搜档网
当前位置:搜档网 › 传递路径分析法

传递路径分析法

传递路径分析法
传递路径分析法

传递路径分析法

对复杂的汽车系统来说,如何找到一种既能较好地表征整车振动噪声特性,而其实现起来又较为简明、迅速的方法,一直是汽车NVH 研究人员孜孜以求的目标。近年来,基于频率响应函数(FRF )的车内噪声传递路径分析方法成为各大汽车公司和汽车研发中心的主要研究方向之一,这种方法从子结构传递函数的角度出发,在频域上描述了系统的振动噪声特性,为汽车噪声预测、振动噪声快速诊断等工作提供了一种快捷、精准的有利工具。此方法建立的模型中,一般把整个系统划分为几个较为独立的子结构,每个子结构都以频响函数来表征其结构特性,各子结构之间通过各种弹性元件相联结来传递信息。图2.1即为一个由动力总成和车身组成的简单汽车模型,在这模型里,汽车被划分成两个子结构,一个是车身子结构(以子结构A 表示),另一个是动力总成子结构(以子结构B 表示),二者之间通过动力总成悬置相联结。在研究过程中,可将此系统进一步理论化,把各子结构简化成一个个结构块,把联结子结构的各弹性元件(如动力总成悬置)简化成各个标量弹簧。这样,系统就以“结构块-弹簧”的形式表征出来,本章的主要工作即是研究这种“结构块-弹簧”与系统之间的关系,推导相关函数,建立基于频率响应函数的车内噪声传递路径分析方法[15][27~40]。

2.1、系统响应

假设一辆汽车受m 个激励力作用,每一个激励力都有x,y,z 三个方向分量(下面分别用k=1,2,3表示),每一个激励理分量都对应n 个特定的传递路径,那么这个激励理分量和对应的某个传递路径就产生一个系统的响应分量。以车内噪声声压作为系统响应,这个声压分量可以表示为:

()()m nk m nk nk p H F ωω=?

其中,m nk H 是传递函数,nk F 是激励力的频谱。

车内噪声声压受某个激励力作用,传递过来的所有声压成分之和可表示为:

,3

,3

1,1

1,1

()()N N m m nk m nk nk n k n k p p H F ωω=====

=

?∑

车内噪声受所用激励力作用,传递过来的所有声压成分之和可表示为:

m m

p p =∑ 在式(2.1)中,激励力如果直接作用在车身,所对应的传递函数就是车身传递函数;激励力如果直接作用在车轴,所对应的传递函数就是从车轴到车身,再到车内声场的传递函数。传递路径分析中首先需要明确所需分析的激励点,这根据不同性质的问题而定。例如,车身问题只需考虑底盘与车身耦合处的力激励;整车问题就需考虑车轴处、发动机悬置减振器处、空气压缩机悬置鉴真处、甚至活塞和汽缸缸壁之间的力激励。明确所需分析系统的耦合点后,下步就需要估计各种耦合激励力和各种传递函数,工作量常常很大。本文只考虑了动力总成与车

身耦合的激励,发动机激励通过悬置系统减振后,传递到车身所引起的车内噪声。

2.2、传递函数综合

与激励力相对应的传递函数可以通过实验测量得到,也可以通过数值或解析计算得到。实验直接测量传递函数一般要断开耦合系统,在耦合系统点用激振器激励,测量系统响应。另外一种测量方法是利用线形系统的互逆性,在响应点激励,然后测量耦合点的响应。例如,利用互逆性测量车身-力传递函数时,可以在人耳处放置空间无指向声源作体积速度激励,然后测量车身和底盘耦合点的速度响应。

前面指出整车传递函数一般包括了车身传递函数,悬架系统的传递函数或发动机悬置系统的传递函数。每次都测量这些传递函数,既效率低下又受时间和测试对象的限制。于是,一种间接估计传递函数方法应运而生。这种方法把事先得到的一系列非耦合子结构传递函数综合起来。事先得到的一系列非耦合子系统的传递函数可以来自实验,也可以来自数值解析计算。这种灵活性是传递路径分析的主要优点之一。

处理弹性结构受力后速度响应常常用到导纳的概念。导纳的定义是振动速度和激励力的比值,是机械阻抗的倒数。如果振动速度的拾取点和激励点重合,比值就称‘激励点’导纳。如果振动速度的拾取点远离激励点,比值就称为‘异点’导纳。

图————为A 耦合力分析示意图,假设系统A 的振动速度响应为VA 与导纳传递函数HA 和激励力FA 可以通过矩阵表示为:

}]{[}{A A A F H V =

考虑到系统A 与其他系统偶合,为分析方便我们把系统A 的传递函数矩阵进行划分:一部分是系统A ‘直接激励-响应’自由度,用R 表示,另一部分是‘偶合激励-响应’自由度,用S 表示。

???

???=SS A SR

A RS A RR A A H H H H H ][][][][][ 这样,是可以展开为:

?

??

??????????=??????S A R A SS

A SR A RS A RR A S A R A F F H H H H V V }{}{][][][][}{}{ 同理,可以写出另一个与系统A 耦合的系统

B 的矩阵式:

}]{[}{B B B F H V =

?

??

??????????=??????T B S B TT

B TS B ST

B SS B T B S B F F H H H H V V }{}{][][][][}{}{ 其中,系统B 传递函数矩阵同理划分成耦合激励-响应自由度,用S 表示;

直接激励-响应自由度用T 表示。

当把系统A 和B 作为一个新的耦合系统C 一起考虑时,耦合系统C 的矩阵式可以写成如下形式: }]{[}{C C C F H V =

或 ??

??????

?????????????=??????????T C S C R C TT C TS C TR C ST C SS C SR C RT C RS C RR C T C S C R C F F F H H H H H H H H H V V V

}{}{}{][][][][][][][][][}{}{}{

对于刚性耦合系统,利用耦合点速度连续性和力平衡条件可以推出耦合系统C 的传递函数矩阵与系统A 和B 的传递函数矩阵的关系如下:

[]T

TS B SS

A RS A SS

B SS A TS B SS A RS A TT

B SS

A SR A RS A RR

A TT C TS C TR C ST C SS C SR C RT

C RS C RR C H H H H H H H H H H H H H H H H H H H H H H ??

???

??

?

??-+???

??

??

?

??--????

??

??

??=????????

??-]

[][][][][]

[][][][000][][0][][][][][][][][][][][1

对于柔性耦合系统,耦合点速度连续性不再连续,但是相对偎依乘以偶合刚度S K 等于耦合力。这个边界条件加上平衡力条件可以推出系统C 传递函数矩阵

与系统A 一侧的表达式:

[]

T

TS B SS A RS A s SS B SS A TS B SS A RS A TT

B SS

A SR A RS A RR

A TT C TS C TR C ST C SS C SR C RT C RS C RR C H H H K j H H H H H H H H H H H H H H H H H H H ?????

