搜档网
当前位置:搜档网 › 高效苯酚降解菌的分离及降解性能的研究

高效苯酚降解菌的分离及降解性能的研究

高效苯酚降解菌的分离及降解性能的研究
高效苯酚降解菌的分离及降解性能的研究

高效苯酚降解菌的分离及降解性能的研究

引言

石油、化工、煤气、焦化及酚类等生产厂排放的废水当中含有大量的苯酚[1]。未经净化的含酚废水可导致水源被污染,致使鱼类死亡,危害农作物,最终威胁人类的健康。许多国家将苯酚列为重要的污染物之一。目前,国内外处理含酚废水的方法主要有物理法、化学法、微生物法及各种结合法[2]。其中微生物法主要利用微生物的代谢活动去除废水中的有毒物,处理方法无2次污染且安全、经济。目前,已鉴定具有降解苯酚能力的微生物主要有假单胞菌(Pseudonomonas.sp)[3]、芽孢杆菌(Bacillus.sp)[4]、酵母菌(Yeast trichosporon)[5]、根瘤菌(Rhizobia)[6]、醋酸钙不动杆菌(A. calcoaceticus)[7]等,降酚菌株多存在于酚类污染物企业排放的废水、污泥和被废水污染的土壤中[8]。本课题拟从被苯酚废水污染的污泥中进行菌株筛选,得到耐酚菌后在以苯酚为唯一碳源的无机盐培养上筛选降酚菌株,进一步测定苯酚降解的影响因素。对特定菌株降解含酚废水的应用价值进行研究。

1 实验材料和方法

1.1 菌株来源

采集原黑龙江省佳木斯东郊黑龙农药化工集团废弃排污口

处污泥进行菌株筛选。

1.2 培养基

基础培养基:NaCl 5.0g/L,蛋白胨10g/L,琼脂15~20g/L,酵母浸膏5.0g/L,调节pH为7.0。

以苯酚为唯一碳源的无机盐培养基:CaCl2 0.1 g/L ,FeSO4.7H2O 0.01 g/L,K2HPO4 0.5g/L,MnSO4.7H2O 0.05 g/L,NaCl 0.2 g/L,KH2PO4 0.5g/L,MgSO4.H2O 0.01 g/L,NH4NO3 1.0 g/L苯酚按实验需要量添加,调节pH为7.0 [8]。

富集培养基:葡萄糖10.0g/L,营养琼脂33.0g/L,酵母浸粉10.0g/L,调节pH为7.5。

1.3 研究内容与方法

1.3.1 菌株和的驯化和分离

在超净工作台中,将10mL含0.1g/L苯酚的基础培养基倒入培养皿,取10 g污泥加90mL蒸馏水搅拌15min,静置5min后取上层清液为菌原液[8]。取1mL菌原液加入无菌水中分别制成100、10- 1、10- 2、10- 3、10-4等梯度的菌液,然后分别从各菌液试管中取1mL用涂布法接种于基础培养基平板上。在pH 值为7、25℃情况下培养24~48h。挑取单一菌落于富集培养基平板上划线、扩繁。编号,将平板置于25℃的恒温培养箱中培养24~48h后放于4℃冰箱保存。依据革兰氏染色进行微生物鉴定。

1.3.2 降酚菌的筛选

将OD(吸光度)为600的单一菌株,按20%(体积分数)的接种量接入无机盐培养基中,筛选同一时间内对苯酚降解能力最强的作为优势菌株。

1.3.3 培养温度对菌株降酚能力的影响

在pH值为7时,蘸取适量的菌液涂布培养与生化培养箱中调节温度分别为20℃、25℃、30℃、35℃、40℃。24h后测定苯酚浓度计算苯酚降解率。

1.3.4 培养pH值对菌株降酚能力的影响

将菌液以20%的量接种于苯酚浓度为1000mg/L的无机盐培养基中,培养条件为28℃、270 r/min,调节pH值为5.0、6.0、7.0、8.0和9.0,研究pH值对菌株降酚能力的影响。24h后测定苯酚浓度并计算苯酚降解率。

1.3.5 底物浓度对菌株降酚能力的影响

将菌液以20%的量分别接种于苯酚浓度为0.1、0.5、1.0、1.5、2.2g/L的富集培养基中,培养条件为270 r/min、28℃、pH值7,比较菌株在苯酚浓度不同时对苯酚降解率的影响,24 h 后测定苯酚浓度并计算苯酚降解率[9]。

1.3.6 接种量对菌株降酚能力的影响

设置菌株接种量分别为5%、10%、15%、20%、25%、30%,菌株培养条件为pH值为7、270r/min、28℃、底物浓度为1000mg/L、装液量50mL,24h后测定苯酚浓度并计算苯酚降解率。

1.4 分析测定方法

分析温度、接种量、pH值及底物浓度等因素对该苯酚降解菌降解性能的影响。采用4-氨基安替吡林分光光度法测量苯酚浓度。苯酚的降解率由式( 1)计算[10]。

降解率( %) = (1-处理后体系中苯酚浓度/体系中苯酚浓度)×100% (1)

2 结果与讨论

2.1 降解菌的初步鉴定

对得到苯酚降解菌株进行初步鉴定,并分别命名为BF-1、BF-2、BF-3、BF-4、BF-5、BF-6,其中BF-2菌株生长速度最快在培养基上直径达到89.1mm(平板直径90mm),BF-4菌株生长速度最慢在培养基上直径为56.4mm。镜检为革兰氏阴性菌,单个细胞呈杆状,细胞单个或数个连接。(见表1)。 2.2 温度对苯酚降解菌降解性能的影响

不同温度下苯酚降解菌的降解率见图1。比较不同温度下菌株的降解率,可以发现菌株在温度在25~40℃时,随着温度的升高,苯酚降解率逐渐降低。在25℃时6株菌株的苯酚降解效果均达到最佳。

其中,BF-2的苯酚降解率最高,达到89.7%,BF-4的苯酚降解率最低,为65.5%。在培养温度为30~40℃时,菌株的降解能力逐渐减弱,40℃时BF-2的降解率降为57.6%,此时BF-1的苯酚降解率最低,为49.1。根据数据分析得出:菌株最佳苯酚降解温度为25℃。

