搜档网
当前位置:搜档网 › 谈齐次线性方程组的基础解系的求法

谈齐次线性方程组的基础解系的求法

谈齐次线性方程组的基础解系的求法
谈齐次线性方程组的基础解系的求法

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

齐次线性方程组的基础解系(PPT)_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解 系对于齐次线性方程组a11x1a12x2a1nxn0, a12x1a22x2a2nxn0, ax ax ax0. m22mnn m11 令a11a12 a21a22 , 1 2 am1 am2 a1n a2n ,,n amn 则上述方程组即为 x1 1 x2 2 xn n 0 (*) (其中 0 为零向量)。 将(*)的解视为 n 维向量,则所有解向量构成 K 中的一个向量组,记为 S。 n 命题 S 中的元素(解向量)的线性组合仍属于 S(仍是解)。 证明只需要证明 S 关于加法与数乘封闭。 设(k1,k2,,kn),(l1,l2,,ln)S,则k11k2 2 kn n 0 l1 1 l2 2 ln n 0 于是 (k1 l1) 1 (k2 l2) 2 (kn ln) n 0 故 (k1 l1,k2 l2, ,kn ln) S;又因为k K kk1 1 kk2 2 kkn n 0 所以(kk1,kk2, ,kkn) S。 证毕。 定义(线性方程组基础解系)齐次线性方程组(*)的一组解 1 / 7

向量1, 2, , s 如果满足如下条件: (1)1, 2, , s 线性无关;(2)方程组(*)的 任一解向量都可被1, 2, , s 线性表出,那么,就称1, 2, , s 是齐次线性方程组(*)的一个基础解系。 定理数域上的齐次线性方程组的基础解系中的向量个数等于变 元个数减去系数矩阵的秩。 证明记线性方程组为 x1 1 x2 2 xn n 0 其中a11a12 a21a22 , 1 2 am1 am2 a1n a2n , , n amn 设1, 2, , n 的秩为 r,无妨设1, 2, , n 为其极大线性无关部分组, 则r 1, r 2, , n 皆可被1, 2, , r 线性 表出,即存在 kij K(1 i n r,1 j r),使得r 1 k11 1 k1 2 2 k1r r r 2 k21 1 k22 2 k2r r n kn r1 1 kn r2 2 kn rr r, 即 ki1 1 ki2 2 kir r 1 r i 0, (i 1,2, n r)于是 S 中含 有向量1(k11,k12,,k1r,1,0,,0) 2 (k21,k22,,k2r,0,1,,0) n r(kn r1,kn r2, ,kn rr,0,0, ,1) 只需要证明1, 2, , n r 是解向量组的一个极大线性无关部分组即可。 易见,向量组1, 2, , n r 线性无关。 只需要再证明1, 2, , n r 能线性表出任意一个S 即

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

线性方程组的解法

线性方程组的解法 1 引言 在科学研究和大型工程设计中出现了越来越多的数学问题,而这些问题往往需要求数值解。在进行数值求解时,经离散后,常常归结为求解形如Ax= b的大型线性方程组。而如插值公式,拟合公式等的建立,微分方程差分格式的构造等,均可归结为求解线性方程组的问题.在工程技术的科学计算中,线性方程组的求解也是最基本的工作之一.因此,线性方程组的解法一直是科学和工程计算中研究最为普遍的问题,它在数值分析中占有极其重要的地位。20世纪50年代至70年代,由于电子计算机的发展,人们开始考虑和研究在计算机上用迭代法求线性方程组Ax =b的近似解,用某种极限过程去逐渐逼近精确解,并发展了许多非常有效的迭代方法,迭代法具有需要计算机存储单元少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点。例如Jacobi方法、Gauss—Seidel 方法、SOR方法、SSOR 方法,这几种迭代方法是最常用的一阶线性定常迭代法。 2 主要算法 20世纪50年代至70年代,人们开始考虑和研究用迭代法求解线性方程组。 Ax = b (1) 的近似解,发展了许多有效的方法,其中有Jacobi方法、Gauss—Seidel方法,SOR方法、SSOR方法,这几种迭代方法均属一阶线性定常迭代法,即若系数矩阵A的一个分裂:A =M-N ;M 为可逆矩阵,线性方程组(1)化为: (M-N)X =b; →M X = NX + b; →X= M -1NX+ M-1b 得到迭代方法的一般公式: X(k+1)=HX(k)+d (2) 其中:H =MN-1,d=M-1b,对任意初始向量X(0) 一阶定常迭代法收敛的充分必要条件是: 迭代矩H的谱半径小于1,即ρ(H) < 1;又因为对于任何矩阵范数恒有ρ(H)≤‖H‖,故又可得到收敛的一个充分条件为:‖H‖< 1。 2.1 Jacobi迭代法 若D为A的对角素构成的对角矩阵,且对角线元素全不为零。系数矩阵A的一个分解:A =