??

?

??-++??

???

??

?

??--????

??

??

??=????????

??--]

[][][][][][]

[][][][0

00][][0][][][][][][][][][][][11ω

其中,][S K 是柔性耦合刚度矩阵。对应于x,y,z 方向的位移,][S K 可以表示为:

?

????????

?

??=??333

31][0

0000

00

00][][S S K K K 这里,假设各个柔性耦合子系统(如发动机的多点悬置减振器)相互之间不存在耦合,而且每个对角线上的非零子矩阵为:

????

?

?????=Z ZY

ZX

YZ Y YX

XZ XY X K K K K K K K K K K ][ 在通常情况下,][S K 矩阵由减振器实验台测量得到。特殊情况下,上面非零子局阵的非对角线元素(同一减振器不同方向上的耦合刚度)等于零,][S K 则成

为完全对角矩阵。

柔性耦合系统的耦合力为:

}){}]({[}]{[}{B A S S S s x x K x K f -==

与刚性耦合情况不同,柔性耦合系统C 的传递函数矩阵与系统B 一侧的表达式和耦合系统C 的传递函数矩阵与系统A 一侧的表达式是不一样的。柔性耦合系统C 的传递函数矩阵与系统B 一侧的表达式为:

[]

T

TS B SS B RS A s SS B SS A TS B SS B RS A TT

B TS

B ST B SS B RR

A TT C TS C TR C ST C SS C SR C RT C RS C RR C H H H K j H H H H H H H H H H H H H H H H H H H ?????

??

?

??-++??

???

??

?

??--????

??

????=????????

??--]

[][][][][][]

[][][][][0][][000][][][][][][][][][][11ω

注意到刚性耦合系统与柔性耦合系统的唯一区别在于逆阵项中的刚度矩阵

][S K .如果耦合刚度趋于无穷大,则该项消失,柔性耦合系统和刚性耦合系统的表达式完全一样。

如果耦合系统C 中激励力)(i 和响应点)(j 都在子系统B 中,那么耦合系统C 的传递函数矩阵可表达为:

Sj

B iS B Bij Cij S H H H }{][+=

其中,等式右边第一项受子系统B 直接影响,第二项受耦合力影响。 与前面的矩阵推导想对应,式 **亦可用耦合矩阵表示为:

Sj B S SS B SS A iS B Bij Cij H K j H H H H H ][)][][]([][1

1--++-=ω

耦合力传递比矢量为:

Sj B S SS B SS A Sj A Sj B H K j H H S S ][)][][]([}{}{1

1--++-==ω

如果耦合系统C 中激励力)(i 和响应点)(j 都在子系统A 中,那么耦合系统C 的传递函数矩阵可表达为:

Sj

A iS A Cij S H H }{][=

其中,等式右边只有受耦合力作用影响的一项。

与前面推导的矩阵相应,是**亦可用耦合矩阵表示为:

Sj B S SS B SS A iS A Cij H K j H H H H ][)][][]([][1

1--++?=ω

耦合力传递比矢量则与式**相同。

最后,对应结构A 和声腔B 耦合的情况,上述推导同样适用,只要知道声学传递函数PS A H ][,声腔内声压P 就可以表示为:

[]Bj Sj B s SS B SS A PS A F H K j H H H P ][)][][]([1

1--++=ω

2.3、耦合激励力

一个复杂系统如汽车在不同工作状态下所受的激励力是不一样的。假设系统工作状态给定,耦合激励力可以直接测量得到,也可以间接测量得到。直接测量是指在所需分析系统耦合处附加力传感器。在实际中,常常用实现标定过的弹簧减振器来代替力传感器。耦合激励力用测量到的弹簧相对位移nk X 来表示:

()

nk nk F K X ω=??

式中,K 是事先标定过的弹簧减振器的动态刚度。

直接测量耦合激励力实习操作会遇到很多问题。首先,力传感器尺寸和安装条件会受到限制;其次,要考虑如何保证嵌入的弹簧力传感器不改变耦合点的实际工作状态(如预应力),同时还需要考虑如何保证弹簧相对位移的测量精度。

间接测量方法不需要嵌入的弹簧力传感器,这在一定程度上避免了直接测量方法的不足。间接测量方法是测量局部耦合系统的响应,通过传递函数矩阵逆变化来反推耦合激励力。

汽车上多种激励力通过多种交叉途径传到车身上的多个结构支撑点,每点的力又要细分为X,Y,Z 三个方向。本章前面已经论述过传递路径的矩阵分析,数学上严谨,但较为复杂。为了深入理解其物理意义,这里考虑一个非常简单的模型,即单激励力和单一途径的力传递分析,如图:

假设弹性结构A (如托架)受到动态力F1在点1激励,结构A 和结构B (如车身)相连,连接点在结构A 点2和结构B 点的3。分析的目的是要估计连接点的耦合力和结构B 点4的速度响应。

如果结构A 不与结构B 相连,同时假设结构A 受F1激励在点2的导纳为Y12,,则结构A 受F1激励在点2的振动速度为:

1122V F Y =?自由

这个速度称为自由速度,因为结构A 在受点2不受约束。

如果结构A 如上图与结构B 相连,连接点的耦合力可以通过位移连续边界条件推导出来。但更直观的方法是把连接点的节些耦合等效成电流回路:2V 自由是电源电压,结构A 和结构B 各自在点2和点三激励点导纳为电阻,耦合力作为电流就可以写成:

2112

22332223()

(23

V rigid

F Y Y Y Y Y F ++=

=

自由

)

根据耦合力23F ,结构B 点4的速度响应为:

11234

2223()

42334F Y Y Y Y V F F +==

注意到上面两个式子中的分母都是2233Y Y +,代表了等效电路中的总电阻。如果结构与结构B 不是刚性相连,而是通过隔振器柔性连接,如果所示:

等效电路汇总的总电阻就成为2233iso Y Y Y ++。其中,iso Y 为隔振器的导纳。在这种情况下,耦合力就成为:

112

2233()

