搜档网
当前位置:搜档网 › 3gpp协议

3gpp协议

3GPP TR 36.942 V9.0.1 (2010-04)

Technical Report

3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);

Radio Frequency (RF) system scenarios

(Release 9)

The present docu ment has been developed within the 3rd Generation Partnership Project (3G PP TM ) and may be fu rther elaborated for the purposes of 3GPP.

The present d ocument has not been subject to any approval process by the 3G PP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

LTE, Radio

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

? 2010, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS? is a Trade Mark of ETSI registered for the benefit of its members

3GPP? is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE? is a Trade Mark of ETSI currently being registered for the benefit of i ts Members and of the 3GPP Organizational Partners GSM? and the GS M logo are registered and owned by the GSM Association

Contents

Foreword (6)

1Scope (7)

2References (7)

3Definitions, symbols and abbreviations (8)

3.1Definitions (8)

3.2Symbols (8)

3.3Abbreviations (8)

4General assumptions (9)

4.1Interference scenarios (10)

4.2Antenna Models (10)

4.2.1BS antennas (10)

4.2.1.1BS antenna radiation pattern (11)

4.2.1.2BS antenna heights and antenna gains for macro cells (11)

4.2.2UE antennas (12)

4.2.3MIMO antenna Characteristics (12)

4.3Cell definitions (12)

4.4Cell layouts (12)

4.4.1Single operator cell layouts (12)

4.4.1.1Macro cellular deployment (12)

4.4.2Multi operator / Multi layer cell layouts (12)

4.4.2.1Uncoordinated macro cellular deployment (13)

4.4.2.2Coordinated macro cellular deployment (13)

4.5Propagation conditions and channel models (14)

4.5.1Received signal (14)

4.5.2Macro cell propagation model – Urban Area (14)

4.5.3Macro cell propagation model – Rural A rea (15)

4.6Base-station model (15)

4.7UE model (17)

4.8RRM models (18)

4.8.1Measurement models (18)

4.8.2Modelling of the functions (18)

4.9Link level simulation assumptions (18)

4.10System simulation assumptions (18)

4.10.1System loading (18)

5Methodology description (18)

5.1Methodology for co-existence simulations (18)

5.1.1Simulation assumptions for co-existence simulations (18)

5.1.1.1Scheduler (18)

5.1.1.2Simulated services (19)

5.1.1.3ACIR value and granularity (19)

5.1.1.4.1Uplink Asymmetrical Bandwidths ACIR (Aggressor with larger bandwidth) (19)

5.1.1.4.2Uplink Asymmetrical Bandwidths ACIR (Aggressor with s maller bandwidth) (22)

5.1.1.4Frequency re-use and interference mitigation schemes for E-UTRA (22)

5.1.1.5CQI estimation (23)

5.1.1.6Power control modelling for E-UTRA and 3.84 Mcps TDD UTRA (23)

5.1.1.7SIR target requirements for simulated services (23)

5.1.1.8Number of required snapshots (23)

5.1.1.9Simulation output (23)

5.1.2Simulation description (24)

5.1.2.1Downlink E-UTRA interferer UTRA victim (24)

5.1.2.2Downlink E-UTRA interferer E-UTRA victim (24)

5.1.1.1Uplink E-UTRA interferer UTRA victim (24)

5.1.2.4Uplink E-UTRA interferer E-UTRA victim (25)

6System scenarios (25)

6.1Co-existence scenarios (26)

7Results (26)

7.1Radio reception and transmission (26)

7.1.1FDD coexistence simulation results (26)

7.1.1.1ACIR downlink 5MHz E-UTRA interferer – UTRA victim (26)

7.1.1.2ACIR downlink 10MHz E-UTRA interferer – 10MHz E-UTRA victim (27)

7.1.1.3ACIR uplink 5MHz E-UTRA interferer – UTRA victim (29)

7.1.1.4ACIR uplink 10MHz E-UTRA interferer – 10MHz E-UTRA victim (31)

7.1.2TDD coexistence simulation results (34)

7.1.2.1ACIR downlink 5MHz E-UTRA interferer – UTRA 3.84 Mcps TDD victim (34)

7.1.2.2ACIR downlink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (36)

7.1.2.3ACIR downlink 1.6 MHz E-UTRA interferer – UTRA 1.28 Mcps TDD victim (38)

7.1.2.4ACIR uplink 5MHz E-UTRA interferer – UTRA 3.84 Mcps TDD victim (41)

7.1.2.5ACIR uplink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (43)

7.1.2.6ACIR uplink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (LCR frame structure

based) (45)

7.1.2.7ACIR downlink 10MHz E-UTRA interferer – 10MHz E-UTRA TDD victim (LCR frame

structure based) (46)

7.1.3Additional coexistence simulation results (48)

7.1.3.1ACIR downlink E-UTRA interferer – GSM victim (48)

7.1.3.2ACIR uplink E-UTRA interferer – GSM victim (50)

7.1.3.3Asymmetric coexistence 20 MHz and 5 MHz E-UTRA (51)

7.1.3.4Impact of cell range and simulation frequency on ACIR (53)

7.1.3.5Uplink Asymmetric coexistence TDD E-UTRA to TDD E-UTRA (54)

7.1.4Base station blocking simulation results (56)

7.2RRM (58)

8Rationales for co-existence requirements (58)

8.1BS and UE A CLR (58)

8.1.1Requirements for E-UTRA – UTRA co-existence (58)

8.1.2Requirements for E-UTRA – E-UTRA co-existence (59)

9Deployment aspects (59)

9.1UE power distribution (59)

9.1.1Simulation results (60)

10Multi-carrier BS requirements (62)

10.1Unwanted emission requirements for multi-carrier BS (62)

10.1.1General (62)

10.1.2Multi-carrier BS of different E-UTRA channel bandwidths (63)

10.1.3Multi-carrier BS of E-UTRA and UTRA (63)

10.2Receiver requirements for multi-carrier BS (64)

10.2.1General (64)

10.2.2Test principles for a multi-carrier BS of equal or different E-UTRA channel bandwidths (65)

11Rationale for unwanted emission specifications (65)

11.1Out of band Emissions (65)

11.1.1Operating band unwanted emission requirements for E-UTRA BS (spectrum emission mask) (65)

11.1.2ACLR requirements for E-UTRA BS (67)

11.2Spurious emissions (69)

11.2.1BS Spurious emissions (69)

11.2.2General spurious emissions requirements for E-UTRA BS (69)

11.2.3Specification of BS Spurious emissions outside the operating band (70)

11.2.4Additional spurious emissions requirements (71)

Annex A (informative): Link Level Performance Model (71)

A.1Description (71)

A.2Modelling of Link Adaptation (73)

A.3UTRA 3.84 Mcps TDD HSDPA Link Level Performance (75)

A.4Link Level Performance for E-UTRA TDD (LCR TDD frame structure based) (76)

Annex B (informative): Smart Antenna Model for UTRA 1.28 Mcps TDD (79)

B.1Description (79)

Annex C (informative): Change history (83)

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

During the E-UTRA standards development, the physical layer parameters will be decided using system scenarios, together with implementation issues, reflecting the environments that E-UTRA will be designed to operate in.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

?References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

?For a specific reference, subsequent revisions do not apply.