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

线性方程组的直接法

第二章线性方程组的直接法 在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(2.1)的未知量的数值。 (2.1)其中ai j,bi为常数。上式可写成矩阵形式Ax = b,即 (2.2) 其中,为系数矩阵,为解向量,为常数向量。当detA=D0时,由线性代数中的克莱姆法则,方程组的解存在且惟一,且有 为系数矩阵的第列元素以代替的矩阵的行列式的值。克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。例如,解一个100阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。在石油勘探、天气预报等问题中常常出现成百上千阶的方程 组,也就产生了各种形式方程组数值解法的需求。研究大型方程组的解是目前计算数学中的一个重要方向和课题。

解方程组的方法可归纳为直接解法和迭代解法。从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。

迭代法是将方程组的解看作某种极限过程的向量极限的值,像第2章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量 而已。在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。 在数值计算历史上,直接解法和迭代解法交替生辉。一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。一般说来,对同等规模的线性方程组,直接法对计算机的要求 高于迭代法。对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。对于高阶方程组和稀疏方程组(非零元素较少),一般用迭代法求解。 §1 消元法 一、三角形方程组的解 形如下面三种形式的线性方程组较容易求解。 对角形方程组 (2.3)设,对每一个方程,。 显然,求解n阶对角方程的运算量为。 下三角方程组 (2.4)

直接法解线性方程组

直接法解线性方程组 实习题目: 仿照三对角方程组的追赶法解五对角方程组,其中系数矩阵为A,右端向量为:r。将A分解为LU。其中L为下三角,U为单位上三角。A为7*7阶的矩阵,其中对角元为4 5 6 7 8 9 10。上下次三角对角线元素为1 2 3 4 5 6 ;上下第二条对角线元素为1 2 3 4 5;右端项为:1 2 3 4 5 6 7. 要求:输出系数矩阵A,右端向量r,下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y,单位上三角方程组Ux=y的解(即最终的解向量。保留七位小数。 实现方法:通过MATLAB编程实现。建立MATLAB脚本文件。 首先通仿照三对角方程组的追赶法得到五对角矩阵的实现算法。 然后又MATLAB编程实现。 实验结果(MATLAB截图):

结果分析: 通过提供的计算数据得到最终的解向量x及中间过程产生的下三角矩阵L,单位上三角矩阵U,下三角矩阵Ly=b 的解向量y。 同时为了确保算法的正确性,我还通过MATLAB的左除运算检验得使用此算法的计算结果正确。 这里由于是用MATLAB,最终结果为分数形式,考虑到精确解一般比近似解更好,因此未化成七位小数形式。 算法实现分析: 首先计算L和U的元素。由于已知L和U的特定形式(及除了对角线和上下次对角线和上下第二条对角线外,其余为0。故通过矩阵的乘法即可得到LU中元素的计算公式。(具体算法见MATLAB程序) 算法优劣点:

1.解此题时看上去要用较多的存储单元,但实际上只需存储系数矩阵A的不为0的元素。 2.A分解为LU计算完成后,后续计算x和y的“追赶过程”运算量一般来说计算量比较小。 3.此题也可用之前的LU算法求解。但此处算法与一般的LU分解的解线性方程组的算法,相比计算量小了不少。 4.对于此处特定的对称的系数矩阵A,算法还可以进一步优化。 5.由于我在此算法中A.L U的各对角值均用一个列向量表示,一个缺点在于输出A,L,U时要重新组成矩阵形式。不过优点在于减少了存储单元。 6.另一缺点是,未能将结果封装成一个文件。 后附MATLAB代码: c=[4,5,6,7,8,9,10];d=[1,2,3,4,5,6,0];b=[0,1,2,3,4,5,6];e=[1,2,3,4,5,0,0];a=[0,0,1,2,3,4,5]; r=[1 2 3 4 5 6 7]; w=zeros(7,1);x=zeros(7,1);y=zeros(7,1);m=zeros(7,1);n=zeros(7,1);h=zeros(7,1); w(1)=c(1);m(1)=d(1)/c(1);n(1)=e(1)/c(1); h(2)=b(2);w(2)=c(2)-h(2)*m(1);m(2)=(d(2)-b(2)*n(1))/w(2);n(2)=e(2)/w(2); for k=3:5 h(k)=b(k)-a(k)*m(k-2); w(k)=c(k)-a(k)*n(k-2)-h(k)*m(k-1); m(k)=(d(k)-h(k)*n(k-1))/w(k); n(k)=e(k)/w(k); end h(6)=b(6)-a(6)*m(4); w(6)=c(6)-a(6)*n(4)-h(6)*m(5); m(6)=(d(6)-h(6)*n(5))/w(6); h(7)=b(7)-a(7)*m(5); w(7)=c(7)-a(7)*n(5)-h(7)*m(6); y(1)=r(1)/w(1);y(2)=(r(2)-h(2)*y(1))/w(2); for k=3:7 y(k)=(r(k)-a(k)*y(k-2)-h(k)*y(k-1))/w(k); end x(7)=y(7); x(6)=y(6)-x(7)*m(6);

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

追赶法求解三对角线性方程组

追赶法求解三对角线性方程组 一 实验目的 利用编程方法实现追赶法求解三对角线性方程组。 二 实验内容 1、 学习和理解追赶法求解三对角线性方程组的原理及方法; 2、 利用MATLAB 编程实现追赶法; 3、 举例进行求解,并对结果进行分。 三 实验原理 设n 元线性方程组Ax=d 的系数矩阵A 为非奇异的三对角矩阵 11222=(1)(n 1)()()a c b a c A a n c b n a n ??????????--?????? ………… 这种方程组称为三对角线性方程组。显然,A 是上下半宽带都是1的带状矩阵。设A 的前n-1个顺序主子式都不为零,根据定理2.5的推论,A 有唯一的Crout 分解,并且是保留带宽的。 其中L 是下三角矩阵,U 是单位上三角矩阵。利用矩阵相乘法,可以1112212(1)1u(n 1)()()1l u m l u A LU l n m n l n ????????????????==?????--????????????……………

得到: 由上列各式可以得到L 和U 。 引入中间量y ,令 y Ux =,则有: 已知 L 和d ,可求得y 。 则可得到y 的求解表达式: 11/1 2,3,,()(1)*y()=()[()(1)]/y d l i n m i y i li i di y i di m i y i li ==-+=--… 1111111/1(2)(1)(1)u (1)(11)/(1)(1)(1)l a l u c u c l mi bi i n a i m i i l i i n ci li ui ui ci li l i a i b i ui =*===≤≤+=+++≤≤-=?=+=+-+Ax LUx Ly d Ly d ====1112222(1)(n 1)(n 1)()()(n)(n)l y d m l y d l n y d m n l n y d ?????????????????????????=??????---?????????????????? ……………

线性方程组的解空间

第六章 向量空间 6、1 定义与例子 6、2 子空间 6、3 向量的线性相关性 6、4 基与维数 6、5 坐标 6、6 向量空间的同构 6、7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6、7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,??? ? ? ??=mn m n a a a a A ΛΛΛ ΛΛ 1111,A 的每一行瞧作n F 的一个元素,叫做A 的行向量,用),2,1(m i i Λ=α表示;由),2,1(m i i Λ=α生成的n F 的子空间 ),,(1m L ααΛ叫做矩阵A 的行空间。 类似地,A 的每一列瞧作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别就是n F 与m F 的子空间;下证其维数相同。 引理6、7、1设)(F M A n m ?∈, 1)若PA B =,P 就是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 就是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设() ()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i Λ=α就是A 的行向