2.3 pH值对苯酚降解菌降解性能的影响

不同pH值下苯酚降解菌的降解率见图2,培养48h,仅BF-6在pH值为8.0时苯酚降解效率达到最高,为71.4%,其余菌株均在pH值为7.0时对苯酚的降解率达到最大,此时,BF-2的降解效果最好,苯酚降解率达78.0%;BF-4的降解效果最差,苯酚降解率为58.0%。在pH值为5.0和9.0时由于酸性和碱性过强导致酶蛋白变性从而失活,使细菌生长迟缓,降酚能力减弱。由此可见中性或弱碱性环境更有利于苯酚降解菌对苯酚的降解。根据实验数据分析得出:苯酚降解菌最适降解pH值为7.0或偏碱性。

2.4 底物浓度对苯酚降解菌降解性能的影响

不同底物浓度在降解24h后苯酚降解菌的降解率见图3,在苯酚浓度为100~2200mg/L时,BF-2的降解效果是6株菌株中最好的。BF-2在苯酚浓度为100mg/L时苯酚降解率高达93.3%;此时,BF-4的苯酚降解率最低,为67.5%。在苯酚浓度为2200mg/L 时,BF-2对苯酚的降解率降至39.6%;此时,BF-4的降解率仅为15.2%。根据实验数据分析得出:随着苯酚浓度的升高,苯酚降解率逐渐降低。

2.5 接种量对苯酚降解菌降解性能的影响

接种量对苯酚降解率的影响见图4。接种量在5%~20%时,菌株对苯酚的降解能力随接种量的增加而逐渐增大。在接种量等于20%时,6株菌株对苯酚的降解率均在此时达到最大。其中,

BF-2的降解效果最佳,降解率为91.5%;BF-3的降解效果最差,降解率为67.7%。当接种量为20%~30%时,菌株对苯酚的降解率逐渐下降。以上结果说明,过多的增加投菌量不但会降低降解速率,且造成资源浪费,而适当增加投菌量,有利于快速去除水体中的苯酚,即应该按科学比例投加苯酚降解菌。

3 结论

从原黑龙化工厂废弃排污口处采集污泥,分离、筛选出以苯酚为唯一碳源的高效降解菌株,经研究菌株对不同的pH值、温度、苯酚浓度、接种量的适应能力。得出以下结论:降酚菌可以将100mg/L及以下的苯酚高效降解,在温度为25℃、pH为中性或弱碱性、接种量为20%的条件下对苯酚的去除效率最高,在苯酚浓度达至1200mg/L时仍有一定的降解效果。考虑各种环境因素,运用到实际中应充分考虑实际情况,进一步提高含酚废水的处理效率,充分发挥高效降酚菌在解决实际问题中的作用。因此在苯酚降解菌株的筛选中,不仅需要具有高产能力的菌株,更需要能够在短时间中达到最大降解率的菌株。即对于筛选出的高效耐酚菌株还要进一步的探究,以便缩短达到最大降解率所需的时间和提高降酚菌的活力。

参考文献

[1]钱莹莹.钛基氧化物电极电催化氧化含酚废水的研究[D].上海师范大学,2014.

[2]樊瑜.耐高浓度苯酚菌株的筛选及其降解特性研究[D].

西安建筑科技大学,2012.

[3]朱艳霞.太湖入水口底泥微生物宏基因组及聚磷菌多样性研究[D].苏州科技学院,2012.

[4]叶长明,杨艳琴,任屹罡,等.高效秸秆降解菌株的分离与选育[J].河南农业科学,2012,41(8):89-92.

[5]刘姗姗,刘永军,黎兵.固定化活细胞苯酚生物降解特性研究[J].水处理技术,2012,38(9):30-33.

[6]刘国正,何义亮.焦化废水的MBR处理工艺[J].净水技术, 2013,32(1):34-37.

[7]雷湘华,周鑫钰,夏花,等.一株朝鲜蓟内生菌降解苯酚初步研究[J].农学学报,2013,3(7):22-25.

[8]张雯,苏静静,曹丽琴.苯酚降解菌的筛选及其降解性能研究[J].环境科学与管理,2013,38(2):89-94.

[9]赵雪梅.降解苯酚的微生物菌种筛选研究[J].安徽农业科学, 2012,40(3):1677-1678.

[10]于秀娟,高铭晶.MnOx/AC的制备及电催化氧化降解苯酚[J].材料科学与工程学报,2011,29(6):864-868.

实验一 苯酚降解菌的分离及降解性测定

实验一苯酚降解菌的分离及降解性测定 实验原理:在污染环境中,大部分微生物由于受到毒害而死亡,少数微生物具有较强的降解能力或通过诱变改变其基因型或诱导产生某些酶而能在污染的环境中存活,成为有机污染物的高效降解菌或耐性菌株。 从污染环境中取样,通过在选择性培养基上培养,可筛选出目的性微生物。本实验取青年湖水样作为菌种的来源,在以苯酚为唯一碳源的无机盐培养基进行培养,分离苯酚降解菌。实验步骤: 1. 从污染地区取样品(污水,污泥或受污染的土壤)。 2. 配制无碳源的无机盐培养基,加入苯酚储备液,使培养基中苯酚浓度达100 mg/L。 121℃灭菌20 min。 3. 吸取1 ml活性污泥,加入灭菌培养基,同时做空白对照,28℃恒温摇床培养24 h(160 rmp/min). 4. 测定苯酚降解率。 苯酚降解率的测定方法: a.标准曲线的绘制分别吸取0、1、2、3、4、5mL 酚标准溶液(100 mg/L) 于50mL容量瓶中,加蒸馏水稀释成20 mL。加入2 mL pH9.8缓冲溶液,4 mL 4%4-氨基安替比林溶液,摇匀后加入4 mL 8%铁氰化钾溶液,显色10min 后,加蒸馏水稀释至刻度。用722型分光光度计460nm波长处比色测定。 b.以不加酚的试剂作空白对照,以浓度为横坐标,以光密度为纵坐标绘制标准 曲线。 c.培养液中苯酚降解率的测定吸取培养液2mL于50mL容量瓶中,加蒸馏水 稀释成20 mL。加入2 mL pH9.8缓冲溶液,4 mL 4%4-氨基安替比林溶液, 摇匀后加入4 mL 8%铁氰化钾溶液,显色10min后,加蒸馏水稀释至刻度。 用722型分光光度计460 nm波长处比色测定。 d.根据标准曲线求出苯酚含量以分解苯酚的百分数表示酚分解作用强弱。