?For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same

Release as the present document.

[1] 3GPP TR 25.896, “Feasibility Study for Enhanced Uplink for UTRA FDD”

[2] 3GPP TR 25.816, “UMTS 900 MHz Work Item Technical Report”

[3] 3GPP TR 25.942, “Radio Frequency (RF) system scenarios”

[4] 3GPP TR 25.814, “Physical Layer Aspects for Evolved UTRA”

[5] 3GPP TR 30.03, “Selection procedures for the choice of radio transmission technologies of the

UMTS”

[6] R4-051146, “Some operators? requirements for prioritization of performance requirements work in

RAN W G4”, RAN4#37

[7] 3GPP TR 25.951, “FDD Base Station (BS) classification”

[8] 3GPP TR 25.895, ”Analysis of higher chip rates for UTRA TDD evolution.”

[9] R4-070235, “Analysis of co-existence simulation results”, RAN4#42

[10] R4-070084, “Coexistence Simulation Results for 5MHz E-UTRA -> UTRA FDD Uplink with

Revised Simulation Assumptions”, RAN4#42

[11] R4-070034, “Additional simulation results on 5 MHz LTE to WCDMA FDD UL co-existence

studies”, RAN4#42

[12] R4-070262, “Simulation results on 5 MHz LTE to WCDMA FDD UL co-existence studies with

revised simulation assumptions”, RAN4#42

[13] R4-070263, “Proposal on LTE A CLR requirements for UE”, RAN4#42

[14] R4-061288, “Downlink LTE 900 (Rural Macro) with Downlink GSM900 (Rural Macro) Co-

existence Simulation Results”, RAN4#41

[15] R4-070391, “LTE 900 - GSM 900 Downlink Coexistence”, RAN4#42bis

[16] R4-061304, “LTE 900 - GSM 900 Uplink Simulation Results”, RAN4#41

[17] R4-070390, “LTE 900 - GSM 900 Uplink Simulation Results”, RAN4#42bis

[18] R4-070392 “LTE-LTE Coexistence with asymmetrical bandwidth”, RAN4#42bis

[19] 3GPP TS 36.104, ”Base Station (BS) radio trans mission and reception”

[20] 3GPP TS 25.104, ”Base Station (BS) radio trans mission and reception (FDD)”

[21] 3GPP TS 36.141, ”Base Station (BS) conformance testing”

[22] Recommendation ITU-R SM.329-10, “Unwanted emissions in the spurious domain”

[23] “International Telecommunications Union Radio Regulations”, Edition 2004, Volume 1 – Articles,

ITU, December 2004.

[24] “Adjacent Band Compatibility between UMTS and Other Services in the 2 GHz Band”, ERC

Report 65, Menton, May 1999, revised in Helsinki, November 1999.

[25] “Title 47 of the Code of Federal Regulations (CFR)”, Federal Communications Commission.

[26] R4-070337, "Impact of second adjacent channel ACLR/ACS on ACIR" (Nokia Siemens

Networks).

[27] R4-070430, "UE A CS and BS ACLRs" (Fujitsu ).

[28] R4-070264, "Proposal on LTE ACLR requirements for Node B" (NTT DoCoMo).

[29] Recommendation ITU-R M.1580-1, “Generic unwanted emission characteristics of base stations

using the terrestrial radio interfaces of IMT-2000”.

[30] Report ITU-R M.2039, “Characteristics of terrestrial IMT-2000 systems for frequency

sharing/interference analyses”.

[31] E TSI EN 301 908-3 V2.2.1 (2003-10), “Electromagnetic compatibility and Radio spectrum

Matters (ERM); Base Stations (BS), Repeaters and User Equipment (UE) for IMT-2000 Third-

Generation cellular networks; Part 3: Harmonized EN for IMT-2000, CDMA Direct Spread

(UTRA FDD) (BS) covering essential requirements of article 3.2 of the R&TTE Directive”.

3 Definitions, symbols and abbreviations

3.1 Definitions

3.2 Symbols

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ACIR Adjacent Channel Interference Ratio

ACLR Adjacent Channel Leakage power Ratio

ACS Adjacent Channel Selectivity

AMC Adaptive Modulation and Coding

AWGN Additive White Gaussian Noise

BS Base Station

CDF Cumulative Distribution Function

DL Downlink

FDD Frequency Division Duplex

MC Monte-Carlo

MCL Minimum Coupling Loss

MCS Modulation and Coding Scheme

PC Power Control

PSD Power Spectral Density

RX Receiver

TDD Time Division Duplex

TX Transmitter

UE User Equipment

UL Uplink

4 General assumptions

The present document discusses system scenarios for E-UTRA operation primarily with respect to the radio transmission and reception including the RRM aspects. To develop the E-UTRA standard, all the relevant scenarios need to be considered for the various aspects of operation and the most critical cases identified. The process may then be iterated to arrive at final parameters that meet both service and implementation requirements.

The E-UTRA system is intended to be operated in the same frequency bands specified for UTRA. In order to limit the number of frequency bands to be simulated in the various simulation scenarios a mapping of frequency bands to two simulation frequencies (900 MHz and 2000 MHz) is applied. When using the macro cell propagation model of

TR25.942 [3], the frequency contributes to the path loss by 21*log10(f). The maximum path loss differen ce between the lowest/highest frequencies per E-UTRA frequency band and corresponding simulation frequency is shown in tables 4.1 and 4.2.

