搜档网
当前位置:搜档网 › 利用绿色荧光蛋白标记革兰氏阴性细菌

利用绿色荧光蛋白标记革兰氏阴性细菌

利用绿色荧光蛋白标记革兰氏阴性细菌
利用绿色荧光蛋白标记革兰氏阴性细菌

革兰氏阳性菌和革兰氏阴性菌的区别

革兰氏阳性菌和革兰氏阴 性菌的区别 Newly compiled on November 23, 2020

革兰氏阳性细菌与阴性细菌的比较 把细菌采用龙胆紫染色,涂碘加强染色。然后用酒精脱色,革兰氏阳性菌不会被脱色呈现紫色,革兰氏阴性菌会被脱色呈现红色。在治疗上,大多数革兰氏阳性菌都对青霉素 敏感;而革兰氏阴性菌则对青霉素不敏感,而对链霉素、氯霉素等敏感。革兰氏染色法的意义就在于鉴别细菌,把众多的细菌分为两大类,革兰氏阳性菌和革兰氏阴性菌。大多数化脓性球菌都属于革兰氏氏阳性菌,它们能产生外毒素使人致病,而大多数肠道菌多属于革兰氏阴性菌,它们产生内毒素,靠内毒素使人致病。常见的革兰氏阳性菌有:(Staphylococcus)、(Streptococcus)、肺炎双球菌、、白喉杆菌、破伤风杆菌等;常见的革兰氏阴性菌有痢疾杆菌、伤寒杆菌、、变形杆菌、绿脓杆菌、百日咳杆菌及霍乱弧菌等。 1.阳性的肽聚糖厚,阴性的肽聚糖薄,如下图: 2.阳性菌有磷壁酸,阴性菌没有。磷壁酸如下图: 3.阳性菌无外膜,阴性菌有外膜,其图如下:

1884年革兰氏染色法被发明,用于细菌的形态观察和分类,根据革兰氏染色反应的基本特征,细菌可以主要分为两大类:G阳性(G+)和G阴性(G-)。前者经过染色后细菌细胞仍然保留初染结晶紫的蓝紫色,后者经过染色后细菌细胞则先脱去了初染结晶紫的颜色,带上了复杂蕃红或沙黄的红色。本文将从细胞形态和结构,生理特性以及在生产生活中不同的运用这三个方面,来对革兰氏阳性细菌与阴性细菌进行进一步比较。 一、细胞形态和结构 细胞的基本结构包括细胞壁和原生质体两部分。原生质体位于细胞壁内,包括细胞膜(细胞质膜)、细胞质、核质和内含物。另外细胞还含有有些特殊结构,主要有荚膜、芽孢、鞭毛和菌毛等4种。由于革兰氏阳性细菌与阴性细菌在结构上的差别主要在于细胞壁,故本文就细胞壁与非细胞壁结构两部分来进行集中比较。 1.细胞壁 革兰氏染色的机理主要是抓住了革兰氏阳性细菌与阴性细菌在细胞壁的结构与组成上的不同,具体比较见下表: 性质革兰氏阳性细菌革兰氏阴性细菌 内壁层外壁层 结构厚度(㎜)20~80 2~3 8 层次单层多层 肽聚糖关系多层,75%亚单位交联, 网络紧密坚固单层,30%亚单位交联,网络较疏松 与细胞膜关系不紧密紧密 组成肽聚糖占细胞干重的40%~90% 5%~10% 无

荧光蛋白(整理)

荧光 一、定义 荧光(fluorescence )又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。 二、原理 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。 荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发射。当辐射波长与吸收波长相等时,既是共 荧光强度:荧光强度与该种物质的荧光量子产率、消光系数以及含量等因素有关。荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。荧光蛋白分子的亮度由其量子产率与消光系数的乘积决定,与成像检测灵敏度密切相关。 三、荧光蛋白 1、绿色荧光蛋白(green fluorescent protein,GFP )