23iso iso

F Y Y Y Y F ++=

LMS Testlab Tansfer Path Analysis

LMS https://www.sodocs.net/doc/7415558609.html,b Transfer Path Analysis 传递路径分析 探究振动噪声问题的根源 LMS https://www.sodocs.net/doc/7415558609.html,b传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。 作为一个全面理解振动噪声问题的方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。 在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。进气和排气系统的空气传播也会对振动噪声问题有一定的影响。 强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。LMS https://www.sodocs.net/doc/7415558609.html,b提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。 从故障诊断到根源分析 传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。 激励源-路径-响应:系统级的方法 LMS https://www.sodocs.net/doc/7415558609.html,b传递路径分析是基于激励源-路径-响应的系统解决方案。所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。完整的解决方案 LMS https://www.sodocs.net/doc/7415558609.html,b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。LMS https://www.sodocs.net/doc/7415558609.html,b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。LMS https://www.sodocs.net/doc/7415558609.html,b TPA综合了一系列TPA技术,包括LMS https://www.sodocs.net/doc/7415558609.html,b单参考传递路径分析、空气声定量分析、LMS https://www.sodocs.net/doc/7415558609.html,b多参考点传递路径分析、LMS https://www.sodocs.net/doc/7415558609.html,b OPAX传递路径分析方法以及LMS https://www.sodocs.net/doc/7415558609.html,b时域传递路径分析等。 管理海量数据 LMS https://www.sodocs.net/doc/7415558609.html,b传递路径分析软件可以对整个测试任务中的所有数据进行快捷高效的管理。根据数据中内嵌的试验描述信息,如分析函数类型、测点位置标识、各个传递函数以及工况数据,将在传递路径模型中自动完成排序和定义。这个自动处理功能可以保证排除数据处理过程中的人为操作失误,并保证数据处理的高效性。 相似的处理过程可以同时运用于各种不同的工况。对于

微博传播路径分析图

微博传播路径分析图 作者: | 来源:艾瑞网 发布于:2011-07-25 微博的功能在于可扩大媒体传播力度、相同话题的群体、以关系为核心的群发布,而媒体的盈利模式在于广告推送,是被动接受,恰恰微薄传播方式是 主动获取所以在信息接收层面来说,微博的软营销与微博的产品诉求是冲突的。 企业可以通过各种手段(如通过奖励的转发评论等)带来的粉丝,是被动加入的,而非主动加入。因为对于企业所提供信息而言,并没有给粉丝明确的 需求。其实企业通过微博在线上获取的用户,最大的问题就是用户转化率问题。 而转化率的关键在于通过长时间的转发从而真正寻找到合适恰当的用户,这需 要较长的时间与较大的精力和财力的投入。 企业建立微博的路径: 第一,企业投入一定的成本,或通过线上活动,或通过线下推广,获得大规模粉丝关注(当然通过这样的手段所获得的粉丝的忠实度需要思考)。 第二,通过发布大量可读性的信息,吸引大量用户对其话题的讨论、转发。 从而引发更多的关注与粉丝。这要求博主找到与自身企业与公众之间好的话题 切入点,同时企业要花费大量精力与成本对内容持续长期的经营。事实证明,企业结合自身行业,对该行业的分析论述更容易找到最终的客户群体,并能引 发较长尾的Follow。 思考: 默默的为微博平台提供有价值可读的信息,一旦内容失去可读性,粉丝群将大量流失。之前的工作将前功尽废。 企业微博传播路径图:

释义: 行业知识(行业分析、价格指数): 跟随者:客户、准客户 转化率:随Follow的级别的增加跟随者数量减少但是客户的精度也随之提高。 营销: 1、活动: 跟随者:非客户、准客户、客户

转化率:前期建立的粉丝较多,但精准性差,Follow的级别多,精度不高。 活动的一级传播是针对原有企业粉丝,所以一级传播精准度较高之后级别更高。 2、硬广 跟随者:无跟随 最后值得一提的是从信息的传播上来看,当年社区的泛娱乐化传播和今日的微博非常相似,而这些社区也在苦苦思索盈利模式,营销传播模式,其根源并非在于泛娱乐化平台,而在于这些以群、圈、关系、兴趣点为核心的社区是否能够为用户解决实际问题,单纯的信息传播,恐怕很难成为垄断级产品。 所以微博是猫扑、天涯是博客还是qq,就要看能否改变泛娱乐化的信息传播模式,提出更具实用价值的功能,才是微博的杀手级别的应用。微博值得思考当年的腾讯qq是怎样通过对用户生活的微渗透,从娱乐化工具逐渐转变为实用性工具的。

LMS https://www.sodocs.net/doc/7415558609.html,b 传递路径分析

传递路径分析 探究振动噪声问题的根源 LMS https://www.sodocs.net/doc/7415558609.html,b 传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。 作为一个全面理解振动噪声问题的方法,TPA 有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。 在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。进气和排气系统的空气传播也会对振动噪声问题有一定的影响。 强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。LMS https://www.sodocs.net/doc/7415558609.html,b 提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。

从故障诊断到根源分析 传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。 激励源-路径-响应:系统级的方法 LMS https://www.sodocs.net/doc/7415558609.html,b传递路径分析是基于激励源-路径-响应的系统解决方案。所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。 完整的解决方案 LMS https://www.sodocs.net/doc/7415558609.html,b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。LMS https://www.sodocs.net/doc/7415558609.html,b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。LMS https://www.sodocs.net/doc/7415558609.html,b TPA综合了一系列TPA

传递路径分析法

传递路径分析法 对复杂的汽车系统来说,如何找到一种既能较好地表征整车振动噪声特性,而其实现起来又较为简明、迅速的方法,一直是汽车NVH 研究人员孜孜以求的目标。近年来,基于频率响应函数(FRF )的车内噪声传递路径分析方法成为各大汽车公司和汽车研发中心的主要研究方向之一,这种方法从子结构传递函数的角度出发,在频域上描述了系统的振动噪声特性,为汽车噪声预测、振动噪声快速诊断等工作提供了一种快捷、精准的有利工具。此方法建立的模型中,一般把整个系统划分为几个较为独立的子结构,每个子结构都以频响函数来表征其结构特性,各子结构之间通过各种弹性元件相联结来传递信息。图2.1即为一个由动力总成和车身组成的简单汽车模型,在这模型里,汽车被划分成两个子结构,一个是车身子结构(以子结构A 表示),另一个是动力总成子结构(以子结构B 表示),二者之间通过动力总成悬置相联结。在研究过程中,可将此系统进一步理论化,把各子结构简化成一个个结构块,把联结子结构的各弹性元件(如动力总成悬置)简化成各个标量弹簧。这样,系统就以“结构块-弹簧”的形式表征出来,本章的主要工作即是研究这种“结构块-弹簧”与系统之间的关系,推导相关函数,建立基于频率响应函数的车内噪声传递路径分析方法[15][27~40]。 2.1、系统响应 假设一辆汽车受m 个激励力作用,每一个激励力都有x,y,z 三个方向分量(下面分别用k=1,2,3表示),每一个激励理分量都对应n 个特定的传递路径,那么这个激励理分量和对应的某个传递路径就产生一个系统的响应分量。以车内噪声声压作为系统响应,这个声压分量可以表示为: 其中,是传递函数,是激励力的频谱。 车内噪声声压受某个激励力作用,传递过来的所有声压成分之和可表示为: 车内噪声受所用激励力作用,传递过来的所有声压成分之和可表示为: 在式(2.1)中,激励力如果直接作用在车身,所对应的传递函数就是车身传递函数;激励力如果直接作用在车轴,所对应的传递函数就是从车轴到车身,再到车内声场的传递函数。传递路径分析中首先需要明确所需分析的激励点,这根据不同性质的问题而定。例如,车身问题只需考虑底盘与车身耦合处的力激励;整车问题就需考虑车轴处、发动机悬置减振器处、空气压缩机悬置鉴真处、甚至活塞和汽缸缸壁之间的力激励。明确所需分析系统的耦合点后,下步就需要估计各种耦合激励力和各种传递函数,工作量常常很大。本文只考虑了动力总成与车()() mnk mnk nk p H F ωω=?mnk H nk F ,3,3 1,11,1()() N N m mnk mnk nk n k n k p p H F ωω===== =?∑∑m m p p =∑