Table 4.1: Simulation frequencies for FDD mode E-UTRA frequency bands

Table 4.2: Simulation frequencies for TDD mode E-UTRA frequency bands

It can be observed that the difference of path loss between simulation frequency and operating frequency (except bands 7, 11 and 38) is in the worst case less than 0.8 dB for the downlink and less the 1,5 dB for the uplink. Hence the mapping of operating frequency to simulation frequency will provide valid results.

The validity of simulations performed at 2 GHz for the 2.6 GHz bands 7 and 38 was already analyzed in TR 25.810. Considering the expected higher antenna gain in the 2.6 GHz band the difference in path loss is in the order of 1 dB what is comparable to the other frequency bands.

4.1 Interference scenarios

This chapter should cover how the interference scenarios could occur e.g. BS-BS, UE-BS etc.

4.2 Antenna Models

This chapter contains the various antenna models for BS and UE

4.2.1 BS antennas

4.2.1.1 BS antenna radiation pattern

The BS antenna radiation pattern to be used for each sector in 3-sector cell sites is plotted in Figure 4.1. The pattern is identical to those defined in [1], [2] and [4]:

()23min 12, where 180180m dB A A θθθθ??

????=--≤≤ ???????

,

dB 3θ is the 3dB beam width wh ich corresponds to 65 degrees, and dB A m 20= is the maximum attenuation

Figure 4.1: Antenna Pattern for 3-Sector Cells

4.2.1.2 BS antenna heights and antenna gains for macro cells

Antenna heights and gains for macro cells are given in table 4.3.

Table 4.3: Antenna height and gain for Macro Cells

4.2.2 UE antennas

For UE antennas, a omni-directional radiation pattern with antenna gain 0dBi is assumed [2], [3], [4].

4.2.3 MIMO antenna Characteristics

xxxx

4.3 Cell definitions

This chapter contain the cell properties e.g. cell range, cell type (omni, sector), MIMO cell definitions etc.

4.4 Cell layouts

This chapter contains different cell layouts in form of e.g. single operator, multi-operator and multi layer cell layouts

(e.g. macro-micro etc).

4.4.1 Single operator cell layouts

4.4.1.1 Macro cellular deployment

Base stations with 3 sectors per site are placed on a hexagonal grid with distance of 3*R, where R is the cell radius (see Figure 4.2), with wrap around. The number of sites shall be equal to or higher than 19. [2] [4].

Figure 4.2: Single operator cell layout

4.4.2 Multi operator / Multi layer cell layouts

4.4.2.1 Uncoordinated macro cellular deployment

For uncoordinated network simulations, identical cell layouts for each network shall be applied, with worst case shift between sites. Second network?s sites are located at the first network?s cell edge, as shown in Figure 4.3 [2].

Figure 4.3: Multi operator cell layout - uncoordinated operation

4.4.2.2 Coordinated macro cellular deployment

For coordinated network simulations, co-location of sites is assumed; hence identical cell layouts for each network shall be applied [2].

Figure 4.4: Multi operator cell layout - coordinated operation

4.5 Propagation conditions and channel models

This chapter contains the definition of channel models, propagation conditions for various environments e.g. urban, suburban etc.

For each environment a propagation model is used to evaluate the propagation pathloss due to the distance. Propagation models are adopted from [3] and [4] and presented in the following clauses.

4.5.1 Received signal

An important parameter to be defined is the minimum coupling loss (MCL). MCL is the parameter describing the minimum loss in signal between BS and UE or UE and UE in the worst case and is defined as the minimum distance loss including antenna gains measured between antenna connectors. MCL values are adopted from [3] and [7] as follows:

Table 4.4: Minimum Coupling Losse s

With the above definition, the rece ived power in downlink and uplink can be expressed as [3]: RX_PWR = TX_PW R – Max (pathloss – G_TX – G_RX, MCL) where:

RX_PWR is the received signal power TX_PWR is the transmitted signal power G_TX is the transmitter antenna gain G_RX is the receiver antenna gain

4.5.2 Macro cell propagation model – Urban Area

Macro cell propagation model for urban area is applicable for scenarios in urban and suburban areas outside the high rise core where the buildings are of nearly uniform height [3]: 80dB (f)log

21(Dhb)log

18(R)log

Dhb)10

4(140L 10

10

10

3

+?+?-???-?=-

where:

R is the base station-UE separation in kilometres f is the carrier frequency in MHz

Dhb is the base station antenna height in metres, measured from the average rooftop level

Considering a carrier frequency of 900MHz and a base station antenna height of 15 metres above average rooftop level, the propagation model is given by the following formula [4]:

(R)37,6log 120,9L 10

+=

where:

R is the base station-UE separation in kilometres

Considering a carrier frequency of 2000MHz and a base station antenna height of 15 metres above average rooftop level, the propagation model is given by the following formula:

(R)37,6log 128,1L 10

+=

where:

R is the base station-UE separation in kilometres

After L is calculated, log-normally distributed shadowing (LogF) with standard deviation of 10dB should be added [2], [3]. A Shadowing correlation factor of 0.5 for the shadowing between sites (regardless aggressing or victim system) and of 1 between sectors of the same site shall be used The pathloss is given by the following formula:

LogF L acro Pathloss_m +=

NOTE 1: L shall in no circumstances be less than free space loss. This model is valid for NLOS case only and

describes worse case propagation NOTE 2: The pathloss model is valid for a range of Dhb from 0 to 50 metres.

NOTE 3: This model is designed mainly for distance from few hundred meters to kilometres. This model is not

very accurate for short distances. NOTE 4: The mean building height is equal to the sum of mobile antenna height (1,5m) and 10,5m Δh

m

= [5].

NOTE 5: Some downlink simulations in this TR were performed without shadowing correlation, however it was

reported this has a negligible impact on the simulation results.

4.5.3 Macro cell propagation model – Rural Area

For rural area, the Hata model was used in the work item UMTS900[2], this model can be reused:

L (R)= 69.55 +26.16log 10(f)–13.82log 10(Hb)+[44.9-6.55log 10(Hb)]log(R) – 4.78(Log 10 (f))2+18.33 log 10 (f) -40.94 where:

R is the base station-UE separation in kilometres f is the carrier frequency in MHz

Hb is the base station antenna height above ground in metres

Considering a carrier frequency of 900MHz and a base station antenna height of 45 meters above ground the propagation model is given by the following formula:

(R)34,1log 5,95L 10

+=

where:

R is the base station-UE separation in kilometres

After L is calculated, log-normally distributed shadowing (LogF) with standard deviation of 10dB should be added [2], [3]. A Shadowing correlation factor of 0.5 for the shadowing between sites (regardless aggressing or victim system) and of 1 between sectors of the same site shall be used. The pathloss is given by the following formula:

LogF L acro Pathloss_m +=

NOTE 1: L shall in no circumstances be less than free space loss. This model is valid for NLOS case only and

describes worse case propagation NOTE 2: This model is designed mainly for distance from few hundred meters to kilometres. This model is not

very accurate for short distances.