在光谱的绿光区(500nm-525nm)已经发现了多种荧光蛋白,而且来源广泛,包括不同种属的Aequorea 、桡足类动物、文昌鱼以及珊瑚。然而多数有齐聚反应,即使最好的荧光蛋白与EGFP相比,也没有明显的优点。或许目前活细胞成像最好的选择是GFP 衍生的Emerald(祖母绿),它与EGFP的特性相似。Emerald包含F64L 和S65T突变,另外还有四个点突变从而改进了折叠、37℃时的突变率以及亮度。虽然Emerald比EGFP更有效,但含有快速光漂白成分,可能在某些环境下其定量成像会受到影响。 下面主要介绍GFP及其衍生型荧光蛋白: (1)来源绿色荧光蛋白最早由美籍日裔科学家下村修于1962年在水母中发现。这种蛋白质在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质 Aequorin 的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。在水母中发现的野生型绿色荧光蛋白的分子量较小,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb 。 (2)性质 GFP由238个氨基酸残基组成。GFP序列中的65-67 位残基(Ser65-Tyr66-Gly67 )可自发形成荧光发色基团——对羟基苯咪唑啉酮GFP的激发光谱在400nm附近有一个主激发峰,在470nm附近有一个次激发峰。发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰GFP的化学性质相当稳定,无光漂白现象(Photobleaching ),用甲醛固定和石蜡包埋亦不影响其荧光性质。在细胞生物学与分子生物学领域中,绿色荧光蛋白基因常被用作报告基因。 (3)野生型 野生型GFP(wild type GFP, wtGFP )从一开始就引起了人们极大的兴趣,而且被用作新型的简单报告基因及体内标记,但GFP在异源生物体中的表达并非那么简单。例如,研究人员很早就发现需要在较高的温度下孵育才能在细胞或生物体中表达GFP,并且wtGFP在37℃的热稳定性差。这些都阻碍了它在转基因中的应用。这些难题促使人们进一步筛选分离wtGFP的变体。现在,人们已经找到了荧光强度更强且更耐热的变体。 这些变体多数为经突变的脱辅基蛋白,它们可防止高温导致的错误折叠。近年来出现的新型wtGFP基因突变体的激发和发射谱发生了改变,热稳定性和荧光强度得到了提高,GFP报告基因在小鼠中的应用就是以这些变体作为基础的。 (4)增强型绿色荧光蛋白(EGFP)现在,应用最为广泛的是红移变体增强型GFP (EGFP)。诸如EGFP这些红移变体的最大激发峰发生红向移动,大约为490nm,这一波长也恰好是多数分光设备、流式细胞仪及共聚焦显微镜的常用波长。EGFP有两个氨基酸突变,当被蓝光激发时,它发出的荧光要比wtGFP亮30-40 倍。wtGFP和包括EGFP在内的多数变体半衰期长,所以不适合精确追踪表达的减少或损耗。 (5)不稳定增强型绿色荧光蛋白(dEGFP) 为克服这一问题,人们在1998年构建了不稳定增强型绿色荧光蛋白(dEGFP)。原理就是将EGFP的cDNA融合到小鼠鸟氨酸脱羧酶(Ornithine decarboxylase, ODC)基因的C-末端。ODC含有一个PEST序列,这个序列可促进该蛋白在细胞内的降解。虽然,目前这些不稳定变体还没有在小鼠中应用,但这些变体有利于实时追踪基因表达动力学的研究。 (6)增强型黄色荧光蛋白(EYFP)另一种红移变体是增强型黄色荧光蛋白(EYFP),该变体有四个氨基酸突变。在527nm时,EYFP的发射光从绿色变为黄绿色。EYFP荧光的亮度水平与EGFP相当。EYFP 抗酸性差、对卤化物敏感,使它的应用受到限制。在EYFP 基础上改进的突变体mCitrine[21] 和mVenus[22]是目前应用

