues可提供仿真数字和模拟,交流和直流等多种元器件,仿真仪表资源:其中包括示波器,逻辑分析仪,信号发生器。它是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等

2 555定时器 2.1 555定时器原理 555集成电路是由集成运算放大器组成的单门限电压比较器,基本RS 触发器及工作于开关状态的双极型三极管集成一起的电路模块。 555定时器内部结构如图1.1所示。它由三个阻值为5k?的电阻组成的分压器、两个 图2.1 555定时器内部结构 555定时器电路的工作原理: 电压比较器C1和C2、基本RS 触发器、放电晶体管T 、与非门和反相器组成。 分压器为两个电压比较器C1、C2提供参考电压。如5端悬空,则比较器C1的参考电压为cc U 3 2 ?,加在同相端;C2 的参考电压为cc U 3 1?,加在反相端。 ’D R 是复位输入端。当0R D =’ 时,基本RS 触发器被置0,晶体管T 导通,输出 端u0为低电平。正常工作时,1R D =’。 11U 和12U 分别为6端和2端的输入电压。当 cc 11U 3 2 ? U ,cc 12U 3 1 ? U 时, C1输出为低电平,C2输出为高电平,即0R D =,1S D =,基本RS 触发器被置0,晶体管T 导通,输出端0U 为低电平。 当cc 11U 32? U ,cc 12U 3 1? U 时,C1输出为高电平,C2输出为低电平,1R D =,

利用PWM控制占空比

什么是占空比 占空比(Duty Cycle)在电信领域中意思: 在一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值。 例如:脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0.25。 在一段连续工作时间内脉冲占用的时间与总时间的比值。 在CVSD调制(continuously variable slope delta modulation)中,比特“1”的平均比例(未完成)。 在周期型的现象中,现象发生的时间与总时间的比。 负载周期在中文成语中有句话可以形容:「一天捕渔,三天晒网」,则负载周期为0.25。 占空比是高电平所占周期时间与整个周期时间的比值。 占空比越大,高电平持续的时间越长,电路的开通时间就越长 PWM值增加则占空比减少!!!!!!!(请先看下面关于PWM的定义)PWM值增加应该是周期变大,那么占空比就减小了(此为个人见解如有不同见解请发邮箱1250712643@https://www.sodocs.net/doc/4f9097971.html,) 占空比的图例 什么是占空比(另一种解释) 占空比是指高电平在一个周期之内所占的时间比率。方波的占空比为50%,占空比为0.1,说明正电平所占时间为0.1个周期。 正脉冲的持续时间与脉冲总周期的比值。例如:正脉冲宽度1μs,信号周期10μs的脉冲序列占空比为0.1。 什么是PWM 1.脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。 它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM 信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。 只要带宽足够,任何模拟值都可以使用PWM进行编码。 2.PWM控制的基本原理 理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频

相关主题