4.6 Base-station model

This chapter covers the fundamental BS properties e.g. output power, dynamic range, noise floor etc.

Reference UTRA FDD base station parameters are given in Table 4.5.

Table 4.5: UTRA FDD reference base station parameters(wcdma)

Reference base station parameters for UTRA 1.28Mcps TDD are given in Table 4.5a.

Table 4.5a: Reference base station for UTRA 1.28Mcps TDD(td-scdma)

Reference UTRA 3.84 Mcps TDD base station parameters are given in Table 4.5b.

Table 4.5b: Reference base station for UTRA 3.84Mcps TDD(td-cdma)

Reference E-UTRA FDD and E-UTRA TDD base station parameters are given in Table 4.6.

Table 4.6: E-UTRA FDD and E-UTRA TDD reference base station parameters

Reference base station parameters for E-UTRA TDD (LCR TDD frame structure based) are given in Table 4.6a.

Table 4.6a: Reference base station for E-UTRA TDD (LCR TDD frame structure based)(td-lte)

4.7 UE model

This chapter covers the fundamental UE properties e.g. output power, dynamic range, noise floor etc. Reference UTRA FDD parameters are given in Table 4.7.

Table 4.7: UTRA FDD reference UE parameters

for simulation alignment purpose, a Noise Figure of 9 dB will be used.

Reference UTRA 1.28 Mcps TDD parameters are given in Table 4.7a

Table 4.7a: Reference UE for UTRA 1.28 Mcps TDD

Reference UTRA 3.84 Mcps TDD UE parameters are given in Table 4.7b.

Table 4.7b: UTRA 3.84 Mcps TDD reference UE parameters

for simulation alignment purpose, a Noise Figure of 9 dB will be used.

Reference E-UTRA FDD and E-UTRA TDD UE parameters are given in Table 4.8.

Table 4.8: E-UTRA FDD and E-UTRA TDD reference UE parameters

However, for simulation alignment purpose, a Noise Figure of 9 dB will be used. Reference E-UTRA TDD UE (LCR TDD frame structure based) parameters are given in Table 4.8a.

Table 4.8a: Reference UE for EUTRA TDD (LCR TDD frame structure ba sed)

4.8 RRM models

This chapter contains models that are necessary to study the RRM aspects e.g.

4.8.1 Measurement models

xxxx

4.8.2 Modelling of the functions

xxxx

4.9 Link level simulation assumptions

This chapter covers Layer 1 aspects and assumptions (e.g. number of HA RQ retransmissions) etc.

4.10 System simulation assumptions

This chapter contains system simulation assumptions e.g. Eb/No values for different services, activity factor for voice, power control steps, performance measures (system throughput, grade of service), confidence interval etc.

4.10.1 System loading

xxxx

5 Methodology description

This chapter describes the methods used for various study items e.g. deterministic analysis for BS-BS interference, Monte-Carlo simulations and dynamic type of simulations for RRM.

5.1 Methodology for co-existence simulations

Simulations to investigate the mutual interference impact of E-UTRA, UTRA and GERAN are based on snapshots were users are randomly placed in a predefined deployment scenario (Monte-Carlo approach). Assumptions or E-UTRA in this chapter are based on the physical layer (OFDMA DL and SC-FDMA UL) as described in the E-UTRA study item report [4]. It must be noted that actual E-UTRA physical layer specification of frequency resource block is different regarding number of

sub-carriers per resource block (12 instead of 25 specified in [4]) and regarding the size of a resource block (180 kHz instead of 375 kHz in [4]). However, this has no impact on the results and conclusions of the present document.

5.1.1 Simulation assumptions for co-existence simulations

5.1.1.1 Scheduler

For initial E-UTRA coexistence simulations Round Robin scheduler shall be used.

5.1.1.2 Simulated services

When using Round Robin scheduler, full buffer traffic shall be simulated. For E-UTRA downlink, one frequency resource block for one user shall be used. The E-UTRA system shall be maximum loaded, i.e. 24 frequency resource blocks in 10 MHz bandwidth and 12 frequency resource blocks in 5 MHz bandwidth respectively. For E-UTRA uplink, the number of allocated frequency resource blocks for one user is 4 for 5 MHz bandwidth and 8 for 10 MHz bandwidth respectively.

For the 5 MHz TDD UTRA victim using 3.84 Mcps TDD, Enhanced Uplink providing data service shall be used where 1 UE shall occupy 1 Resource Unit (code x timeslot). Here the number of UE per timeslot is set to 3 UEs/timeslot.

Other services, e.g. constant bit rate services are FFS.

5.1.1.3 ACIR value and granularity

For downlink a common ACIR for all frequency resource blocks to calculate inter-system shall be used. Frequency resource block specific ACIR is FFS.

For uplink it is assumed that the ACIR is dominated by the UE ACLR. The ACLR model is described in table 5.1 and table 5.2

Table 5.1: ACLR model for 5MHz E-UTRA interferer and UTRA

victim, 4 RBs per UE

Table 5.2: ACLR model for E-UTRA interferer and 10MHz E-

UTRA victim

3GPP协议36.843

3GPP TR 36.843 V12.0.1 (2014-03) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on LTE Device to Device Proximity Services; Radio Aspects (Release 12) The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

(完整word版)3GPP协议中文版-001

前言 本通信标准参考性技术文件主要收集了与定义IMT-DS FDD(WCDMA)系统的目标和系统结构的基本文档相关的术语、定义和缩略语。本文基于 3GPP制订的Release-99(2000年9月份版本)技术规范,具体对应于TS 25.990 V3.0.0。 本参考性技术文件由信息产业部电信研究院提出。 本参考性技术文件由信息产业部电信研究院归口。 本参考性技术文件起草单位:信息产业部电信传输研究所 本参考性技术文件主要起草人:徐京皓徐菲卓天真续合元盛蕾吴伟 本参考性技术文件2001年1月首次发布。 本参考性技术文件委托无线通信标准研究组负责解释。