革兰氏阳性菌和革兰氏阴性菌细胞壁的构造

对革兰氏阳性菌与革兰氏阴性菌的认识 ①革兰氏阳性细菌的细胞壁 G+细菌细胞壁具有较厚(20-80nm)而致密的肽聚糖层,有15~50层,每层厚度1nm,,约占细胞干重的50~80%,占细胞壁成分的60%~90%,它同细胞膜的外层紧密相连。此外,尚有大量特殊组份磷壁酸(teichoic acid),也称胞壁质(murein),就是由核糖醇(ribitol)或甘油(glycerol)残基经由磷酸二键互相连接而成的多聚物。磷壁酸分壁磷壁酸(wall teichoic acid)与膜磷壁酸(membrane teichoic acid)两种,前者与细胞壁中肽聚糖的n-乙酰胞壁酸连结,膜磷壁酸又称脂磷壁酸(lipteichoic acid)与细胞膜连结,另一端均游离于细胞壁外。磷壁酸抗原性很强,就是革兰氏阳性菌的重要表面抗原;在调节离子通过粘肽层中起作用;也可能与某些酶的活性有关;某些细菌的磷壁酸,能粘附在人类细胞表面,其作用类似菌毛,可能与致病性有关。此外,磷壁酸通常以糖或氨基酸的酯而存在。由于磷壁酸带负电荷,它在细胞表面能调节阳离子浓度。磷壁酸与细胞生长有关,细胞生长中有自溶素(autolysins)酶类起作用,磷壁酸对自溶素有调节功能,阻止胞壁过度降解与壁溶。如果细胞壁的肽聚糖层被消溶,G+细胞成为原生质体(protoplasts),细胞壁不复存在,而只存留细胞膜。除链球菌外,大多数G+细菌细胞壁中含极少蛋白质,某些革兰氏阳性菌细胞壁表面还有一些特殊的表面蛋白,如a蛋白等,都与致病有关。革兰氏阳性菌细胞壁厚约20-80nm,有15-50层肽聚糖片层,含20-40%的磷壁酸。革兰氏阳性菌的细胞壁,就是一层厚而致密的肽聚糖与磷壁酸组成。肽聚糖的肽链之间通过5个甘氨酸交联着。 2、阳性菌有磷壁酸,阴性菌没有。磷壁酸如下图: ②革兰氏阴性细菌的细胞壁 G-细菌细胞壁比G+细菌细胞壁薄(15~20nm)而结构较复杂,分外膜(outer membrane)与肽聚糖层(2~3nm)(图2-10)。在细胞壁与细胞质膜之间有一个明显的空间,称为壁膜间隙(periplasmic space)。外膜 G-细菌细胞壁外膜的基本成分就是脂多糖(lipopolysaccharide,LPS),它同细胞质膜相同之处也就是双层类脂,但除磷脂外还含

红色荧光蛋白的原核表达

红色荧光蛋白(RFP )的原核表达 生物学实验教学中心 报告题目 红色荧光蛋白(RFP )的原核表达 作者姓名 饶慧 班级学号 0802班/2008114010214 指导教师 王友如 完成时间 2011年02月

目录 引言 (1) 1实验材料及实验仪器 (4) 1.1实验材料 (4) 1.2实验仪器 (5) 2实验方法 (7) 2.1 重组质粒的构建 (7) 2.2工程菌株的活化 (7) 2.3诱导表达 (8) 2.4 SDS-PAGE检测表达蛋白 (8) 3 结果与分析 (9) 总结 (10) 参考文献 (11) 致谢 (13)

红色荧光蛋白的原核表达 饶慧 (指导老师:王友如) (湖北师范学院生命科学学院生物科学0802班湖北黄石435002) 摘要实验目的:研究红色荧光蛋白(Red Fluorescent Protein,RFP)基因在大肠杆菌中原核表达。实验方法:通过分别将DH-5ɑ(pDsRed-N1)和DH-5ɑ(pET-28ɑ)提取质粒、酶切并连接形成重组质粒pET-28a-RFP,将重组质粒通过转化的方法把含红色荧光蛋白(RFP)外源基因转入大肠杆菌体内进行表达,再用IPTG诱导RFP基因表达,可以看到显现红色,最后根据SDS-PAGE电泳结果,判断RFP基因在大肠杆菌中是否成功表达。实验结果:结果显示构建的重组质粒pET-28ɑ-RFP在E.coli中成功表达。 关键词红色荧光蛋白;质粒重组;原核表达;诱导表达

分子生物学综合实验 Prokaryote Expression of Red Fluorescent Protein (RFP) Rao Hui (Class 0802, College of Biology Science ,Hubei Normal University, Huangshi, Hubei,435002 ) Abstract Objective: To study the expression of the RFP gene in the E.coli. Methods: Extract the plasmid of the DH-5ɑ (pDsRed-N1) and DH-5ɑ (pET-28ɑ). Then the two plasmids are cut by enzyme and are connected to form pET-28a-RFP recombined plasmid. Guiding the recombined plasmid, which contains exogenous genes of RFP, into E.coli for expression, through transformative method. The expression of RFP gene can be induced by the IPTG and then we can see red. Finally, judging whether the RFP gene has expressed successfully in E.coli according to the results of SDS-PAGE electrophoresis. Results: The results suggest that pET-28ɑ-RFP recombined plasmid has successfully expressed in E.coli. Keywords Red Fluorescent Protein; Recombined Plasmid; Prokaryote Expression; Induced Expression