核电工程建设进度控制的关键路径分析

核电工程建设进度控制的关键路径分析 发表时间:2017-06-13T16:19:24.933Z 来源:《电力设备》2017年第6期作者:龙球刘慧[导读] 摘要:文章以某核电工程为例,分析研究核电工程建设进度控制关键路径。 (中核集团中国核电工程有限公司 100840) 摘要:文章以某核电工程为例,分析研究核电工程建设进度控制关键路径。研究结果显示,核电工程建设进度控制关键路径包括:一是核岛土建,二是核岛安装,三是单系统调试,四是联合调试。其中,核岛土建进度控制关键路径是:一是厂房主体施工,二是预应力张拉,三是重点区域的移交,四是关键接口的移交。核岛安装的进度控制关键路径为:一是冷态调试,二是单系统调试,三是联合调试。 关键词:核电工程建设;进度控制;关键路径 不同的核电工程特点不同,建设进度控制的关键路径也就会有所不同,在建设核电工程时可以合理的借鉴和参考其他核电工程进度控制关键路径,提高核电工程建设质量,降低核电工程建设成本。 1核电工程核岛土建进度控制的关键路径分析 1.1核电工程土建主体进度控制关键路径 土建工程进度控制的关键路径是:一是厂房主体建设,二是预应力拉张工程。在核电工程建设过程中,对土建工程安装有较大影响的因素有:一是房间的移交,二是土建接口的移交。对此,在土建工程建设中不仅要对厂房主体进度进行控制,还需要对接口的移交进行控制,特别是在土建工程安装初期,移交工作量非常大。厂房主体是土建工程施工的关键环节,厂房主体的施工阶段有:一是负挖,二是地质检查,三是防水层施工,四是筏基施工,五是贯穿件安装,六是底板安装,七是混凝土施工,八是内部结构施工,九是环吊安装,十一是穹顶预制,十二是穹顶吊装,十三是预应力张拉工程。 其中,环吊支架安装已经成为环吊轨道安装的基础,安装人员一定要严格按照顺序进行安装。预应力工程建设对于贯穿件的安装进度影响较大,也属于进度控制的关键路径。 1.2土建房间移交的进度控制关键路径 土建房间移交建设已经成为土建接口安装的关键体现,以文章某市核电工程为例,该核电工程有土建房间1700个,在土建房间移交的过程中必须保证核岛安装的顺利开展,这也是核电工程建设的根本目的。在土建房间移交进度控制过程中,必须要合理制定土建房间移交进度控制计划,加大土建房间移交建设力度。 1.3土建安装接口的移交 土建安装接口对于整个核电工程建设都有着较大影响。除此之外,核清洁也是核电工程建设进度控制的关键路径之一。核清洁在调试后,关键集中在土建厂房,在核清洁过程中,同时可以展开以下工作:一是核岛安装前的检查工作,二是核岛保温安装,三是阻尼器的安装,四是安全壳打压试验。核清洁需要大概60天的时间,时间相对较短,但是现场协调的难度相对较大,需要安装人员谨慎对待,保证整个核电工程建设进度。核清洁是开展安全壳打压试验的前提和基础。 2核电工程核岛安装的进度控制关键路径 2.1核岛安装工程量的分析 文章某核电工程内部设置有12个机电安装包,结合实际情况合理借鉴了法国机电安装包的安装模式,主要以“点”为安装计算单位,每个点值都代表了工人一小时的安装量。核岛安装包括:一是辅助管道安装,二是电气设备安装。其中,辅助管道安装量占核岛安装工程量的45%,电气设备安装量占核岛安装工程量的35%。对此,辅助管道安装和电气设备安装都是核电安装中需要谨慎对待的。在辅助管道安装完成之前还需要设置633个回路检查和实验工作,这也是辅助管道安装的关键内容。无论是辅助管道安装还是电气设备安装对于安装技术的要求都比较高,建设企业必须引进先进的安装技术,并保证安装技术应用的合理性。 2.2核岛安装进度控制关键路径分析 核岛安装进度控制关键路径受到以下几个因素的影响:一是核岛安装工程量,二是土建房间移交特性,三是联合调试系统实际需求,四是土建房间系统的分布情况。核岛安装进度控制关键路径包括:一是回路蒸汽系统,二是轨道安装,三是环吊安装试验,四是主回路设置,五是水管线安装,六是区管道安装,七是常规岛安装,八是发生器安装,九是试验。核岛安装过程中需要涉及以下几个系统:一是反应堆厂房吊装系统,二是冷却剂系统,三是核回路冲洗系统,四是余热排除系统。核电安装进度控制路径和土建工程进度控制路径紧密相联,其中,环吊移交是进度控制关键路径中最为关键的,环吊安装又是穹顶安装的基础和前提,技术难度相对较大。 核电安装的另一个进度控制路径为:一是设备冷却系统的安装,二是泵房安装,三是混凝土管道安装,四是设备管道安装。这一核电安装进度控制路径所涉及到的系统有:一是消防水生产系统,二是水泵房通风系统,三是机电房通风系统,四是设备冷却水系统,五是盐水分配系统,六是通风系统,七是注射系统。 核岛调试也是进度控制关键路径,核岛调试方式有以下几种:一是单系统调试,二是系统联调。调试人员要先调试单系统,然后再进行系统联调,顺序不能改变。不同的系统功能和特性不同,对调试的要求也会有所不同。 结语: 不同的核电工程特点不同,建设进度控制的关键路径也就会有所不同,在土建工程建设中不仅要对厂房主体进度进行控制,还需要对接口的移交进行控制。环吊支架安装已经成为环吊轨道安装的基础,预应力工程建设对于贯穿件的安装进度影响较大,安装人员一定要严格按照顺序进行安装。在土建房间移交进度控制过程中,必须要合理制定土建房间移交进度控制计划,土建安装接口对于整个核电工程建设都有着较大影响。核清洁也是核电工程建设进度控制的关键路径之一,核清洁需要大概60天的时间,时间相对较短。辅助管道安装和电气设备安装都是核电安装中需要谨慎对待的,无论是辅助管道安装还是电气设备安装对于安装技术的要求都比较高,建设企业必须引进先进的安装技术。核电安装进度控制路径和土建工程进度控制路径紧密相联,环吊安装又是穹顶安装的基础和前提,技术难度相对较大。核电工程建设进度控制对于技术人员的专业水平和综合素质都提出了较高的要求,企业必须加强技术人员培训,提高技术人员的专业水平。 参考文献: [1]刘鑫. 基于关键链方法的充电站建设项目进度管理研究[D].华北电力大学(北京),2016. [2]陈山根. 华能石岛湾高温堆示范电站进度控制研究[D].哈尔滨工业大学,2016.