通信标准参考性技术文件 IMT-DS FDD(WCDMA)系统无线接口物理层技术规范:名语术语IMT-DS FDD(WCDMA) System Radio Interface Technical Specification: Vocabulary 1 范围 本通信标准参考性技术文件介绍了与定义IMT-DS FDD(WCDMA)系统的目标和系统结构的基本文档相关的术语,定义和缩略语。这篇文档也为以后的技术规范的工作提供了一个工具,以便于理解。在这篇文档中所给出的术语,定义和缩略语或者是从现在的文档(ETSI,ITU或其它)引入的,或者是在需要精确的词汇时新创造出来的。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而成为本文件的条文。本文件出版时,所示版本均为有效。所有标准都会被修订,使用本文件的各方应探讨使用下列标准最新版本的可能性。 3 与UTRA相关的术语和定义 A Acceptable Cell 可接受的小区:是指UE可以驻留并进行紧急呼叫的小区。它必须满足特定的条件。 Access Stratum; 接入层; Access Stratum SDU (Service Data Unit) 接入层SDU(业务数据单元):在核心网或UE的接入层SAP(业务接入点)上传送的数据单元。 Active mode 激活模式:“激活模式”是指UE处理呼叫时所处的状态。 Active Set 激活集:在UE和UTRAN接入点之间的一个特定的通信业务所同时涉及的无线链路的集合。 ALCAP ALCAP:用于建立和拆除传输承载的传输信令协议的一般性称谓。 Allowable PLMN 准入的PLMN:不在UE所禁止的PLMNs列表内的PLMN。 Available PLMN 可用的PLMN:指UE找到满足特定条件的小区所处的PLMN。 Average transmit power

3GPP协议中文版-003

目次 前言 ....................................................................................................................................................II 1 范围 (2) 2 引用标准 (2) 3 名语和缩略语 (2) 4 提供给高层的业务 (4) 4.1传输信道 (4) 4.1.1 专用传输信道 (4) 4.1.2 公共传输信道 (4) 4.2 指示符 (4) 5 物理信道和物理信号 (5) 5.1 物理信号 (5) 5.2 上行物理信道 (5) 5.2.1 专用上行物理信道 (5) 5.2.2 公共上行物理信道 (8) 5.3 下行物理信道 (12) 5.3.1 下行发射分集 (12) 5.3.2 专用下行物理信道 (13) 5.3.3 公共下行物理信道 (19) 6 物理信道的映射和关联 (30) 6.1传输信道到物理信道的映射 (30) 6.2 物理信道和物理信号的关联 (31) 7 物理信道之间的时序关系 (31) 7.1 概述 (31) 7.2 PICH/S-CCPCH定时关系 (32) 7.3 PRACH/AICH定时关系 (33) 7.4 PCPCH/AICH定时关系 (34) 7.5 DPCH/PDSCH定时关系 (34) 7.6 DPCCH/DPDCH定时关系 (35) 7.6.1 上行链路 (35) 7.6.2 下行链路 (35) 7.6.3 在UE的上行/下行定时 (35)

前言 本通信标准参考性技术文件主要用于IMT-DS FDD(WCDMA)系统的无线接口的物理层部分,它主要介绍了物理信道的特性以及传输信道到物理信道的映射。本文基于 3GPP制订的Release-99(2000年9月份版本)技术规范,具体对应于TS 25.211 V3.4.0。 本参考性技术文件由信息产业部电信研究院提出。 本参考性技术文件由信息产业部电信研究院归口。 本参考性技术文件起草单位:信息产业部电信传输研究所 本参考性技术文件主要起草人:徐京皓,徐菲,吴伟,张翔 本参考性技术文件2001年1月首次发布。 本参考性技术文件委托无线通信标准研究组负责解释。

最新LTE中文协议LTE_3GPP_36.213-860(中文版)

3GPP TS 36.213 V8.6.0 (2009-03) 3rd Generation Partnership Project; Technical Specification Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8) The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

1

3 4 Keywords UMTS, radio, layer 1 3GPP Postal address 3GPP support office address 650 Route des Lucioles – Sophia Antipolis Valbonne – France Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Internet https://www.sodocs.net/doc/534467780.html, Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. ? 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC). All rights reserved. UMTS? is a Trade Mark of ETSI registered for the benefit of its members 3GPP? is a Trade Mark of ETSI registered for the benefit of its Members an d of the 3GPP Organizational Partners LTE? is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM? and the GSM logo are registered and owned by the GSM Association

3GPP协议阅读指南

目录 第1章协议阅读指南2 1.1 协议的框架2 1.2 阅读协议的技巧2 1.2.1 UMTS与3GPP的关系2 1.2.2 GSM协议与3GPP协议的关系2 1.2.3 R99与R00、R4、R5的关系2 1.2.4 在R99中原来的GSM01~12系列的协议与3GPP协议之间的关系3 1.2.5 在REL4以后的版本中41~52系列的协议与3GPP协议之间的关系3 1.2.6 各协议系列的功能3 1.2.7 看协议的步骤4 1.2.8 注意协议版本号4 1.2.9 注意协议修改记录4 1.2.10 注意协议附录5 1.2.11 注意协议的类型5第2章协议查看实例6 2.1 2/3G互操作协议查看实例6第3章协议目录8 3.1 协议目录8

第1章协议阅读指南 1.1 协议的框架 在第三代移动通讯体系中,目前主要有三大阵营,即TD-SCDMA、 WCDMA、CDMA2000(其他一些小的阵营我们几乎可以不用关心,此处 不再提及。TD-SCDMA、WCDMA的协议是由3GPP标准化组织制定的, 而CDMA2000是由3GPP2标准化组织制定的,所以有时也用3GPP代指 TD-SCDMA、WCDMA,用3GPP2代指CDMA2000。 在第二代移动通讯体制中,也主要有两大阵营,即GSM与窄带 CDMA(IS-95)。由GSM向3G过渡是走的WCDMA技术路线,由 IS-95CDMA向3G过渡是走CDMA2000的路线。 1.2 阅读协议的技巧 读协议首先要抓住总体与重点,否则,任何一个人也无法阅读全部的协 议。对于我们来说,3GPP当然是所有协议的重点,与3GPP密切相关的 协议是次重点。 1.2.1 UMTS与3GPP的关系 UMTS是一个过时的术语,现在已经不再使用,因为UMTS的提法是在 3GPP成立以前由SMG(特别移动组)提出的,在3GPP成立以后将不再使 用。 1.2.2 GSM协议与3GPP协议的关系 GSM协议的最后一个完整版本是PHASE 2+的R1998。ETSI的SMG在 制定R1999时,3GPP成立,于是SMG被解散,R1999也被移交给3GPP, 由3GPP继续完成R99。所以R99是GSM与3G的衔接版本(R99已经是 3G)。 1.2.3 R99与R00、R4、R5的关系 在R99协议成形的初期,将R99看作是GSM向3G过渡的版本,存在电 路交换域的业务;将R00作为全IP网络版本的代名词。在2000年9月 以后的版本中,就不再使用R00这个术语,而改用Release4、Release5 来替代,也就意味着,在Rel5以后的版本都是全IP的网络结构。