实验绿色荧光蛋白

生物技术实验报告 姓名:张龙龙 学号:2011506066 班级:11级生技02班

前言:绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水 母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP 发射绿色荧光。它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。GFP 由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27. 0kMr,其蛋白性质十分稳定,能耐受60℃处理。1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由 3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成. 一.实验目的 1、了解表达用基因克隆引物设计的原理和方法。 2、了解利用原核表达系统表达外源基因的原理、流程及方法。 3、掌握PCR、DNA片段的酶切与连接、细菌转化、阳性克隆筛选、质粒提取、DNA样品的纯化、核酸电泳等分子生物学基本技术。 二.实验原理 基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。 本实验根据绿色荧光蛋白(GFP)的基因序列设计一对引物,用该引物将GFP基因从含GFP基因的质粒中扩增出来。再利用双酶切切开表达载体pET23b 和目的基因的两端接头,通过T4连接酶GFP基因与表达载体重组。将含GFP 基因的重组表达载体导入宿主菌BL21(DE3),在IPTG的诱导下,使GFP基因表达 三.实验材料及仪器 1、实验材料:含有GFP的质粒;DNA Marker;DH5α;BL21; 2、仪器:恒温培养箱、超净工作台、恒温摇床、制冰机、台式离心机、涡旋振荡器、冰箱、电泳仪、透射仪、PCR仪、PCR管、刀片、玻璃涂棒、酒精灯、无菌牙签、吸水纸、微型离心管、台式冷冻离心机、塑料手套、1.5ml离心管。 四.实验内容 4.1 质粒的提取、酶切及电泳鉴定: 1)实验试剂:LB培养基;溶液Ⅰ;Tris-HCl(pH=8);溶液Ⅱ;溶液Ⅲ; 酚/氯仿抽提液;无水乙醇;电泳缓冲液;加样缓冲液;GoldView核酸 DNA 染色剂;1%的琼脂糖凝胶;XhoⅠ(10U/μl);NdeⅠ(10U/μl);T 4 lisase。 2)实验步骤: 质粒的提取与鉴定

革兰氏阳性菌和革兰氏阴性菌的区别

革兰氏阳性细菌与阴性细菌的比较 把细菌采用龙胆紫染色,涂碘加强染色。然后用酒精脱色,革兰氏阳性菌不会被脱色呈现紫色,革兰氏阴性菌会被脱色呈现红色。在治疗上,大多数革兰氏阳性菌都对青霉素敏感;而革兰氏阴性菌则对青霉素不敏感,而对链霉素、氯霉素等敏感。革兰氏染色法的意义就在于鉴别细菌,把众多的细菌分为两大类,革兰氏阳性菌和革兰氏阴性菌。大多数化脓性球菌都属于革兰氏氏阳性菌,它们能产生外毒素使人致病,而大多数肠道菌多属于革兰氏阴性菌,它们产生内毒素,靠内毒素使人致病。常见的革兰氏阳 菌等。 1.阳性的肽聚糖厚,阴性的肽聚糖薄,如下图: 2.阳性菌有磷壁酸,阴性菌没有。磷壁酸如下图:

3.阳性菌无外膜,阴性菌有外膜,其图如下:

1884年革兰氏染色法被发明,用于细菌的形态观察和分类,根据革兰氏染色反应的基本特征,细菌可以主要分为两大类:G阳性(G+)和G阴性(G-)。前者经过染色后细菌细胞仍然保留初染结晶紫的蓝紫色,后者经过染色后细菌细胞则先脱去了初染结晶紫的颜色,带上了复杂蕃红或沙黄的红色。本文将从细胞形态和结构,生理特性以及在生产生活中不同的运用这三个方面,来对革兰氏阳性细菌与阴性细菌进行进一步比较。 一、细胞形态和结构 细胞的基本结构包括细胞壁和原生质体两部分。原生质体位于细胞壁内,包括细胞膜(细胞质膜)、细胞质、核质和内含物。另外细胞还含有有些特殊结构,主要有荚膜、芽孢、鞭毛和菌毛等4种。由于革兰氏阳性细菌与阴性细菌在结构上的差别主要在于细胞壁,故本文就细胞壁与非细胞壁结构两部分来进行集中比较。