苯酚降解菌的筛选、鉴定及其降解特性的研究

上海师范大学 硕士学位论文 苯酚降解菌的筛选、鉴定及其降解特性的研究 姓名:何小丽 申请学位级别:硕士 专业:微生物学 指导教师:肖明 20090501

上海师范大学硕士学位论文摘要论文题目:苯酚降解菌的筛选、鉴定及其降解特性的研究 学校专业:微生物学 学位申请人:何小丽 指导教师:肖明 摘要 酚类化合物为细胞原浆毒物,属高毒性物质。这类物质来源广泛,通常污染水源,毒死鱼虾,危害农作物,并严重威胁人类的健康。含酚有机物的毒性还在于其只能被少数的微生物分解。从自然界中筛选分离出能够降解特定污染物的高效菌种,有针对性的投加到已有的污水处理系统中的生物强化技术,能够快速提供大量具有特殊作用的微生物,在有毒有害污染物治理中显示出巨大的潜力。 1、本研究从胜利油田河口采油厂的飞雁滩油田土壤样品中分离得到10株能够利用并降解苯酚的菌株P1-P4、P7、P9-P13。该10株苯酚降解菌能够在以苯酚为唯一碳源和能源的培养基上生长,经16S rDNA分子鉴定和生理生化检测,该10株降酚菌分别被鉴定到属或种。其中降酚菌株P1、P3和P4这3株菌株分别属于劳尔氏菌属(Ralstonia)、贪噬菌属(Variovorax)和节杆菌属(Arthrobacter)里的种。其它7株降酚菌株P 2、P7、P9-P13都属于假单胞菌属(Pseudomonas)里的种。这4个属里的细菌在国内外都已被报道有降解苯酚的特性,其中有关假单胞菌降解环境有机物的报道较多。 2、培养液中的苯酚含量通过4-氨基安替比啉分光光度法测定,通过苯酚降解效率的比较,菌株P2降解苯酚的能力较其它9株菌株要强。于是将菌株P2作为本研究中进一步研究的对象,研究了不同的环境条件下该菌株降解苯酚和菌体生长的情况。 3、通过苯酚羟化酶特异性引物的设计,从菌株P2扩增出苯酚羟化酶大亚基基因,该基因片段编码对苯酚有催化活性的多肽,催化苯酚代谢的第一步反应;表明菌株P2能降解苯酚是由于细胞具有降解苯酚的遗传基础。 I

苯酚降解菌的分离和鉴定

目录 目录 (1) 摘要 (2) Abstract (3) 第一章绪论 (4) 1.1 苯酚降解菌的定义及分类 (4) 1.2苯酚降解菌的性质及其用途 (4) 1.3苯酚降解的研究现状 (5) 1.4苯酚降解菌生产菌的筛选 (6) 1.5本课题的研究思路及意义 (6) 第二章材料与方法 (7) 2.1试验材料 (7) 2.2试验方法 (8) 2.2.2苯酚降解菌的驯化 (8) 2.2.3菌种在不同条件下的降解能力 (9) 2.2.4最优菌种的鉴定 (9) 3.1苯酚降解菌筛选结果及性状初步研究 (11) 3.11筛选结果 (11) 3.1.1.1初步筛选的结果 (11) 3.1.1.2 菌种驯化中的结果 (11) 3.1.2 H-1菌株的性状初步结果 (13) 3.2 H-1菌株分类鉴定结果 (13) 第四章结论 (14) 4.1菌种的筛选结果 (14) 4.2菌种的鉴定 (14) 参考文献 (15) 致谢.......................................................................................... 错误!未定义书签。

一株苯酚降解菌的分离和鉴定 摘要 为了寻找能高效降解苯酚的微生物, 从土壤中筛选得到了一株苯酚降解菌,通过逐渐增加苯酚的浓度,然后驯化出一株高效降解苯酚的细菌H-1. 当在30 ℃培养48h 时其降解率高达92.11%. 经理化特征测定及外观鉴定,将其初步鉴定为假单胞菌属.再经过对比实验测各种因素(碳源、温度、pH、通气) 对该菌生长及降解苯酚能力的影响,得知该菌能以苯酚作为唯一碳源,最适生长温度为32 ℃,最适pH 为7.0. 该菌为好氧菌,在空气充足的条件下可提高降解能力. 该菌菌落较小,菌落呈微黄色。菌体呈直或微弯的杆装,没有菌柄也没有鞘。不产芽孢。对该菌做生化鉴定,可知该菌革兰氏染色为阴性,可水解苯酚,生长温度为32℃,生长pH为pH 6.5~7.5。参照东秀珠,蔡妙英的《常见细菌系统鉴定手册》等文献方法,以形态和培养特征为主,生理生化特性及生态特性为辅,经初步鉴定为假单胞菌属,命名为H-1,具体确定到种则需要进一步的研究。 【关键词】:筛选苯酚降解鉴定

实验三高效苯酚降解菌的筛选及其性能测定课件.doc

实验三高效苯酚降解菌的筛选及其性能测定 一、实验目的 1、掌握微生物分离纯化的基本操作; 2、掌握用选择性培养基从环境中分离苯酚降解菌的原理和方法; 3、掌握微生物对酚降解能力的测定方法; 4、掌握4-氨基安替比林法测定苯酚含量的方法。 二、实验原理 在工业废水的生物处理中,对污染成分单一的有毒废水,可以选育特定的高效菌株进行处理。这些高效菌株以有机污染物作为其生长所需的能源、碳源或氮源,从而使有机污染物得以降解,具有处理效率高、耐受毒性强等优点。 苯酚是一种在自然条件下难降解的有机物,其长期残留于空气、水体、土壤中,会造成严重的环境污染,对人体、动物有较高毒性。本实验通过筛选苯酚降 解菌来处理含酚废水,将苯酚降解为为二氧化碳和水,消除对环境的污染。 + COOHCH2CH2COOH CH3COOH C O2+H2O 从环境中采样后,在以苯酚为唯一碳源的培养基中,经富集培养、分离纯化、降解实验和性能测定,可筛选出高效酚降解菌。 三、实验器材与试剂 1、样品 实验土样采自校园污水处理厂。 2、器材 恒温培养箱、恒温摇床、分光光度计、比色皿、试管、250mL三角瓶、100mL 容量瓶、培养皿、涂布玻棒、量筒、天平、灭菌锅、酒精灯、接种环、棉花、棉 线、牛皮纸、pH 试纸。 3、试剂 葡萄糖、牛肉膏、蛋白胨、苯酚、四硼酸钠(Na2B4O7)、4-氨基安替比林、过硫酸铵((NH4)2S2O8)、K2HPO4、KH2PO4、MgSO4、琼脂。