齐次线性方程组基础解系

齐次线性方程组的基础解系及其应用 齐次线性方程组一般表示成AX=0的形式,其主要结论有: (1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

追赶法解三对角方程组

《数值分析》课程设计追赶法解三对角方程组 院(系)名称信息工程学院 专业班级10普本信计 学号100111014 学生姓名刘银朋 指导教师张荣艳 2013 年05 月31日

数值分析课程设计评阅书 题目追赶法解三对角方程组 学生姓名刘银朋学号100111014 指导教师评语及成绩 指导教师签名: 年月日答辩评语及成绩 答辩教师签名: 年月日 教研室意见 总成绩: 教研室主任签名: 年月日

课程设计任务书 2012—2013学年第二学期 专业班级:10普本信息与计算科学学号:100111014 姓名:刘银朋 课程设计名称:数值分析Ⅰ、Ⅱ 设计题目:追赶法解三对角方程组 完成期限:自2013 年05月21 日至2013年05 月31日共10天 设计依据、要求及主要内容: 一、设计目的 理解追赶法,掌握追赶法的算法设计以及关于追赶法的分析和综合应用,能 够较熟练的应用Matlab软件编写求解追赶法的程序和应用Matlab软件数据库软 件. 二、设计内容 (1)认真挑选有代表性的三对角方程组. (2)认真梳理解三对角方程组的解题思路. (3)比较追赶法和高斯消去法的计算精度. 三、设计要求 1.先用Matlab数据库中的相应的函数对选定的方程,求出具有一定精度的解. 2.然后使用所用的方法编写Matlab程序求解. 3.对于使用多个方程解同意问题的,在界面上要设计成菜单的形式. 计划答辩时间:2013年06 月 5 日 工作任务鱼工作量要求: 查阅文献资料不少于3篇,课程设计报告1篇不少于3000字. 指导教师(签字):教研室主任(签字): 批准日期:2013 年05 月20 日

第三章 解线性方程组的直接方法

习题 3.1 1. 求下列方阵的秩: (1)??? ?? ??--340313021201;(2)????? ??----174034301320;(3)??????? ? ?---------12433023221453334 311 ;(4)??????? ??------34732038234202173132. 2. 求下列方阵的逆矩阵: (1) ?? ? ?? ? ?323513123; (2) ????? ?? ??-----1210232112201023. 3. 解下列矩阵方程 (1) 设 ???? ? ??--=????? ??--=1322 31,113122214B A ,求X 使B AX =; (2) 设 ??? ? ??-=? ???? ??---=132 321,433312120B A ,求X 使B XA =; (3) ?? ??? ??-=????? ??-=????? ??-=112510324, 123011113,1120111111C B A ,求X 使C AXB =. 4. 求下列行列式 (1)? ? ? ??? ??????71 1 0251020214214 ;(2)????????????-260523211213 141 2;(3)?? ? ???????---ef cf bf de cd bd ae ac ab ; (4) ????????????---d c b a 100110011001. 5. 判断下列线性方程组解的情况,如果有唯一解,则求出解. ???????=+++-=----=+-+=+++;01123,2532,242,5)1(432143214 3214321x x x x x x x x x x x x x x x x ? ? ???????=+=++=++=++=+;15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x (3) ? ?? ??=-++=-+-=-+-;3222, 2353, 132432143214321x x x x x x x x x x x x (4) ?????=---=--+=+++.034,0222,022432143214321x x x x x x x x x x x x 习题 3.2 1. 用回代法解上三角形线性方程组 (1)??? ????==+-=-+=++;63,3,6333,8484443432321x x x x x x x x x (2)?? ???? ?-=-=+--=+--=-+.63,1032,92,9244343242 1x x x x x x x x x 2. 用回代法解下三角形线性方程组