32_路面噪声传递路径分析与优化

路面噪声传递路径分析与优化 Transfer Path Analysis and Optimization of Road Noise 李朕王亮高亚丽王伟东 (泛亚汽车技术中心有限公司上海201209) 摘要:本文介绍了传递路径分析在路面噪声优化中的应用。借助HyperGraph的NVH分析模块,在纯仿真的环境下应用传递路径分析,在开发更早阶段找到问题根本原因。从本文的优化结果来看,基于纯仿真的传递路径分析周期短,优化效果好。 关键词:汽车NVH 路噪传递路径HyperGraph Abstract: Transfer path analysis was applied in road noise analysis. It is possible to find noise root cause in early stages of vehicle development process by using HyperGraph transfer path analysis in virtual environment. CAE based TPA is more efficient than test based TPA. Key Words: vehicle, NVH, road noise, TPA, HyperGraph 1 介绍 路面噪声是车辆NVH性能开发过程中控制的一个重要指标。它作为车内主要声源影响乘员舒适性。按照传递路径不同,路噪可分为结构传递声与空气传递声。本文介绍传递路径法(下文简称TPA)在结构传递声分析与优化中的应用。 结构传递路噪典型递路径如下。路面激励通过轮胎传递到轮心,轮心传入悬架,再通过悬架传递到车身。其中悬架与车身界面有多条传递路径。使用TPA方法能识别出噪声传递的主要路径和次要路径。随着建模、求解以及后处理的进步,基于仿真的TPA方法能够在早期快速准确的分析问题。 2 分析方法 影响路噪的主要因素有轮胎、悬架形式、衬套刚度以及车身侧底盘连接点的噪声传递函数。越软的衬套和轮胎隔振效果越好,对路噪越有利。但衬套过软会影响车辆的操控稳定性。为了不影响操控稳定性,本文重点关注车身噪声传递函数的优化。受限于燃油经济性的限制,传递函数优化不能以牺牲重量为代价。使用TPA方法识别出关键路径,能在不牺牲重量的情况下满足整车振动噪声的要求。

最短路径分析

分类号 密级 编号 2015届本科生毕业论文 题目基于AHP决策分析法和Dijkstra 算法的最短路径 学院资源与环境工程学院 姓名杜玉琪 专业地理科学 学号20111040205 指导教师王荣 提交日期2015年5月8日

原创性声明 本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。 本声明的法律责任由本人承担。 论文(设计)作者签名: 指导老师签名: 签名日期: 2013 年 5 月18 日 目录

0 引言 (3) 1 研究区概况 (4) 2.数据来源与研究方法 (4) 2.1数据来源 (4) 2.2研究方法 (5) 2.2.1AHP决策分析方法 (5) 2.2.2Dijkstra算法 (6) 3实例分析 (7) 3.1 基于AHP对3A级景区决策分析 (7) 3.1.1层次结构模型的构造 (7) 3.1.2模型计算过程 (8) 3.1.3结果分析 (10) 3.2基于Dijkstar算法对3A级景点旅游路线的设计 (10) 3.2.1旅游路线模型构造 (10) 3.2.2模型计算与分析 (13) 4结语 (13) 参考文献 (14) 致谢 (15) 基于AHP决策分析法和Dijkstar算法的最短路径分析

——以天水市3A级旅游景点为例 杜玉琪 (天水师范学院资源与环境工程学院甘肃天水741000) 摘要:随着西部旅游业的发展,旅游最佳路线的选择变得越来越重要。本文运用AHP决策分析的方法进行综合评价分析天水市众多旅游景点中的麦积石窟、伏羲庙、玉泉观、南郭寺、大象山、武山水帘洞、清水温泉,这7个3A级景点各自的旅游价值。再通过Dijkstar算法,对上述旅游景点的最短旅游路线的选择进行研究,最终为不同要求的游客提供出最佳的旅游路线。 关键字:AHP决策分析;Dijkstar算法;最短路径分析;天水市 Based on the AHP decision analysis method and the analysis of Dijkstar algorithm of the shortest path ——in tianshui 3 a-class tourist attractions as an example Abstract:With the development of the western tourism, tourism optimal route choice is becoming more and more important.This article applies the method of AHP decision analysis on comprehensive evaluation analysis of the numerous tourist attractions tianshui wheat product, yuquan view, nanguo temple grottoes, fu xi temple, the elephant, wushan waterfall cave, water hot springs, the seven aaa scenic spot tourism value. Again through the Dijkstra algorithm, the choice of the tourist attractions of the shortest travel route, finally for different requirements of the best travel route for tourists. Key words: Analytic hierarchy process; Dijkstar; Shortest path; tianshui city 0 引言 随着西部旅游业如火如荼的发展,天水市自驾旅游开始被越来越多的人选择。自驾车旅游者追求以最少的花销走更远的路,看更优美的风景。因此设计出一条多景点间距离最短(或费用,时间最少)的旅游线路是自驾车游客的现实需求[1]。而对于旅游景点的评价及旅游线路的选择问题,是旅游学术界一直关注的课题。众多学者所采用的方法,大体可归纳为主观定性评价和客观定量评价。景点评价方法在我国开展的时间并不长,主要侧重定性描述,较缺乏定量