标准协议之3GPP标准协议

标准协议之3GPP标准协议 All 3G and GSM specifications have a 3GPP specification number consisting of 4 or 5 digits. (e.g. 09.02 or 29.002). The first two digits define the series as listed in the table below. They are followed by 2 further digits for the 01 to 13 series or 3 further digits for the 21 to 55 series. The term "3G" means a 3GPP system using a UTRAN radio access network; the term "GSM" means a 3GPP system using a GERAN radio access network. (Thus "GSM" includes GPRS and EDGE features.) A specification in the 21 to 35 series may apply either to 3G only or to GSM and 3G. A clue lies in the third digit, where a "0" indicates that it applies to both systems. For example, 29.002 applies to 3G and GSM systems whereas 25.101 and 25.201 apply only to 3G. Most specs in all other series apply only to GSM systems. However, as the spec numbering space has been used up, this guide is more frequently broken, and it is necessary to examine the information page for each spec (see the table below) or to check the lists in 01.01 / 41.101 (GSM) and 21.101 (3G) for the definitive specification sets for each system and each Release. 所有3G和GSM规范具有一个由4或5位数字组成的3GPP编号。(例如:09.02或29.002)。前两位数字对应下表所列的系列。接着的两位数字对应01-13系列,或3位数字对应21-55系列。词"3G"意味着采用UTRAN无线接入网的3GPP系统,词"GSM" 意味着采用GERAN无线接入网的3GPP系统(因而,"GSM"包括GPRS和EDGE 性能)。

3GPP协议编号-标准协议之3GPP标准协议

标准协议之3GPP标准协议 所有3G和GSM规范具有一个由4或5位数字组成的3GPP编号。(例如:09.02或29.002)。前两位数字对应下表所列的系列。接着的两位数字对应01-13系列,或3位数字对应21-55系列。词"3G"意味着采用UTRAN无线接入网 的3GPP系统,词"GSM" 意味着采用GERAN无线接入网 的3GPP系统(因而,"GSM"包括GPRS和EDGE性能)。 21-35系列规范只用于3G或既用于GSM也用 于3G。第三位数字为"0"表示用于两个系统,例如29.002用于3G和GSM系统,而25.101和25.201仅用于3G。其它系列的大多数规范仅用于GSM系统。然而当规范编号用完后,须查看每个规范的信息页面(见下表)或查看01.01 / 41.101 (GSM) 和21.101 (3G) 中的目录。

The 3GPP Specifications are stored on the file server as zipped MS-Word files. The filenames have the following structure: SM[-P[-Q]]-V.zip where the character fields have the following significance ... S = series number - 2 characters (see the table above) M = mantissa (the part of the spec number after the series number) - 2 or 3 characters (see above) P = optional part number - 1 or 2 digits if present Q = optional sub-part number - 1 or 2 digits if present V = version number, without separating dots - 3 digits

3gpp协议

3GPP TR 36.942 V9.0.1 (2010-04) Technical Report 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 9) The present docu ment has been developed within the 3rd Generation Partnership Project (3G PP TM ) and may be fu rther elaborated for the purposes of 3GPP. The present d ocument has not been subject to any approval process by the 3G PP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3gpp,ts协议名称对照

竭诚为您提供优质文档/双击可除3gpp,ts协议名称对照 篇一:3gpp协议编号——标准协议之3gpp标准协议 标准协议之3gpp标准协议 所有3g和gsm规范具有一个由4或5位数字组成的3gpp 编号。 (例如:09.02或29.002)。前两位数字对应下表所列的系列。接着的两位数字对应01-13系列,或3位数字对应21-55系列。词"3g"意味着采用utRan无线接入网的3gpp系统,词"gsm"意味着采用geRan无线接入网的3gpp系统(因而,"gsm"包括gpRs和edge性能)。 21-35系列规范只用于3g或既用于gsm也用于3g。第三位数字 为"0"表示用于两个系统,例如29.002用于3g和gsm 系统,而25.101和25.201仅用于3g。其它系列的大多数规范仅用于gsm系统。然而当规范编号用完后,须查看每个规范的信息页面(见下表)或查看01.01/41.101(gsm)和21.101(3g)中的目录。

the3gppspecificationsarestoredonthefileserveraszipp edms-wordfiles.thefilenameshavethefollowingstructur e:sm[-p[-q]]-V.zip wherethecharacterfieldshavethefollowingsignificance ...s=seriesnumber-2characters(seethetableabove) m=mantissa(thepartofthespecnumberaftertheseriesnumb er)-2or3characters(seeabove) p=optionalpartnumber-1or2digitsifpresentq=optionals ub-partnumber-1or2digitsifpresentV=versionnumber,wi thoutseparatingdots-3digitssoforexample: 21900-320.zipis3gpptR21.900version3.2.00408-6g0.zip is3gppts04.08version6.16.0 32111-4-410is3gppts32.111part4version4.1.0 29998-04-1-100is3gppts29.998part4sub-part1version1. 0.0 3gpp规范采用woRd文件的zip压缩格式保存,文件名结构如下:sm[-p[-q]]-V.zip