1.细胞壁 革兰氏染色的机理主要是抓住了革兰氏阳性细菌与阴性细菌在细胞壁的结构与组成上的不同,具体比较见下表: 进一步的,革兰氏阳性细菌的细胞壁主要由肽聚糖和包括磷酸壁的酸性多糖构成,细胞表面整体带负电的部分原因就是因为磷酸壁带负电。同时,磷酸壁赋予了革兰氏阳性细菌以特异的表面抗原(殷士学.环境微生物

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

革兰氏阴性菌和阳性菌

革兰氏阴性菌和阳性菌 一:结构: A.革兰氏阳性菌: 革兰氏阳性菌细胞壁肽聚糖含量丰富,有大量特殊组份磷壁酸。磷壁酸是由核糖醇或甘油残基经由磷酸二键互相连接而成的多聚物。磷壁酸分壁磷壁酸和膜磷壁酸两种,前者和细胞壁中肽聚糖的N-乙酰胞壁酸连结,膜磷壁酸又称脂磷壁酸和细胞膜连结,另一端均游离于细胞壁外。磷壁酸抗原性很强,是革兰氏阳性菌的重要表面抗原;在调节离子通过粘肽层中起作用;也可能与某些酶的活性有关;某些细菌的磷壁酸,能粘附在人类细胞表面,其作用类似菌毛,可能与致病性有关。 此外,某些革兰氏阳性菌细胞壁表面还有一些特殊的表面蛋白,如A蛋白等,都与致病有关。 B.革兰氏阴性菌: 革兰氏阴性菌细胞壁特殊组份细胞壁有少量肽聚糖,结构比较复杂,有特殊组份外膜层位于细胞壁肽聚糖层的外侧,包括脂多糖、脂质双层、脂蛋白三部分(图2-6)。脂蛋白一端以蛋白质部分共价键连接于肽聚糖的四肽侧链上,另一端以脂质部分经共价键连接于外膜的磷酸上。其功能是稳定外膜并将之固定于肽聚糖层。 双层是革兰阴性菌细胞壁的主要结构,除 了转运营养物质外,还有屏障作用,能阻 止多种物质透过,抵抗许多化学药物的作 用,所以革兰氏阴性菌对溶菌酶、青霉素 等比革兰氏阳性具有较大的抵抗力。一些 化学物质如乙二胺四乙酸(EDTA)与2% 十二烷基硫酸钠(SDS)或45%酚水溶液 可以将外膜除去,而留下坚韧的肽聚糖 层。此外,外膜蛋白质还可作为某些噬菌 体和性菌毛的受体。 脂多糖由脂质双层向细胞外伸出,包 括类脂A、核心多糖、特异性多糖三个组 成部分,习惯上将脂多糖称为细菌内毒 素。 ①类脂A:为一种糖磷脂,是由焦磷酸键联结的氨基葡萄糖聚二糖链,其上结合有各种长链脂肪酸。它是脂多糖的毒性部分及主要成份。为革兰氏阴性菌的致病物质。无种属特异性,各种革兰氏阴性菌内毒性引起的毒性作用都大致相同。 ②核心多糖:位于类脂A的外层,由已糖、瘐糖、2-酮基—3—脱氧辛酸(KDO)、磷酸乙醇胺等组成。经KDO与类质A共价联结。核心多糖具有属特异性,同一属细菌的核心多糖相同。 ③特异性多糖:在脂多糖的最外层,是由数个至数十个低聚糖(3~5单糖)重复单位所构成的多糖链。革兰氏阴性菌的菌体抗原(O抗原)就是特异多糖。各种不同的革兰氏阴性菌的特异性多糖种类及排列顺序各不相同,从而决定了细菌抗的特异性。 C.革兰氏阳性菌与革兰氏阴性菌细胞壁结构的比较:

绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 我们这边细胞组的基本上都在用这个东东。标记细胞 GFP的分子结构和发光机制 绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。 Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。 GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。 GFP在生物技术中的应用研究 1.分子标记 作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。 除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。 2.药物筛选 许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。 在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