苯酚标准溶液:称取分析纯苯酚 1.0g,溶于蒸馏水中,稀释至1000mL,摇 匀。此溶液溶度为1000mg/L。测定标准曲线时将苯酚浓度稀释至100mg/L。 Na2B4O7 饱和溶液:称取N a2B4O7 40g,溶于1L 蒸馏水中,冷却后使用,此 溶液的pH值为10.1。 3% 4-氨基安替比林溶液:称取分析纯4-氨基安替比林3g,溶于蒸馏水中, 并稀释至100mL,置于棕色瓶中,冰箱保存,可用两周。 2% (NH4)2S2O8 溶液:称取分析出(NH4)2S2O8 2g,溶于蒸馏水中,并稀 释至100mL,置于棕色瓶中,冰箱保存,可用两周。 4、培养基 富集培养基:蛋白胨0.5g,K2HPO4 0.1g,MgSO4 0.05g,水1000mL,调节pH 7.2-7.4,高压蒸汽灭菌,冷却后视需要添加适量的苯酚。 基础培养基:K2HPO4 0.6g,KH2PO4 0.4g,NH4NO3 0.5g,MgSO4 0.2g,CaC2l 0.025g,水1000mL,调节pH 7.0-7.5,高压蒸汽灭菌,冷却后视需要添加适量的苯酚。 四、实验步骤 (一)富集培养和驯化 采集活性污泥或土样,接种于装有100mL 富集培养基和玻璃珠并加有适量 苯酚(50mg/L)的三角瓶中,30℃振荡培养。待菌生长后,用无菌移液管吸取 1mL 转至另一个装有100mL 富集培养基和玻璃珠并加有适量苯酚的三角瓶中, 如此连续转接2-3 次,每次所加的苯酚量适当增加,最后可得酚降解菌占绝对优 势的混合培养物。 (二)平板分离和纯化 1、用无菌移液管吸取经富集培养的混合液10mL,注入90mL无菌水中,充 分混匀,并继续稀释到适当浓度。 2、取适当浓度的稀释菌液,加一滴于固体平板(由富集培养基加入2%的琼 脂组成,倒平板时添加适量的苯酚,浓度达到200 mg/L。)中央,用无菌玻璃涂 棒把滴加在平板上的菌液涂平,盖好皿盖,每个稀释度做2-3 个重复。 3、室温放置一段时间,待接种菌液被培养基吸收后,倒置于30℃恒温箱中 培养2-3d。 4、挑选不同菌落形态,在含适量苯酚的固体平板上划线纯化。平板倒置于

高效苯酚降解菌的分离及降解性能的研究

高效苯酚降解菌的分离及降解性能的研究 引言 石油、化工、煤气、焦化及酚类等生产厂排放的废水当中含有大量的苯酚[1]。未经净化的含酚废水可导致水源被污染,致使鱼类死亡,危害农作物,最终威胁人类的健康。许多国家将苯酚列为重要的污染物之一。目前,国内外处理含酚废水的方法主要有物理法、化学法、微生物法及各种结合法[2]。其中微生物法主要利用微生物的代谢活动去除废水中的有毒物,处理方法无2次污染且安全、经济。目前,已鉴定具有降解苯酚能力的微生物主要有假单胞菌(Pseudonomonas.sp)[3]、芽孢杆菌(Bacillus.sp)[4]、酵母菌(Yeast trichosporon)[5]、根瘤菌(Rhizobia)[6]、醋酸钙不动杆菌(A. calcoaceticus)[7]等,降酚菌株多存在于酚类污染物企业排放的废水、污泥和被废水污染的土壤中[8]。本课题拟从被苯酚废水污染的污泥中进行菌株筛选,得到耐酚菌后在以苯酚为唯一碳源的无机盐培养上筛选降酚菌株,进一步测定苯酚降解的影响因素。对特定菌株降解含酚废水的应用价值进行研究。 1 实验材料和方法 1.1 菌株来源 采集原黑龙江省佳木斯东郊黑龙农药化工集团废弃排污口

处污泥进行菌株筛选。 1.2 培养基 基础培养基:NaCl 5.0g/L,蛋白胨10g/L,琼脂15~20g/L,酵母浸膏5.0g/L,调节pH为7.0。 以苯酚为唯一碳源的无机盐培养基:CaCl2 0.1 g/L ,FeSO4.7H2O 0.01 g/L,K2HPO4 0.5g/L,MnSO4.7H2O 0.05 g/L,NaCl 0.2 g/L,KH2PO4 0.5g/L,MgSO4.H2O 0.01 g/L,NH4NO3 1.0 g/L苯酚按实验需要量添加,调节pH为7.0 [8]。 富集培养基:葡萄糖10.0g/L,营养琼脂33.0g/L,酵母浸粉10.0g/L,调节pH为7.5。 1.3 研究内容与方法 1.3.1 菌株和的驯化和分离 在超净工作台中,将10mL含0.1g/L苯酚的基础培养基倒入培养皿,取10 g污泥加90mL蒸馏水搅拌15min,静置5min后取上层清液为菌原液[8]。取1mL菌原液加入无菌水中分别制成100、10- 1、10- 2、10- 3、10-4等梯度的菌液,然后分别从各菌液试管中取1mL用涂布法接种于基础培养基平板上。在pH 值为7、25℃情况下培养24~48h。挑取单一菌落于富集培养基平板上划线、扩繁。编号,将平板置于25℃的恒温培养箱中培养24~48h后放于4℃冰箱保存。依据革兰氏染色进行微生物鉴定。 1.3.2 降酚菌的筛选