3GPP协议阅读指南

1协议阅读指南 1.1协议的框架 如下图所示,在第三代移动通讯体系中,目前主要有两大阵营,即WCDMA与CDMA2000(其他一些小的阵营我们几乎可以不用关心,此处不再提及。另,TD-SCDMA可以认为是WCDMA阵营中的一种无线技术)。WCDMA的协议是由3GPP标准化组织制定的,而CDMA2000是由3GPP2标准化组织制定的,所以有时也用3GPP代指WCDMA,用3GPP2代指CDMA2000。 在第二代移动通讯体制中,也主要有两大阵营,即GSM与窄带CDMA(IS-95)。由GSM向3G过渡是走的WCDMA技术路线,由IS-95CDMA向3G过渡是走CDMA2000的路线。 我们这个项目将要做的是WCDMA的基站(Node B),所以与我们直接相关的协议是3GPP的协议。3GPP的协议分为3个版本,即R99与R4、R5,R99是第一阶段的版本,计划于2000年6月定型(FROZEN),以后只作一些微小的修改,但实际上到目前为止还没有完全定型。2001年3月版的R99可以认为已经大部分定型。而R4目前正处在标准化的阶段,2001年3月已经有一个初步定型的规范。我们要实现的就是R99(下 图中加粗黑框部分)。 R99目前有5个版本,即2000年3月份版本、6月份版本、9月份版本、12月份版本和2001年3月份版本,我们应该阅读的是9月份的版本(3GPP2000.9),3月份版本与6月份版本可以作为参考。大家阅读协议时可以看到,3月份与6月份的版本是从21系列开始的,9月份是从01系列开始的,为什么会这样呢? 因为3GPP的协议(特别是CN侧协议)是在GSM与GPRS基础上发展的,3GPP的协议引用了很多GSM 的协议,在9月份的版本中,3GPP将部分引用到的GSM的协议转化为3GPP的协议,所以在9月份的目录中多了01~12系列的协议(GSM协议是从01~12)。大家可以认为,“真正的”3GPP的协议还是从21系列开始的(当然,GSM的01~12系列也是3GPP协议的一部分)。 1.2阅读协议的技巧 读协议首先要抓住总体与重点,否则,任何一个人也无法阅读全部的协议。对于我们来说,3GPP的R99当然是所有协议的重点,与3GPP密切相关的协议是次重点。 1.2.1UMTS与3GPP的关系 UMTS是一个过时的术语,现在已经不再使用,因为UMTS的提法是在3GPP成立以前由SMG(特别移动组)提出的,在3GPP成立以后将不再使用。 1.2.2GSM协议与3GPP协议的关系 GSM协议的最后一个完整版本是PHASE 2+的R1998。ETSI的SMG在制定R1999时,3GPP成立,于是SMG被解散,R1999也被移交给3GPP,由3GPP继续完成R99。所以R99是GSM与3G的衔接版本(R99已经是3G)。

3GPP协议导读

3GPP协议导读 项目名称 文档编号 版本号V0.0.2 作者徐莉 版权所有 大唐移动通信设备有限公司 本资料及其包含的所有内容为大唐移动通信设备有限公司(大唐移动)所有,受中国法律及适用之国际公约中有关著作权法律的保护。未经大唐移动书面授权,任何人不得以任何形式复制、传播、散布、改动或以其它方式使用本资料的部分或全部内容,违者将被依法追究责任。 文档更新记录

目录 1引言 (5) 1.1 编写目的 (5) 1.2 目的 (5) 1.3 预期读者和阅读建议 (5) 1.4 文档约定 (5) 1.5 参考资料 (5) 1.6 缩写术语 (5) 2文档的结构 (6) 33GPP协议概述 (6) 3.1 3GPP及其协议版本 (6) 3.2 3GPP协议的标识 (6) 3.3 一个3GPP协议的结构 (9) 4与CN相关的3GPP协议介绍 (10) 4.1 21S ERIES (10) 4.2 22S ERIES (10) 4.3 23S ERIES (11) 4.4 24S ERIES (13) 4.5 25S ERIES (14) 4.6 26S ERIES (15) 4.7 29S ERIES (16) 4.8 32S ERIES (19) 4.9 33S ERIES (27) 4.10 35S ERIES (28) 4.11 41S ERIES (29) 4.12 42S ERIES (29) 4.13 43S ERIES (30) 4.14 44S ERIES (31) 4.15 48S ERIES (31) 4.16 49S ERIES (33) 4.17 52S ERIES (33) 4.18 补充业务相关协议 (33) 4.18.1 增强的多级优先和占先(eMLPP)业务 (34) 4.18.2 线路标识类 (34) 4.18.3 呼叫前转类 (35) 4.18.4 呼叫完成类 (35) 4.18.5 多方类 (36) 4.18.6 CUG类 (36) 4.18.7 计费通知类 (36) 4.18.8 呼叫闭锁类 (36) 4.18.9 CD (37) 4.18.10 UUS (37)

3GPP 24008中文版协议

1. 简述 该文档描述了第三代移动通信系统和数字小区通信系统内用在无线接口的核心网协议流程。 主要描述了无线接口上的流程(参考接口Um或Uu,参考跑3GPP 24.002或3GPP 23.002)比如呼叫控制CC, 移动性管理MM,和会话管理SM。 文中每当提及"further study"或"FS"或"FFS"的地方表示本文不会对相应的内容作标准阐述。 这些流程都是按照无线接口的控制信道上交换的信令定义的。控制信道在3GPP 44.003和3GPP 25.301中描述。 该协议的功能性描述和流程,以及其他层和实体间的交互将在3GPP 24.007中描述。 1.3 层3流程的结构 可以用“积木”法来描述层3的流程。 基础的积木是三个子层的协议控制实体提供的“基本流程”,这些子层是无线资源管理RRM,移动性管理MM和连接管理CM。 1.5 在A/Gb模式下逻辑信道的使用 逻辑信道在3GPP 45.002中定义。下述的这些控制信道都是承载信令信息或指定类型的用户分组数据: 1) 广播控制信道BCCH:下行,用来广播小区独有信息 2) 同步信道SCH:下行,用来广播同步信息和BSS标识信息 3) 寻呼信道PCH:下行,用来发送寻呼给MS 4) 随机接入信道RACH:上行,用来请求一条专用控制信道DCCH 5) 接入允许信道AGCH:下行,用来分配一条专用控制信道DCCH 6) 独立专用控制信道SDCCH:双向 7) 快速辅助控制信道FACCH:双向,和一条业务信道TCH关联 8) 慢速辅助控制信道SACCH:双向,和一条SDCCH或者TCH关联 9) 小区广播信道CBCH:下行,用作非点对点短消息传输 10) 指示信道NCH:下行,用来通知用户VBS呼叫或VGCS呼叫 信令层2定义了两个服务接入点,以SAPI划分(详见3GPP 44.006) 1) SAPI0:支持包括用户消息的信令信息的传输 2) SAPI3:支持用户短消息的传输 层3根据每条消息进行SAP的选择,以及逻辑控制信道的选择,L2操作模式(确认模式AM,非确认模式UM或随机接入)的选择。 1.6 控制流程概览 1.6.1 流程列表 以下是本文涵盖的流程列表: a) 第四章描述的移动性管理基础流程 移动性管理公共流程(4.3节):