资料-基于LMS https://www.sodocs.net/doc/7415558609.html,b的破壁机振动噪声研究

1 引言 随着豆浆机使用的日益普及,作为豆浆机升级产品的破壁机因转速高破碎效果好等因素而受到市场的青睐,而噪声问题成为影响破壁机性能体验的关键因素。而振动噪声问题的解决不仅需要信号的采集,同时需要对信号处理分析等要求。 LMS https://www.sodocs.net/doc/7415558609.html,b是一整套的振动噪声试验解决方案,是高速多通道数据采集与 试验、分析、电子报告工具的完美结合,包括数据采集、数字信号处理、结构试验、旋转机械分析、声学和环境试验。 通过LMS https://www.sodocs.net/doc/7415558609.html,b的采集分析系统可以获得破壁机实际的模态振型和ODS振型,与CAE振动响应仿真结合,从而为得出了有益的结论。为破壁机的振动噪声研究提供了一个新的思路和方法。 2 传递路径分析与声源识别 2.1 破壁机噪声传递路径分析 破壁机主要由机头(含电机,控制板,刀架等)、机壳(盛装食材)、底座(支撑机身)三部分构成,工作时电机超高速运转(14900rpm),带动不锈钢刀片,在杯体内对食材进行超高速切割和粉碎,从而打破食材中细胞的细胞壁,将细胞 噪声主要来源和传递路径分析 2.2

声压全息法测试: 对破壁机采用近场声压测试,用麦克风测试距离被测物体表面10mm处的声压,获得各个点的频谱,然后按照频段将各个点的值画成等高线,数值大小用颜色表示。 图2 声压全息法声源识别(250HZ) 声压全息法测试结果显示:转速基频250Hz异音为主要异音频率,主要集中在杯座和底座,其中底座主要是3个侧面辐射出去,基座底部基频噪声较高,靠近后排风口处最高。 3仿真模型与测试的对比及分析 3.1 建立结构有限元模型和模态几何模型 仿真边界条件设置:整个破壁机采用重力作用下的预应力分析,底座胶垫底面和地面采用固定支撑,转子表面添加频率为250Hz的旋转离心力2.167N,杯中的水用质量点等效,绑定在杯子中部。将偏心力加载到电机结构有限元模型中,进行振动响应分析,获得各倍频下的振动响应(重点为基频)。

路径分析

路径分析 概念 一种研究多个变量之间多层因果关系及其相关强度的方法。由美国遗传学家S.赖特于1921年首创,后被引入社会学的研究中,并发展成为社会学的主要分析方法之一。 目的 路径分析的主要目的是检验一个假想的因果模型的准确和可靠程度,测量变量间因果关系的强弱,回答下述问题:①模型中两变量xj与xi间是否存在相关关系;②若存在相关关系,则进一步研究两者间是否有因果关系;③若xj影响xi,那么xj是直接影响xi,还是通过中介变量间接影响或两种情况都有;④直接影响与间接影响两者大小如何。 步骤 路径分析的主要步骤是:①选择变量和建立因果关系模型。这是路径分析的前提。研究人员多用路径图形象地将变量的层次,变量间因果关系的路径、类型、结构等,表述为所建立的因果模型。下图是5个变量因果关系的路径。 路径分析 图中带箭头的直线“→”连接的是具有因果关系的两个变量,箭头的方向与因果的方向相同;当两变量只有相关关系而无因果关系时,用弧线双向箭头表示。图中变量分为:a.外生变量。因果模型中只扮演因,从不扮演果的变量,是不受模型中其他变量影响的独立变量,如x1与x2。b.内生变量。模型中既可为因又可为果的变量,其变化受模型中其他变量的影响,如x3、x4与x5。c.残差变量。来自因果模型之外的影响因变量的所有变量的总称,如e3、e4、e5。若变量间的关系是线性可加的,则图中的因果模型可用3个标准化多元线性回归方程表示: 方程 pij称为由xj到xi的路径系数,它表示xj与xi间因果关系的强弱,即当其他变量均保持不变时,变量xj对变量xi的直接作用力的大小称为残差路径系数,它表示所有自变量所不能解释的因变量的变异部分,其大小对于因果模型的确定有重要作用。②检验假设。路径

传递路径分析法(TPA)进行车内噪声优化的应用研究

传递路径分析法(TPA)进行车内噪声优化的应用研究 作者:李传兵 摘要:本文基于传递路径分析方法并使用LMS 公司的相关软件,对开发中的某车型的车内轰鸣噪声问题进行了分析,找出了对车内轰鸣声贡献最大的传递路径,并通过有针对性地结构改进,有效地消除了该转速下的轰鸣声问题。 关键词:NVH 传递路径分析法(TPA,Transfer path analysis)贡献量分析 车内振动噪声可以看成是由多个激励经过多条传递路径到达目标点叠加而成的,如果能准确地判断出各主要激励源和传递路径的贡献量,并针对贡献量大的激励源和传递路径作相应的优化改进,则NVH 改进工作效率能得到大大的提高。为此,在汽车的NVH 性能分析中,常常将汽车简化为由激励源(振动源、噪声源)、传递路径和响应点组成的动态系统。能同时考虑激励源和传递路径的传递路径分析法在汽车NVH 性能开发中得到了广泛关注,各专业公司都纷纷开发专门的商业化测试分析系统,LMS 的TPA 分析软件无疑是其中的杰出代表,已成为在汽车领域应用最广泛的商业系统之一。 传递路径分析方法可以用于结构传播噪声和空气传播噪声问题的诊断、分析和优化,本文将以某车型的结构传播噪声优化为例,详细阐述LMS 传递路径分析方法的实际应用过程和效果。 一、(结构)传递路径分析法基本原理 假设汽车受m 个激励力作用,每一激励力都有x、y、z 三个方向分量,每一激励力分量都对应着n 个特定的传递路径,那么这个激励力分量和对应的某个传递路径就产生一个系统响应分量。以车内噪声声压作为系统响应,在线性系统的假设基础上,这个由于结构力输入产生的声压则可以表示为: 上式中,(ω) mnk H 是传递函数,(ω) nk F 是激励力。 由上式所知,激励力和频响函数是TPA 分析的输入量,因此进行TPA 分析需要做的工作