革兰氏阳性菌和革兰氏阴性菌

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 革兰氏阳性菌与阴性菌 【药师学习百科】——第9期20090614 <药理学-第六章β-内酰胺类抗生素> 我基础较差,有些基础性的知识也不明白,比如,啥是革兰氏阳/阴性菌呀?那么从头开始吧—— 前言 自然界存在多种多样病菌,如何将这些病菌加以鉴别、分类,并选择有效药物进行治疗这是很重要的问题。革兰氏染色法,能够把细菌分为两大类。革兰氏染色法的意义就在于鉴别细菌,把众多的细菌分为革兰氏阳性菌和革兰氏阴性菌两大类。 先来看看什么是—— 革兰氏染色法 革兰氏染色法是细菌学中广泛使用的一种鉴别染色法,1884年由丹麦医师Gram创立细菌先经碱性染料结晶染色,而经碘液媒染后,用酒精脱色,在一定条件下有的细菌此色不被脱去,有的可被脱去,因此可把细菌分为两大类,前者叫做革兰氏阳性菌(G+),后者为革兰氏阴性菌(G-)。为观察方便,脱色后再用一种红色染料如碱性蕃红等进行复染。阳性菌仍带紫色,阴性菌则被染上红色。有芽胞的杆菌和绝大多数和球菌,以及所有的放线菌和真菌都呈革兰氏正反应;弧菌,螺旋体和大多数致病性的无芽胞杆菌都呈现负反应。 革兰氏染色的原理我叫不想知道了,但我很想知道—— 革兰氏染色法的方法步骤 革兰氏染色法一般包括初染、媒染、脱色、复染等四个步骤。 1)涂片固定。 2)草酸铵结晶紫染1分钟。 3)自来水冲洗。 4)加碘液覆盖涂面染1分钟。 5)水洗,用吸水纸吸去水分。

6)加95%酒精数滴,并轻轻摇动进行脱色,30秒后水洗,吸去水分。 7)蕃红梁色液(稀)染10秒钟后,自来水冲洗。干燥,镜检。 染色的结果,革兰氏正反应菌体都呈紫色,负反应菌体都呈红色。 知道了这些,我最关心的还是哪些是—— 常见的革兰氏阳性菌 葡萄球菌属,链球菌属,李式杆菌属,丹毒丝菌属,肾杆菌属,芽孢杆菌属,梭菌属,分支杆菌属,放线菌属,奴卡菌属,棒状杆菌属,红球菌属,炭疽杆菌丹毒杆菌破伤风杆菌李氏杆菌产气荚莫杆菌气肿疽杆菌结核杆菌。 当然,也少不了哪些是—— 常见的革兰氏阴性菌 除了大肠杆菌外,变形杆菌、痢疾杆菌、肺炎杆菌、布氏杆菌、产气夹膜杆菌、流感(嗜血)杆菌、副流感(嗜血)杆菌、卡他(摩拉)菌、不动杆菌属、耶尔森菌属、嗜肺军团菌、百日咳杆菌、副百日咳杆菌、志贺菌属、巴斯德菌属、霍乱弧菌、副溶血性杆菌等也是革兰氏阴性菌。 混了这么久,我要怯怯地提点意见哦。这些细菌名字太复杂了哟! 革兰菌简表 类菌名 G+球菌金黄色葡萄球菌(葡萄球菌属)乙型溶血性链球(链球菌属)肺炎链球菌(链球菌属) G-球菌 淋球菌 脑膜炎双球菌(奈瑟菌属)G+杆菌白喉杆菌(棒状杆菌属)

革兰氏阳性菌和革兰氏阴性菌的区别

革兰氏阳性菌和革兰氏阴性菌的区别

革兰氏阳性细菌与阴性细菌的比较 把细菌采用龙胆紫染色,涂碘加强染色。然后用酒精脱色,革兰氏阳性菌不会被脱色呈现紫色,革兰氏阴性菌会被脱色呈现红色。在治疗上,大多数革兰氏阳性菌都对青霉素敏感;而革兰氏阴性菌则对青霉素不敏感,而对链霉素、氯霉素等敏感。革兰氏染色法的意义就在于鉴别细菌,把众多的细菌分为两大类,革兰氏阳性菌和革兰氏阴性菌。大多数化脓性球菌都属于革兰氏氏阳性菌,它们能产生外毒素使人致病,而大多数肠道菌多属于革兰氏阴性菌,它们产生内毒素,靠内毒素使人致病。常见的革兰氏阳性菌有:葡萄球菌(Staphylococcus)、链球菌(Streptococcus)、肺炎双球菌、炭疽杆菌、白喉杆菌、破伤风杆菌等;常见