降解苯酚微生物的选育

降解苯酚微生物的选育 一、实验目的 1. 学习从含酚工业污水、活性污泥中筛选苯酚降解菌。 2. 学习通过活性污泥驯化分离耐酚菌。 二、实验原理 酚类化合物是化工、造纸、钢铁等工业废水的主要有害成分,含酚污水的排放,污染水源、毒死鱼虾、危害庄稼、严重危害人类健康,是各国研究关注的污染物之一。 含酚废水中分离出的生物降解酚能力强的菌为:假单胞菌、白乳杆菌、假丝酵母和野丝膜菌等。含酚废水生物处理目前主要采用活性污泥法。 三、实验材料 1.菌源含酚工业废水或含酚废水曝气池中的活性污泥。 2.培养基耐酚真菌培养基(固体、液体和斜面),耐酚细菌培养基(固体、液体和斜面) ,碳源对照培养液a,苯酚培养液b。 3.试剂2% 4-氨基安替比林溶液,8%铁氰化钾溶液,氯仿,氨性氯化铵缓冲液,溴酸钾-溴化钾溶液,硫代硫酸钠溶液, 1%淀粉溶液。 4.其他稀释分离所用的无菌水,无菌培养皿,无菌移液管,测定酚所用的移液管,容量瓶,试剂瓶,酸式滴定管等。 四、实验方法 1.采样 自焦化厂、钢铁公司化工厂、造纸厂处理含酚工业污水的曝气池中取活性污泥和含酚污水,装于无菌瓶中,带回实验室,记录采样日期、地点,曝气池的水质分析包括:挥发酚、可溴化物、BOD5五日生化需氧量、COD化学需氧量、焦油、硫化物、氰化物、总氮、氨态氮、磷、pH、水温等。采集的样品应迅速稀释分离。 2.分离纯化 一般微生物在含酚培养基上不能生长。苯酚耐受菌株的筛选,可采用药物抗性菌株一样的梯度平板法。即在培养基中加入一定量的药物,使大量细胞中的少数抗性细胞在平板上的一定剂量药品的部位长成菌落,从而判定该菌耐受酚的能力。

1、梯度平板制备:在无菌培养皿中,先倾倒7~l0mL不含苯酚的无菌细菌或真菌固体培养基,将培养皿一侧置于木条上,使皿中培养基倾斜成斜面,且刚好完全盖住培养皿底部,待培养基凝固后,将培养皿放平,再倒入无菌7~l0mL(刚好完全盖住下层斜面)含70mL/l00mL苯酚的无菌耐酚细菌或耐酚真菌固体培养基,刚好完全盖住下层斜面,放置过夜。由于苯酚的扩散作用,造成上层培养基由厚到薄的药物浓度递减的梯度。 2、涂布法分离:将采集的样品作10倍梯度稀释,按涂布法分离,30℃培养2 天后,平板上生长的菌落也形成密度梯度,苯酚低浓度区形成菌苔,苯酚高浓度区出现稀少菌落,将此菌落在含耐酚细菌或真菌培养基平板上连续划线分离,最后挑取单菌落接种到耐酚斜面培养基上,30℃培养2天。 3、耐酚菌驯化 先将从含酚废水采集的活性污泥放入苯酚无机培养液中(苯酚终浓度25mg/L,MgSO4.7H2O终浓度0.3%, KH2PO4终浓度0.3%),30℃振荡培养6~7天,使苯酚降解菌大量增殖,淘汰对酚不适应的微生物;再添加苯酚无机培养液(苯酚终浓度增加至100mg/L)30℃振荡培养4~6天;再流加苯酚无机培养液(苯酚终浓度增加至200mg/L)30℃振荡培养4~6天,再提高到流加250mg/L苯酚无机培养液,30℃培养4天,从中选出对酚耐受力强的菌株。 4、性能测定。 初筛:制备不同含酚浓度的耐酚平板培养基,苯酚浓度为0.025%、0.045%、0.060%、0.075%,将选出的耐酚力强的菌株在以上平板培养基上划线分离,自高酚浓度平板上长出的菌落,即为酚降解力高的菌株。 复筛:将初筛纯化的菌种分别接入碳源对照培养液a和苯酚培养液b中,30℃振荡培养48h,0、12、24、36、48h取样测A600光密度值,绘制生长曲线,以不含酚的碳源(葡萄糖)培养液为对照。若与对照相比,在250mg/L苯酚浓度培养液中生长速度下降不明显,同时,用4-氨基安替比林法检测发酵初时发酵液和发酵终止时发酵液苯酚浓度,计算降解率,若苯酚降解率达>80%,表明确系分离到有效苯酚降解菌。 五、实验报告 1.记录分离得到的苯酚降解菌情况于表4-1。 2.根据复筛耐酚试验,绘制对照组与试验组生长曲线。 3.记录在平板上和显微镜下观察的苯酚降解菌的菌落特征和镜检特征。