车内噪声传递路径分析方法探讨

第 27 卷第 3 期2007 年 9 月振动、测试与诊断 Jou rna l of V ib ra t ion,M ea su rem en t & D iagno sis V o l 27 N o. 3 . Sep. 2007 车内噪声传递路径分析方法探讨郭荣万钢赵艳男周江彬 ( 同济大学新能源汽车工程中心上海, 201804) 摘要为了指导汽车NV H 工程师更好地进行故障诊断和声学设计, 介绍了传递路径分析 ( T PA ) 方法的基本原理, 详细分析传递函数和激励力的测量方法, 并以某型汽车发动机振动噪声向车内传递为例, 介绍 T PA 方法的应用。试验结果表明, 应用 T PA 方法可有效、方便地进行噪声源识别和贡献分析。关键词车内噪声传递路径分析传递函数激励力贡献分析中图分类号U 461. 3 引言近年来, 人们对汽车行驶时的NV H 性能, 即噪声 (N o ise ) 、振动 (V ib ra t ion ) 、舒适性 (H a rshness) 越来越关心和重视, 车内的低噪声设计已成为产品开发中的重要研究课题[ 1 ]。传递路径分析 ( T ran sfer Pa th A na lysis, 简称 T PA ) 是一种以试验为基础的方法, 可让NV H 工程师寻找声源通过结构或空气传递到指定接受位置的振动——声学功率流。 PA 经常是与部分贡献的概 T [1 ] 念相联系的。这是由于传递路径分析中假设: 来自不同路径的所有部分贡献构成了总响应。对传递路径分析方法和应用许多研究者进行了大量的研。 1993 年, 文献 [ 1 ] 使用互易性机械2声学传递函数测量方法, 进行结构传递噪声诊断。1996 年, P. J. [2 ] G. van der L inden 等和 1997 年 W im H end ricx [ 1- 11 ] 的影响。文献 [ 8 ] 基于 T PA 技术提出了子系统目标设置方法, 即将系统级 NV H 目标分解到子系统级目标, 并以道路噪声问题描述该方法的应用。文献[ 9 ] 提出了基于传递路径矩阵转置的车身板件噪声贡献分析方法。 2005 年, 文献[ 10 ] 应用试验方法研究中频结构传递噪声, 通过阻抗方法和最小平方方法估计路径上的作用力, 并研究不同路径结构噪声的等级排序方法。文献 [ 11 ] 应用传递路径方法分析不同车身板件对车内噪声的贡献, 将驾驶舱分割成 7 个板件, 每个板件又分成20 个子板件。该文应用互易法测量空气声传递函数, 引入了新型传感器 ( 声学速度传感器) 阵列测量板件振速。当前, 系统的 T PA 方法在国外应用较为广泛而且还在不断发展, 我国汽车 NV H 领域应用还刚起步。本文将介绍 T PA 的基本原理, 详细分析传递函数和激励力的测量方法, 并以某型国产轿车为例介绍该方法的应用, 以期指导和帮助汽车NV H 工程师进行故障诊断和声学设计。Ξ 究等[ 3 ] 介绍空气传播声量化方法基本原理, 分析不同车身板件对车内噪声的贡献。 1999 年, 文献 [ 4 ] 引入间接力估计技术, 并把它应用于汽车传递路径分析。文献 [ 5 ] 提出了双通道传递路径分析 (B T PA ) 方法, 可用于汽车声品质、声学设计和故障诊断。 2003 年, 文献 [ 6 ] 介绍了 H ead 公司开发的用于 1基本原理 [1 ] T PA 方法的基本原理基于假设 : 来自不同路径的所有部分贡献构成了总响应 Pk = 测量声学传递函数以及结构2声学传递函灵敏双通道声源 ( 或称人工头扬声器) , 并把它可用于双通道传递路径分析。文献[ 7 ] 应用 T PA 方法研究发动机声品质, 研究不同部件改进对曲柄隆隆声主观感觉Ξ ∑P i, j ijk ( 1) 其中: P k 为乘员位置 k 处的总声压; P ijk 为传递途径 i 在 j 方向对乘员位置 k 总声压的部分贡献。 P ijk = H ijk S ij ( 2) 国家“八六三” 基金资助项目 ( 编号:

Transfer Path Analysis Procedures传递路径分析(TPA)的过程

Transfer Path Analysis Procedures 传递路径分析(TPA)的过程 1 试验前准备 传递路径分析(TPA)可用于发动机和路面噪声的分析。首先检查问题是什么。简单地测量一下目标点的振动和噪声,理解问题的本质。然后选择振源(通常是发动机的悬置),鉴别所有可能的从振源到驾驶员的能量传递路径。传递路径分析是在系统边界点进行的(如发动机悬置,或悬架的支座)。 1.1 数据要求 开始试验前准备一个系统试验图,列出所有测量点。建议使用下列命名规则:body:点号:方向――车身一侧的测量都用部件名“body” engi:点号:方向――发动机一侧的测量都用部件名“engi” susp:点号:方向――悬架一侧的测量都用部件名“susp” 在发动机支点位置的振源和车身两侧使用同样的点号,但部件名不同。 在目标位置的测量,请使用不同的部件名,如“seat:0000“+Z”或对于方向盘“ster:9999:+X”。这样在大型试验中容易找到目标数据。麦克风信号可以用方向“S”。 所有数据可以保存在Cada-X的一个或多个不同项目中。把运行数据,频响函数和悬置刚度放在不同的试验中。 1.2 正确实施 传递路径分析生成大量的数据,在开始测量之前制定一个好计划非常重要。 所有的传递路径问题都可能是不一样的。本文档给出了在货车或箱式车上作典型的发动机和路面的传递路径分析的实施过程。因为不可能写出精确的试验指导书,所以为了得到好的结果,理解测量得到的信息并尝试不同的方法是很重要的。 另外,有两本TPA理论和实践手册,在线帮助也提供了软件操作过程。

2 运行数据测量 2.1 数据要求: 悬置刚度方法:所有支座两侧的加速度,目标信号 逆矩阵方法:所有支座车身一侧的加速度,加上车身上等量的附加点。附加点不应靠近力作用点,但也不要太远。大约离力作用点20至40厘米是合适的做法。 2.2 准备 将麦克风和加速度计安装到车上。在振源上放一个参考加速度计(可以是一个方向)。如果测量发动机,最好在发动机本体的垂向放置参考点。对于悬架,每个轮上都设置参考点。参考信号必须是前端的第一个通道。接着是目标信号(麦克风或加速度),再往后是其它的加速度计。当测量悬置两边的信号时,必须同时测量振源一边和车身一边。如果做发动机升速,应当接入转速计信号至前端的PDT模块。 仔细测量目标传感器的位置并作记录,以便在同一位置测量传递函数。用画笔把所有其它测点在车上作标记,包括其名字。 对于稳态数据,用Cada-X FMON的直通采集;对于发动机升速,用Test Lab。 2.3 进行测量 1. 输入所有传感器的标定值,用 m/s2。点击进入 “channel identification”检查前端 的耦合方式设置,ICP或AC。 2. 设定采样频率:大于两倍的分析频率。多数问题可以用2048 Hz。 3. 将车辆预热至稳定的温度和工况。关闭所有附件,收音机等,并确保车窗关 紧。 4. 进行前端放大器自动调整量程(Autorange)操作。在单转速或车速时用 “stationary”,作发动机升速时用 “transient”。如果信号变化大,常将“overhead” 设为9dB or 12 dB。 5. 使用自动调整量程的“verify”检查前端的过载。观察前端和软件界面的指示灯。 6. 检查自动调整量程增益情况,用预览preview确保所有传感器工作正常。观察预 览中数据的峰值,典型的数值范围是1至100m/s2。 7. 采集三遍数据,不同工况用不同的TDF文件名,不同工况和运行流水号对应不 同的作业名 (idle_1, idle_2, …)。通常等速工况测量20至30秒的数据,所有工 况都照此进行。 8. 用Time Data Processing Monitor / Strip Chart Display检查时域数据,或者使用 FMON Throughput Acquisition的“Overview”功能。确保所有时间信号具有真实 幅值,没有毛刺或断线。对于等速试验保证在记录长度上幅值不变。【检查时域数据用Time Data Processing Monitor:Cada-X主界面// Test// Time data processing monitor。在Time data processing monitor界面:Options// Trace list。 在Trace list界面:File// Select TDF…// Open。在Recording list界面:选择数据