的革兰氏阴性菌有痢疾杆菌、伤寒杆菌、大肠杆菌、变形杆菌、绿脓杆菌、百日咳杆菌及霍乱弧菌等。 1.阳性的肽聚糖厚,阴性的肽聚糖薄,如下图: 2.阳性菌有磷壁酸,阴性菌没有。磷壁酸如下图: 3.阳性菌无外膜,阴性菌有外膜,其图

如下: 1884年革兰氏染色法被发明,用于细菌的形态观察和分类,根据革兰氏染色反应的基本特征,细菌可以主要分为两

大类:G阳性(G+)和G阴性(G-)。前者经过染色后细菌细胞仍然保留初染结晶紫的蓝紫色,后者经过染色后细菌细胞则先脱去了初染结晶紫的颜色,带上了复杂蕃红或沙黄的红色。本文将从细胞形态和结构,生理特性以及在生产生活中不同的运用这三个方面,来对革兰氏阳性细菌与阴性细菌进行进一步比较。 一、细胞形态和结构 细胞的基本结构包括细胞壁和原生质体两部分。原生质体位于细胞壁内,包括细胞膜(细胞质膜)、细 胞质、核质和内含物。另外细胞还含有有些特殊结构,主要有荚膜、芽孢、鞭毛和菌毛等4种。由于革兰氏阳性细菌与阴性细菌在结构上的差别主

试验设计——绿色荧光蛋白的表达

分子生物学实验设计报告 绿色荧光蛋白的克隆表达 ——闵霞(2013141241165)李彩云(2013141241095) 一、引言 基因标记技术是近年来发展起来的分子生物学技术。荧光蛋白基因在标记基因方面由于具有独特的优点而广受科学家们的关注。荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白。 绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP发射绿色荧光。它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的。 基因克隆技术包括把来自不同物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。采用重组DNA技术,将不同来源的DNA分子在体外进行特异性切割,重新连接,组装成一个新的杂合DNA 分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子。 本次实验中,分子克隆质粒载体所携带的外源基因是EGFP绿色荧光蛋白,实验的最终目的是将EGFP基因插入表达载体pET-28a中,组成重组子,并导入到大肠杆菌细胞中并诱导其表达,培养出绿色的大肠杆菌菌落。为此,我们要利用碱变性法将大肠杆菌中的质粒DNA提取出来,并通过Bam HI和NotⅠ两种酶的双酶切作用,从而获得目的外源基因片段EGFP和表达载体pET-28a质粒的DNA,然后通过连接酶连接后形成重组子,并通过氯化钙法导入大肠杆菌感受态细胞中,让其在含有Amp和IPTG的LB琼脂平板上生长繁殖,最后通过观察大肠杆菌能否在含有Amp和IPTG的LB平板上长出绿色的菌落,来判断EGFP基因工程菌的构建效果 二、主要路线: 1、质粒DNA的提取 2、琼脂糖凝胶电泳检测质粒DNA 3、酶切连接重组质粒 4、重组质粒的扩增 5、菌落PCR法鉴定阳性克隆 6、目的荧光蛋白基因的表达 1、质粒DNA的提取 实验原理: 1)质粒是一种染色体外的遗传因子,大小在1kb~200kb之间,是具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制能力,,能使子代保持他们恒定的复制数,可表达它携带的遗传信息。它可以独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能复制,而它控制的许多生物学功能也是对宿主细胞