苯酚降解菌

苯酚降解菌2,3-邻苯二酚双加氧酶基因克隆和序列分析 一.摘要: 环境中的酚污染主要指酚类化合物对水体的污染,通常含酚废水中又以苯酚和甲酚的含量最高。目前环境监测常以苯酚和甲酚等挥发性酚作为污染指标。苯酚广泛存在于石油、化工、煤气、焦化、钢铁及酚类生产厂排放的废水中。含酚废水的排放导致水源污染,毒死鱼虾,危害农作物,并严重威胁人类的健康,在我国水污染控制中已被列为重点解决的有害废水之一。含酚有机物的毒性还在于其只能被少数微生物所分解。在油田地层水中分离出苯酚降解菌BF80,并且从BF80中克隆出编码2,3-邻苯二酚双加氧酶(参与苯酚降解所必须的一种酶)的基因序列;采用基因克隆的策略是通过PCR进行片段克隆,并用UNIQ-10柱形DNA 回收试剂盒回收产物,采用NCBI BLAST序列分析表明该基因片段长1207bp,序列比较分析表明该基因片段与2-苯酚羟化酶A相似度达88%,氨基酸序列分析表明其与2,3-邻苯二酚双加氧酶相似度达96%。本实验研究编码降解苯酚的2,3-邻苯二酚双加氧酶的基因克隆及序列分析,为构建高效降解苯酚的基因工程菌奠定了基础。 Phenol degrading bacteria 2 - phenol hydroxylase gene sequence analysis Abstract: Phenol pollution in the environment mainly refers to phenolic compounds on water pollution, waste water containing phenol is usually turned around the highest levels of phenol and cresol. Often present environmental monitoring such as phenol and cresol Phenol as pollution indicators. Phenol widespread in the petroleum, chemical, gas, coke, steel and phenolic wastewater plant emissions. Phenolic wastewater emissions of water pollution, poisoned fish, damage crops, and a serious threat to human health, water pollution control in China has been a key to solve one of the harmful waste. The toxicity of phenol organics still only a small number of micro-organisms, their decomposition. In oilfield water of phenol degrading bacteria isolated from BF80, and BF80 was cloned from the 2,3 - catechol dioxygenase (involved in phenol degradation of an enzyme necessary) of the gene sequence; using gene cloning strategy were cloned by PCR, with UNIQ-10 column DNA extraction kit recycling products, using NCBI BLAST sequence analysis showed that the gene fragment was 1207bp, Sequence analysis showed that the gene fragment and 2 - A similarity to phenol hydroxylase 88% amino acid sequence analysis showed that with 2,3 - catechol dioxygenase similarity of 96%. This study coded degradation of phenol 2,3 Catechol Dioxygenase Gene Cloning and sequence analysis, in order to build efficient genetic engineering of bacteria degrading phenol basis 关键词:苯酚苯酚降解菌基因克隆基因序列分析

苯酚类废水处理方法

一、物理法 1、萃取法 由于酚类化合物是有机物,在水相与有机相的溶解度有较大差异,因此可 以利用与水不互溶的有机萃取剂与含酚类污染物的废水混合,从而使酚类物质从水相转移至有机相中,以此实现酚类物质从水相中的脱除[8]。目前萃取法的发展除了选取混合强度更高的反应器之外[9],选择、优化萃取剂也是一个重要方向,其中使用超临界流体进行反应萃取分离是目前萃取法研究的重要方向[1()]。由于萃取剂一般都相对昂贵,因此萃取剂一般都需要回收利用。但由于萃取过程中存在一些副反应、操作过程中也有一定的损失、溶剂会一定程度地溶解于水中,因此萃取法一般只用来处理回收较高浓度的苯酚废水,从而限制了其广泛应用。 2、蒸汽法 蒸汽法用来脱除挥发酚也一种使用时间比较长的方法,主要是利用挥发酚能够与水蒸汽组成一种共沸物的物理特点,当两种物质的总蒸汽压大于外部的压力时,废液就会沸腾,同时挥发酚便会转变为气体。在传统的蒸汽脱酚塔中,含酚废液喷淋塔顶端向下喷淋,而水蒸气则从下往上流动,两者进行逆流接触,从而使废液中的挥发酚转入气相中,达到脱除挥发酚的目标。蒸汽法的优点是不使用昂贵的萃取剂、操作比较简便、处理量大、无后续污染,适合处理含挥发酚含量较高的酚类废水[li】,但其也存在蒸汽消耗大、设备体积大、废水处理不彻底的缺点。 3、吸附法

比表面积大、具有多孔结构等特征的物质常常能吸附水体中的污染物。科研. 人员使用具有以上特征的吸附剂处理酚类废水,在达到一定吸附量之后, 再利用其他手段进行脱附,如通过加热脱附、溶剂脱附、蒸汽脱附等等。目前使用最为广泛的吸附剂是活性炭吸附剂,其具有吸附总量大的特点, 对高含酚量和低含酚量的酚类废水都有很好的吸附效果,但活性炭吸附法也存在着脱附能耗高、脱附产物难以利用等缺点[12]。也有科研工作者探索使用其他更为廉价吸附剂进行吸附,如焦木素等[13]。焦木素吸附污染物的能力与活性炭接近,生产原料来源广泛、成本低,可以实现废物再利用,是一种有前途的替代吸附剂。 二、生物法 1、活性污泥法 生物法中最为常用的处理方法为活性污泥法,活性污泥法是通过在水中生存、利用氧气进行有氧化呼吸的细菌和其他水生生物对污水中的污染物进行栏截及分解,从而将有毒性的污染物转化为对环境无害的物质。活性污泥法处理污水的过程既包括物理过程、化学过程也包括生物化学过程,一方面活性污泥具有较强的吸附和容纳污染物的能力,通过吸附作用将水体中的酚类等有害物质进行拦截,使其从水体中分离;另一方面,好氧细菌在氧气充足的情况下进行有氧呼吸,通过一系列生物化学过程对有机污染物进行利用,分解转化为对环境无害的物质。 酚类可以被很多水处理微生物所利用,是其生长时的碳源,所以活性污泥 法也被广泛用于中低浓度酚类废水的处理[14-17]。由于酚类物质对于微