路径分析和结构方程模型

路径分析和结构方程模型 结构方程模型(Structural·Equation·Modeling,SEM)结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟,可惜国内了解的人并不多。"在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。 三种分析方法对比 线性相关分析:线性相关分析指出两个随机变量之间的统计联系。两个变量地位平等,没有因变量和自变量之分。因此相关系数不能反映单指标与总体之间的因果关系。线性回归分析:线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因,导致出现单项指标与总体出现负相关等无法解释的数据分析结果。结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。简单而言,与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。"目前,已经有多种软件可以处理SEM,包括:LISREL,AMOS,EQS,Mplus.结构方程模型假设条件合理的样本量(James Stevens的Applied Multivariate Statistics for the Social Sciences一书中说平均一个自变量大约需要15个case;Bentler and Chou(1987)说平均一个估计参数需要5个case就差不多了,但前提是数据质量非常好;这两种说法基本上是等价的;而Loehlin(1992)在进行蒙特卡罗模拟

自动变速器动力传递路线分析

自动变速器动力传递路线分析(一) 2007/4/12/09:55 来源:汽修之家 一.自动变速器动力传递概述 自动变速器由液力元件、变速机构、控制系统、主传动部件等几大部分组成。变速机构可分为固定平行轴式、行星齿轮式和金属带式无级自动变速器(CVT)三种。我国在用的车辆中,大多数自动变速器都采用行星齿轮式变速机构,这也是本文重点分析的对象。行星齿轮机构一般由2个或2个以上行星齿轮组按不同的组合方式构成,其作用是通过对不同部件的驱动或制动,产生不同速比的前进挡、倒挡和空挡。 换挡执行元件的作用是约束行星齿轮机构的某些构件,包括固定并使其转速为0,或连接某部件使其按某一规定转速旋转。通过适当选择行星齿轮机构被约束的基本元件和约束方式,就可以得到不同的传动比,形成不同的挡位。换挡执行元件包括离合器、制动器和单向离合器3 种不同的元件,离合器的作用是连接或驱动,以将变速机构的输入轴(主动部件)与行星齿轮机构的某个部件(被动部件)连接在一起,实现动力传递。制动器的作用是固定行星齿轮机构中的某基本元件,它工作时将被制动元件与变速器壳体连接在一起,使其固定不能转动。单向离合器具有单向锁止的特点,当与之相连接的元件的旋转趋势使其受力方向与锁止方向相同时,该元件被固定(制动)或连接(驱动);当受力方向与锁止方向相反时,该元件被释放(脱离连接)。由此可见,单向离合器在不同的状态下具有与离合器、制动器相同的作用。 由以上介绍可知,掌握不同组合行星齿轮机构的运动规律是自动变速器故障诊断的基础。

二.单排单级行星齿轮机构 1.单排单级行星齿轮机构的传动比 最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架组成,我们称之为一个单排单级行星排,如图1所示。由于单排行星齿轮机构具有两个自由度,为了获得固定的传动比,需将太阳轮、齿圈或行星架三者之一制动(转速为0)或约束(以某一固定的转速旋转),以获得我们所需的传动比;如果将三者中的任何两个连接为一体,则整个行星齿轮机构以同一速度旋转。 目前,在有关自动变速器的资料中,有关传动比的计算公式有以下几个: (n1-nH)/(n3-nH)=-Z3/Z1 式(1) 式中:n1-太阳轮转速;nH-行星架转速;n3-内齿圈转速;Z1-太阳轮齿数;Z3-内齿圈齿数n1+αn2-(1+α)n3=0 式(2) 式中:n1-太阳轮转速;n2-内齿圈转速;n3-行星架转速;α=内齿圈齿数/太阳轮齿数=Z2/Z1 Z2=Z1+Z3 式(3) 式中:Z1-太阳轮齿数;Z2-行星架假想齿数;Z3-内齿圈齿数 下面对这3个公式的原理与推导过程作以介绍,这也是本文后面对不同型号自动变速器速比计算方法的基础。定轴轮系齿轮传动比计算公式为i=(-1)m(所有的从动齿轮数乘积)/(所有的主动齿轮数乘积)=(-1)mZn/Z1,它对行星齿轮机构是不适用的。因为在行星齿轮机构中,星轮在自转的同时,还随着行星架的转动而公转,这使得定轴轮系传动比的计算方法不再适用。我们可以用“相对速度法”或“转化机构法”对行星齿轮机构的传动比进行分析,这一方法的理论依据是“一个机构整体的绝对运动并不影响其内部各构件间的相对运动”,这就好象手表表针的相对运动并不随着人的行走而变化一样,这一理论是一位名叫Willes的科学家于1841年提出的。假定给整个行星轮系加上一个绕支点O旋转的运动(-ω),这个运动的角速度与行星架转动的角速度(ω)相同,但方向相反,这时行星架静止不动,使星轮的几何轴线固定,我们就得到了一个定轴轮系,这样就能用定轴轮系的方法进行计算了。用转速n代替角速度ω,nbsp; 利用定轴轮系传动比计算公式有: i13H=n1H/n3H=(n1-nH)/(n3-nH)=(-1)1Z2Z3/Z1Z2=-Z3/Z1 式(4) 如果把α=Z2/Z1代入原公式(4)中,可得到式(2)或式(3)。由此可见,这3个公式其实是同一个公式的不同表达方式。 2.单排单级行星齿轮机构行星架的假想齿数 在式(4)中,假设固定内齿圈,使n3=0,代入式(5)得式(6): n1/nH=(Z1+Z3)/Z1 式(5) 又:i1H=n1/nH=ZH/Z1 式(6) 联解式(5)、(6)可得出: ZH=Z1+Z3 即“行星架的假想齿数是太阳轮齿数和内齿圈齿数之和”,注意,这一结论只适用于单级行

相关主题