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

【良心出品】MATLAB 追赶法求解三对角方程组的算法原理例题与程序

3)三对角形线性方程组 123456789104100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014x x x x x x x x x x -????????--????????--????--????????--????--????????--????--???????--??????-???? 7513261214455????????-?? ?? ??=??-?? ???? -?? ?????? ???-?? *(2,1,3,0,1,2,3,0,1,1)T x =--- 二、数学原理 设系数矩阵为三对角矩阵 1 122233111000000000 000000 n n n n n b c a b c a b A a b c a b ---?? ? ? ?= ? ? ? ? ?? ? 则方程组Ax=f 称为三对角方程组。 设矩阵A 非奇异,A 有Crout 分解A=LU ,其中L 为下三角矩阵,U 为单位上三角矩阵,记 1 122 233 1 10 00010 000 0001000 000100,00000000 00 0001n n n n b L U γαβγββγβ--???? ? ? ? ? ? ??== ? ? ? ? ? ? ? ? ? ??? ? ? ? 可先依次求出L ,U 中的元素后,令Ux=y ,先求解下三角方程组Ly=f 得出y ,再求解上三角方程组Ux=y 。

事实上,求解三对角方程组的2追赶法将矩阵三角分解的计算与求解两个三角方程组的计算放在一起,使算法更为紧凑。其计算公式为: 1111, 1111 ,111 ,2,3,,,1,2,,1i i i i i i i i i i i i i i n n i i i i c f b y i n c a b a f y y x y i n n x y x βγββαβγγβαβγ--+? ===?? =?? ?==-= ??? -?=?? =??=--?=-??对对(*) 三、程序设计 function x=chase(a,b,c,f) %求解线性方程组Ax=f,其中A 是三对角阵 %a 是矩阵A 的下对角线元素a(1)=0 %b 是矩阵A 的对角线元素 %c 是矩阵A 的上对角线元素c(n)=0 %f 是方程组的右端向量 n=length(f); x=zeros(1,n);y=zeros(1,n); d=zeros(1,n);u= zeros(1,n); %预处理 d(1)=b(1); for i=1:n-1 u(i)=c(i)/d(i); d(i+1)=b(i+1)-a(i+1)*u(i); end %追的过程 y(1)=f(1)/d(1); for i=2:n y(i)=(f(i)-a(i)*y(i-1))/d(i); end %赶的过程 x(n)=y(n); for i=n-1:-1:1 x(i)=y(i)-u(i)*x(i+1); end

线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间 返回教案总目录 6.7矩阵的秩,齐次线性方程组的解空间 一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。 2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。 3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。 三、教学过程 1、矩阵的秩的几何意义 几个术语:设)(F M A n m ?∈,???? ? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一 个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。 注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈, 1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组求解

第三章 线性方程组 §1 消元法 一、线性方程组的初等变换 现在讨论一般线性方程组.所谓一般线性方程组是指形式为 ?? ? ?? ? ?=+++=+++=+++s n sn s s n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111, , (1) 的方程组,其中n x x x ,,,21 代表n 个未知量,s 是方程的个数, ),,2,1;,,2,1(n j s i a ij ==称为线性方程组的系数,) ,,2,1(s j b j =称为常数项. 方程组中未知量的个数n 与方程的个数s 不一定相等.系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系数. 所谓方程组(1)的一个解就是指由n 个数n k k k ,,,21 组成的有序数组 ),,,(21n k k k ,当n x x x ,,,21 分别用n k k k ,,,21 代入后,(1)中每个等式都变成恒 等式. 方程组(1)的解的全体称为它的解集合.解方程组实际上就是找出它全部的解,或者说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的. 显然,如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵 ???? ?? ? ??s sn s s n n b a a a b a a a b a a a 21 222221111211 (2) 来表示.实际上,有了(2)之后,除去代表未知量的文字外线性方程组(1)就确定了,而采用什么文字来代表未知量当然不是实质性的.在中学所学代数里学过用加减消元法和代入消元法解二元、三元线性方程组.实际上,这个方法比用行列式解线性方程组更有普遍性.下面就来介绍如何用一般消元法解一般线性方程组. 例如,解方程组

相关主题