3GPP协议_25463-670 AISG2.0

3GPP TS 25.463 V6.7.0 (2007-06) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Iuant Interface: Remote Electrical Tilting (RET) antennas Application Part (RETAP) signalling (Release 6) The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

lte,3gpp,物理层协议

竭诚为您提供优质文档/双击可除 lte,3gpp,物理层协议 篇一:lte协议对照表 规范编号射频系列规范ts36.101 规范名称内容更新时间 ue无线发送和接收描述Fdd和 tdde-08-oct-20xxutRaue的最小射频(RF)特性 ts36.104bs无线发送与接收描述e-utRabs在成对频谱 和非成对频谱的最小RF特性 30-sep-20xx ts36.106Fdd直放站无线发送与接收 描述Fdd直放站的射频要求和基本测试条件 30-sep-20xx ts36.113bs与直放站的电磁兼容 包含对e-utRa基站、直放站和补充设备的电磁兼容(emc)评估 01-oct-20xx ts36.124移动终端和辅助设备的电磁兼容的要求 建立了对于e-utRa终端和附属设备的主要emc要求,

保证不对其他设备产生电磁干扰,并保证自身对电磁干扰有一定的免疫性。定义了emc测试方法、最小性能要求等01-oct-20xx ts36.133支持无线资源管理的要求 描述支持Fdd和td08-oct-20xxde-utRa的无线资源管理需求,包括对e-utRan和ue测量的要求,以及针对延迟和反馈特性的点对点动态性和互动的要求 ts36.141bs一致性测试描述对Fdd/tdde-utRa基站的射频测试方法和一致性要求 30-sep-20xx ts36.143Fdd直放站一致性测试 描述了Fdd直放站的一致性规范,基于36.106中定义的核心要求和基本方法,对详细的测试方法、过程、环境和一致性要求等进行详细说明 01-oct-20xx ts36.171支持辅助全球导航卫星系统(a-gnss)的要求 描述了基于ue和ue辅助Fdd或tdd的辅助全球导航卫星系统终端的最低性能 21-jun-20xx ts36.307ue支持零散频段的要求 定义了终端支持与版本无关频段时所要满足的要求。 04-oct-20xx

3GPP LTE协议

3GPP LTE无线接口协议及体系结构 2 LTE无线接入网体系结构 3GPP在考虑LTE技术时,演进型接入网EUTRAN(Evolved Universal Terrestrial Radio Access Network)采用只有演进型Node B(eNB)构成的单层结构,以便简化网络和减少时延,这种结构实际上已经趋近于典型的IP宽带网结构,其无线接入网体系构架如图1所示。 图1 E-UTRAN 体系结构 每个eNB都具有一系列功能和相应物理接口,其中包括演进型UTRA用户面(U-plane)(PDCP/RLC/MAC/PHY)和控制面(C-plane)(RRC)协议,多个eNBs通过X2接口相互连接。就外部连接而言,eNB通过S1接口连接到演进型分组核心EPC(Evolved Pocket Core),具体来说就是通过S1-MME接口连接到移动性管理实体MME(Mobility Management Entity)和通过S1-U接口连接到SAE网关,其中S1接口支持在eNBs和MME/SAE网关之间多对多的链接。 如图2所示,S1接口是EUTRAN和EPC之间的接口,该接口包含两部分:控制面和用户面。控制面接口S1-MME 是eNB和MME之间的接口,用户面接口S1-U是eNB和SAE网关之间的接口,它在eNB和SAE网关之间提供了非保证的用户面分组数据单元PDU(Packet Data Unit)传送。 图2 3GPP LTE无线接口协议结构 S1接口具有以下主要功能: ◆SAE业务承载管理功能,包括承载业务的设置和释放等; ◆用户设备在激活状态下的移动性管理功能,包括LTE内部的小区切换以及和 3GPP内其它无线接入技

3gpp,空口协议

竭诚为您提供优质文档/双击可除 3gpp,空口协议 篇一:lte全套协议汇总 lte全套协议汇总(收藏) 篇二:embms空口协议介绍 讨论范围 1、本文只讨论空口部分协议; 2、协议中有singlecell的mbms,以及multicell协作的mbmsFn,第二种要求空口同频且 帧同步,本文只讨论第二种情况。第二种情况的cell 可以是混合小区(mbms业务和单播业务同时存在),也在本文讨论范围。 3、ue的mbms业务建立与删除流程不在本文讨论范围。 基本概念 信道 mbms在mac层和物理层都用专门对应的信道传输信令与业务(数据)。mac层的mcch和mtch分别用来传输多播信令与多播业务。 物理层的“传输信道”中mch与“物理信道”pmch也专

门用来mbms传输,其中mac层的mcch与mtch都对应到物 理层的(p)mch信道上。 另外mac层的bcch(sib13)用来广播mcch的配置,mac 层的sib2也用来定义mch信道物理层信道风格。 下图是物理层传输信道与物理信道的映射图。对于多播,mch和pmch可以认为没有区别,长用(p)mch表示:下图是mac层的信道与物理层传输信道的映射,可见mcch和mtch都映射到(p)mch上。 信道关系 mac层的mcch用来传输多播相关的信令,包括pmch配置,下行计数消息。mac层的mtch用来传输多播业务数据。 mac层的bcch中sib2用来规定pmch的子帧风格,sib13用来配置mcch对应的(p)mch。每个mtch对应一个(p)mch,和一个多播业务相对应,也和一个多播session相对应。每个多播域(mbmsarea)都和一个mcch唯一对应,每个mcch 又和多个mtch向对应。也就是说同一个area的所有mtch 公用一个mcch。而mcch可以认为除了下面mtch对应的pmch 以为,还有自己mcch对应的一个pmch。 名词解释 mbsFnsynchronizationarea mbmsFn就是mbms单频网络。意思是所有网络频率相同,且是帧对齐的,pmch子帧分配风格也是一样的,同一时间发

相关主题