荧光定量检测细胞绿色荧光蛋白技术的建立与应用

第47卷 增刊2 2008年12月 厦门大学学报(自然科学版) Journal of Xiamen University (Natural Science ) Vol .47 Sup.2Dec .2008 收稿日期:2008209225 基金项目:国家基础科学人才培养基金项目(J0630649),国家自然 科学基金(30670408,30572077),福建省自然科学基金 (2008J0108)资助 3通讯作者:liurz@x mu .edu .cn 荧光定量检测细胞绿色荧光蛋白技术的建立与应用 张 垲,余冰菲,陈瑞川,刘润忠 3 (厦门大学生命科学学院,福建厦门361005) 摘要:绿色荧光蛋白是在生化与分子生物学研究领域中普遍使用的一种基因表达报告系统显色物.对于细胞内绿色荧 光蛋白表达水平的定量检测,目前尚缺乏一套准确﹑简便﹑易行的技术.本文以增强型绿色荧光蛋白(EGFP )为报告基因,用分子量为25ku 的线性聚乙烯亚胺介导进入He La 细胞并表达.利用多功能酶标仪测定细胞裂解液的荧光强度,结果显示:这种新方法测定的荧光强度能很好反映细胞中EGFP 的蛋白表达水平,并在短时间内完成对EGFP 表达水平的定量检测.该方法简单有效,且不依赖于大型仪器设备,具有较高的准确性与灵敏度,在实际应用中简便可靠,具有推广应用的意义. 关键词:绿色荧光蛋白;定量检测;He La 细胞;表达水平 中图分类号:Q 786 文献标识码:A 文章编号:043820479(2008)S220264204 细胞转染被广泛地应用于生物科学研究的各个领域,是各种研究方法中不可或缺的技术手段之一.近年来,越来越多的实验室加入到开发新型转染试剂的行列中,各种各样的转染方法也应运而生,非病毒载体聚乙烯亚胺(polyethyleni m ine,PE I )就是其中之一.作为一种阳离子多聚物,PE I 具有毒性低,转染效率高等优点,其中25ku 线性PE I 被认为是最有望用于基因治疗的载体之一[122] . 随着转染技术的不断发展,如何准确、快速的检测外源蛋白表达水平逐渐成为科学家们所关注的问题.从水母体内提取的绿色荧光蛋白(GFP )是一种重要的显色物质,其突出的优点是在紫外线或蓝光的激发下可发出绿光,而不需要任何底物或辅助因子[3] .而且GFP 具有表达稳定、无种间特异性等优点,因此被广泛地应用于基因表达的检测.增强型绿色荧光蛋白(EG 2 FP )是一种最佳化的GFP 突变型[4] ,在体外转染后,可通过荧光显微镜直接观察或用流式细胞仪定量检测[5] .但是,这两种检测方法都有其局限性,荧光显微镜检测存在主观性强、无法定量检测等缺陷,而流式细胞仪检测则存在对仪器设备要求高,操作程序繁琐等缺点. 本研究的目的在于建立一套快速﹑准确﹑简便的EGFP 定量检测技术. 1 材料与方法 1.1 材 料 线性PE I (25ku,Polysicences 公司)用pH 7.9的 Hepes 缓冲液(25mmol/L,含150mmol/L NaCl )配制成2.5mg/mL 的贮存液,无菌过滤后于220℃保存.pEGFP 2N1质粒为Cl ontech 公司产品,DME M 和新生小牛血清等为Gibco 产品,抗GFP 和β2Actin 抗体购自Santa Cruz 公司,苯甲基磺酰氟(P MSF )、乙基苯基聚乙二醇(NP 240)以及其它试剂均为Merk 或Am resco 分析纯级试剂.荧光测定采用Spectra maxM2型多功能酶标仪(美国),荧光观察采用DM I RB 型荧光显微镜(Leica ),He La 细胞为本实验室保存.PE I/DNA 反应缓冲液A 配方为150mmol/L NaCl;PE I/DNA 反应缓冲液B 配方为25mmol/L Hepes,150mmol/L NaCl,pH 7.1;PE I/DNA 反应缓冲液C 配方为25mmol/L Hepes,150mmol/L NaCl,10mmol/L KCl,pH 7.1;PE I/DNA 反应缓冲液D 配方为DME M.1.2 细胞培养与转染 He La 细胞用含10%胎牛血清的DME M 培养基,在37℃及5%二氧化碳条件下培养.转染前,将细胞(6 ×105细胞/孔)接种于六孔板中,培养24h 后用于转 染,细胞密度为70%~90%.转染前换加2mL 新鲜培养基.2μg DNA 与一定量PE I (按PE I :DNA =5μg:1μg 的比例添加,特殊说明除外)各用50μL PE I/DNA 反应缓冲液(如没有特殊说明,配方均为25mmol/L Hepes,150mmol/L NaCl,pH 7.1)稀释,将稀释后的PE I 逐滴加入DNA 溶液中,立即振荡混匀.室温静置

相关主题