苯酚的生物降解特性研究_丁霞

“有机污染物——苯酚的生物降解特性研究”设计方案 丁霞 一、实验目的 酚类化合物为原生质毒物,毒性较大。焦化、煤气、石油、木材防腐、造纸、合成氨等工业废水中都含有高浓度的苯酚。含酚废水在我国水污染控制中被列为重点解决的有害废水之一。利用降解菌来控制苯酚的污染,越来越受到人们的重视。本项目拟采用微生物培养、苯酚生物降解的途径及其降解关键酶的分析、微生物DNA的提取、分光光度计测定、PCR、TA克隆等实验技术,阐明苯酚降解菌株的生长特性和苯酚的生物降解特性,苯酚降解菌的系统发育。对学生从事有机污染工业废水的生物处理以及有机污染的土壤或水体的生物原位修复方面的科学研究具有深远的意义。 二、实验原理 利用以苯酚为唯一碳源和能源的无机盐溶液作为驯化液,对某废水处理厂活性污泥进行驯化培养,从中分离筛选出苯酚降解菌。利用比浊法测定微生物生长量,4-氨基安替比林直接光度法测定苯酚浓度,分析苯酚生物降解的途径及其降解关键酶,PCR扩增细菌的16s RNA进行苯酚降解菌的系统发育分析。 1)微生物生长量的测定方法——比浊法 比浊法是实验室中常用的用来测定微生物生长量的方法,以反映微生物数量或浓度的一种指标。该方法是根据当某一波长的光线通过混浊的液体后,光的强度将被减弱。入射光与透过光的强度比与样品液的浊度和液体的厚度相关。根据所测得的吸光值,就可以得到微生物的生长量。本实验采用的波长为600nm,使用空白培养基作为对照。 2) 苯酚浓度的测定方法 见后面附录。 3)苯酚降解菌的系统发育分析 16S rRNA基因是细菌染色体上编码rRNA相对应的DNA序列,存在于所有细菌的染色体基因组中。16S rRNA具有高度的保守性和特异性。随着PCR技术

一株降解苯酚微生物的分离与鉴定

一株降解苯酚微生物的分离与鉴定 摘要:从武汉市某化工厂的活性污泥中分离1株能以苯酚为惟一碳源和能源生长的菌株,命名为CY1。通过逐级驯化,CY1可在含1 000 mg·L-1苯酚的培养基中降解苯酚并生长。经对该菌株进行形态特征以及16S rDNA序列比对分析,确认该菌株属于假单胞菌属(Pseudomonas)。 关键词:苯酚;降解;假单孢菌属 Isolation and Identification of A Phenol-degrading Bacterium Abstract:A strain CY1 was isolated from the sludge around a chemical plant in Wuhan,Hubei Province. It had ability of utilizing phenol as sole carbon and energy sources. By using step-by-step domesticating method,it could grow in the culture medium byusing 1 000 mg·L-1 phenol as sole carbon source. CY1 was considered to be belonged to Pseudomonas by morphological characteristics and the phylogenetical analysis of the 16S rDNA sequence. Key words:phenol;degradation;Pseudomonas 苯酚及其衍生物广泛应用于制药、农药、冶金、塑料等行业,它在环境中能与水中的氯作用生成毒性更大的氯代酚,对人类健康和动植物生长造成的危害不容忽视[1]。近年来,苯酚降解微生物的研究倍受关注,已鉴定和发现了多种具有苯酚降解能力的菌株,比如根瘤菌(Rhizobia)、乙酸钙不动杆菌(Acinetobacter calcoaceticus)、假单胞菌(Pseudo-monas sp.)、真养产碱菌(Alcaligenes eutrophus)、酵母菌(Yeasttri-chosporon cutaneum)、反硝化菌等[2]。本研究从湖北武汉某化工厂的活性污泥中驯化、筛选到一株苯酚降解细菌,并根据其16S rDNA基因序列构建了系统发育树,对其进行了鉴定。同时对苯酚的存在对菌株生长的影响进行了研究。 1材料与方法 1.1材料 污泥样品:采自湖北武汉某化工厂污水排放口。培养基:富集培养基为牛肉膏蛋白胨培养基:牛肉膏3.0 g,蛋白胨10.0 g,NaCl 5.0 g,水1 000 mL,pH值

污泥中苯酚降解方法

污泥中苯酚降解方法 1 引言 目前,随着现代工业的不断发展,大量有毒有害废水排入到环境中,苯酚作为树脂制造、炼油、制药、焦碳原料等工业过程中的重要工业原料和产生的一种有机污染物,是工业污水中的主 要有害物质,会对动、植物产生有毒甚至致命的危害.苯酚对水生生物具有很强的毒害作用,水 体中5~25 mg · L-1的浓度即可对鱼类的生存构成威胁.长期饮用被苯酚污染的水或吸入低浓度 酚蒸汽或会引起长期累积性中毒,而饮用高浓度酚溶液、吸入高浓度酚蒸汽则将引起急性中毒, 尤其对人体神经系统危害较大.美国环保署把苯酚列入129种优先污染物和65种有毒污染物之列,我国也把苯酚列入中国环境优先处理的污染物“黑名单”之中.因此,去除水体中的苯酚等酚类 污染物已成为污水处理的重要课题. 降解酚类的方法主要包括吸附法,电化学法和生物降解法等,其中生物降解因投资与运行成 本低、二次污染小、处理效率高等优点,因而广泛应用于含酚废水处理.近年来,许多学者在这 方面进行了大量的研究,从被酚类物质污染的环境中已分离得到多种降解酚类的微生物菌株,主 要有根瘤菌、酵母菌、醋酸钙不动杆菌、假单胞菌、真养产碱菌、反硝化菌、红球菌等.其中, 大部分研究主要集中于酵母菌、芽孢杆菌以及假单胞杆菌,对Acinetobacter属的细菌较少报道.生物降解法处理有毒和难降解的工业废水时,一般需要利用生物强化技术来驯化、筛选、诱变和 选育高效微生物降解利用有毒有害物质,但工业废水组成成分的动态变化特点易对生物系统造成 冲击,使其中的高效降解微生物菌群致死、流失.利用高效降解微生物对苯酚进行生物降解,能 有效去除水体中的苯酚,但降解过程的影响因素较多,有必要从诸多影响因素中筛选出最为重要 的影响因素,控制生物降解系统能较好的耐受环境冲击并高效运转.由于传统单因素实验不能确 定主次因素的差别,而Plackett-Burman实验广泛应用于生物过程重要参数的筛选,通过对实验 进行统计学设计和数据分析,筛选出对目标值影响最大的关键因素.响应面分析法(response surface methodology,RSM)是一种优化过程的有效方法,其中的Box-Behnken实验设计法比较 常用,可用于确定实验因素及其交互作用在过程中对指标响应值的影响,精确的表述因素与响应 值之间的关系.该法与正交设计比较,所需实验组数相对较少,更能直观体现因变量的最佳值. 本研究从株洲某化工厂污水处理车间氧化池的活性污泥中筛选分离出一株能高效降解苯酚的 细菌菌株YH8,根据其形体特征、生理生化性状、BIOLOG鉴定、16S rDNA和gyrB序列分析进行 分类鉴定,研究了该菌株降解苯酚的特性和初步探讨了该菌株降解苯酚的途径,并利用响应面法(RSM)优化菌株YH8降解苯酚的条件以提高降解效率. 2 材料与方法 2.1 实验材料 2.1.1 样品来源

光催化降解苯酚废水的研究

光催化降解苯酚废水的研究 指导老师副教授 【摘要】以TiO2 为光催化剂,以紫外灯为光源,在自制的光催化反应装置中进行苯酚溶液的光催化降解实验,并且考察了催化剂用量、苯酚初始浓度、PH值、光照强度等因素都对苯酚光催化降解的影响。结果表明:其最佳工艺条件为:苯酚浓度在10mg/L ,pH=7,TiO2用量为1. 0 g/L,紫外灯波长为254 nm,反应时间4h时降解效果最佳。 关键字:TiO2 光催化,降解苯酚影响因素 1、前言 酚是一类常用的化工原料,是一类很难降解的化合物,具有致癌、致畸、致变的潜在毒性[1],因而含酚废水来源十分广泛,对人类健康带来十分严重的危害。苯酚是含酚废水中常见的污染物,有效处理苯酚废水已经是环保方面的一个重要课题[2]。光催化氧化降解苯酚以其高效、稳定以及无二次污染等特点[3],已成为近年来环保领域一种新型的污染治理技术。 1.1苯酚废水来源及危害 1.1.1、苯酚废水的来源 苯酚是重要的化工基本原料及中间体,是一种高毒物质,工业常用于制染料合成树脂、塑料、合成纤维和农药、水杨酸等[4],日常生活中也常用于杀菌消毒、做防腐剂等。因而苯酚废水在我们这个工业发达的国家来源非常广,且数量多,主要来自于炼油、煤气洗涤、炼焦、造纸、合成氨、木材防腐、石油化工、化学、制药、油漆、涂料、塑料农药等企业的生产废水中[5]。苯酚微溶于水,在使用和生产苯酚的过程中,一定溶有部苯酚, 成为对人体有害的苯酚废水。 1.1.2、苯酚废水的危害 苯酚是一种对一切生物个体都有毒害的物质,低浓度酚能使蛋白质变性,高浓度能使蛋白质沉淀,具有致癌、致畸、致变的潜在毒性,对皮肤、粘膜有强烈的腐蚀作用。它通过皮肤、黏膜的接触而吸入或经过口腔侵入生物体内,与细胞皮浆中的蛋白质接触后形成不溶性蛋白质而使细胞失去活性,尤其对神经系统有较大的亲和力,使神经系统发生病变或损害肝、肾功能[1]。 同时苯酚对水源和水生生物也能产生严重的影响。低浓度的苯酚废水灌溉农田会使一些农作物含有少量的苯酚而不能食用,高浓度则会导致农作物减产或枯死。浓度大于0.005mg/L时的水就不能饮用,浓度大于10mg/L时对鱼的生殖等活动造成影响[6]。 由于工业废水中酚类含量较高,对环境影响较大,若直接排放到环境中,将会对人类的生存构成极大的危害。据文献报道,苯酚在污水中的含量应小于于0·1mg/L[7],因此在排放前需进行必要的处理。 1.2、苯酚废水的处理方法 1.2.1、新型处理方法及意义 光催化降解废水中苯酚是一种新型的环境治理技术,具有广阔的应用前景。目前国内外对光催化技术的应用研究主要在:染料废水、有机废水、农药废水、表面活性剂以及含油废水等的降解研究[8]。该法是利用光照某些具有能够带结构的光催化剂来诱发氧化自由基-OH[9]。光催化氧化法具有选择性好,适用范围广,可在常温、常压下进行等优点,特别适用于无法或很难进行生物降解的污染物的治理,能够彻底降解废水中的苯酚,无二次污染,设备简单,投资少,效果好[1]。 1.2.2、传统处理方法 物理吸附法、化学缩聚法、生化活性污泥法等都是传统的苯酚废水处理技术。在实际应用中,这些传统的处理技术处理苯酚废水都有一定的缺点。但是光催化技术很好地弥补了传统处理方法的缺点。如下表1:

电化学氧化法降解苯酚研究

Water Pollution and Treatment 水污染及处理, 2019, 7(1), 25-33 Published Online January 2019 in Hans. https://www.sodocs.net/doc/5c15777634.html,/journal/wpt https://https://www.sodocs.net/doc/5c15777634.html,/10.12677/wpt.2019.71004 Study on Degradation of Phenol by Electrochemical Oxidation Jiaoyi Qu, Zhengliang Du, Yiya Wei, Lele Tan, Zhongyi Wang, Yingru Wang* School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan Hubei Received: Nov. 16th, 2018; accepted: Dec. 2nd, 2018; published: Dec. 14th, 2018 Abstract The simulated phenol wastewater was treated using electrochemical oxidation method and the effects of different anode materials, electrolysis voltage, plate spacing and electrolyte concentra-tion on the degradation of phenol were investigated by orthogonal experiment. The experimental results show that under the conditions of electrolysis voltage of 9 V, steel plate as anode, plate spacing of 15 mm and electrolyte concentration of 0.09 mol/L, the phenol removal rate can reach 92.86%; COD cr removal rate is 86.38%. Finally, Gas chromatography-mass spectrometry was used to detect and analyze the phenol solution treated under the optimal combination of experimental conditions, and the way of electrochemical oxidation to degrade phenol was discussed. Keywords Electrochemical Oxidation, Phenol, Orthogonal Experiment 电化学氧化法降解苯酚研究 屈交毅,都正良,危依亚,谭乐乐,王忠义,王营茹* 武汉工程大学化学与环境工程学院,湖北武汉 收稿日期:2018年11月16日;录用日期:2018年12月2日;发布日期:2018年12月14日 摘要 采用电化学氧化法对苯酚模拟废水进行处理,通过正交实验法考察不同阳极材料、电解电压、极板间距和电解质浓度对苯酚降解效果的影响,实验结果表明:在电解电压9 V,钢板作阳极,极板间距15 mm, *通讯作者。

相关主题