搜档网
当前位置:搜档网 › 浅论直觉思维在数学解题中的运用

浅论直觉思维在数学解题中的运用

浅论直觉思维在数学解题中的运用
浅论直觉思维在数学解题中的运用

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

浅谈小学生数学思维能力的培养

浅谈小学生数学思维能力的培养 摘要:思维是人脑对客观事物的一般特殊性和规律性的一种间接的、概括的反映过程。学生的良好思维能力是他们获取新知识、进行创造性学习和发展智力的核心。数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。学习数学的本质,是数学思维活动的过程。国内外一系列研究表明:在学生学习数学的一切能力之中,思维能力居于核心地位。所以,培养学生思维能力,是数学教学中一项非常重要的任务。 关键词:思维数学思维培养 在小学数学教学中,提高学生学习数学的兴趣,培养良好的学习习惯,培养学生的逻辑思维能力、运算能力、空间想象能力和解决简单实际问题的能力是实施素质教育重要前提条件。真正做到授人以渔而不是授人以鱼,为学生将来的学习奠定基础。 新课标确立了知识与技能、过程与方法、情感态度与价值观三纬一体的课程目标,将素质教育的理念体现在课程标准之中,通过引导学生主动参与、亲身实践、独立思考、合作探究,从而实现学习方式的转变,发展学生搜集信息、处理信息、获取新知、分析解决问题、合作交流的能力。那么,教师怎样通过明理启发、诱导,培养学生的思维能力,就此谈谈一些教学体会。 一、激发小学生的学习兴趣,引发数学思维。 大教育家赞科夫说:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维灵活性和创造性。”大家都说:“兴趣是最好的老师。”这些都是站在自身的立场上来阐明思维与兴趣的重要性,这是把思维与兴趣分开来看。如果把思维和兴趣这两者结合起来,将会达到更加完美的效果。 随着教育教学改革的深入发展,在数学教学中如何有目的、有计划、有步骤地培养学生的思维能力,是每一个数学教师十分关心的问题。教师应吃透教材,把握教材中的智力因素,积极地进行教学。数学教学中激发学生的学习兴趣是非常重要的环节之一。从心理学角度看,如何抓住学生的某些心理特征,对教学将起到一个巨大的推动作用。兴趣的培养就是一个重要的方面,兴趣能激发大脑组织,有利于发现新事物和事物的新要素,并进行积极探索创造。兴趣是学生学习的最佳营养和催化剂。学生对学习有兴趣,对学习材料的反映也就最清晰。思维活动是最积极有效的,它能使学习达到事半功倍的效果。那么,怎样激发学生的数学思维兴趣,调动数学思维的积极性呢? 1、利用演示、操作。演示可把图由静变动,能更好吸引学生的注意,起到直观的效果;操作是一种辅助的教学手段,恰当运用直观操作,师生互动,让学生运用多种感官参与学习。这样,既提高了学生学习数学兴趣,又增强了思维能力。 2、保护好小学生的学习好奇心。好奇心是对所发生的新异事物感到惊奇,引发疑问,进行探究的心理倾问,它也能激发学生强烈的求知欲和浓厚的学习兴趣,有助于点燃思维的火花。 3、克服以教师思维代替学生思维、教师讲、问牵着学生听、答的教学现象。要为学生留出足够的思维活动的空间,让学生利用自己的学习方式,在已有的生活经验和认知结构的基础上,自己动手、动脑、动口,在活动探究中发挥创造性,进行自主的建构。 4、考虑到学生现有心理水平,按照维果茨基的最近发展区原理,为学生创造一定问题情境,是引发学生思维活动的外部环境因素。古人云:“学起于思,思源于疑”。有疑才能引发学生的求知欲,才能使他们处于积极主动的状态。在教学时通过谈话、设问、提问、实

数学思维

二、《解密数学思维的内核》 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)、充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)、全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己

数学直觉思维的培养

—129—浅析数学直觉思维的培养 [摘要]数学直觉思维的培养对帮助学生提高他们的解题能力十分重要。数学直觉思维的培养可以从以下几个方面进行:利用联想来培养直觉思维;利用哲学观和审美观来培养直觉思维;利用解题教学来培养直觉思维;利用解题后的反思来培养直觉思维。 [关键词]数学直觉思维;能力;培养 [中图分类号]G642[文献标识码]A [作者简介]陈华新(1973-),男,本科,中学一级,研究方向为数学教学。 陈华新 (宜兴技师学院,江苏宜兴,214206) 爱因斯坦说:“真正可贵的是直觉。”直觉思维和形象思维、逻辑思维并列为人类三大思维方式,它有别于后二者的特征 在于:其一是思维发生的变发性、随机性;其二是思维过程的 跳跃性、突变性;其三是思维结果的突破性、超常性。直觉思 维是现代人才素质必备的思维品质。直觉可分为“科学直觉” 与“数学直觉”。由于数学对象(这不仅是指数学概念,也包括 数学命题、证明等)并非物质世界中的真实存在,而是抽象思 维的产物,因此,数学认识活动的一个重要内容,就是要发展 相应的直觉(直觉的表征或解释),以使主体在心理上建立起 必要的可靠性。 徐利治教授说:数学直觉是达到对数学知识真正理解的 重要途径。只有这样,才能使相应的内容在头脑中成为“非常 直接浅显的”和“非常透彻明白的”,从而真正达到“真懂”或“彻 悟”的境界。同时指出“数学直觉是于后天培养的,实际上每个人的数学直觉也是不断提高的”,也就是说数学直觉思维是 可以通过训练提高的。 一、利用联想来培养直觉思维 联想不是凭空产生的,直觉也不是靠“机遇”而来的。直 觉的获得虽然具有偶然性,但不是无缘无故地凭空臆想。直 觉思维必须以人的知识经验为基础,在此基础上形成有序的、 网络化的知识体系,是解题中能提取相关信息、有效地灵活地 解决问题的关键。在解决问题的过程中只有对数学知识体系 有着清晰的记忆,才能由条件联想到基本概念、基本原理、基 本方法及其相互联系所构成的理论框架,使问题得到迅速解 决。教育家布鲁纳曾说:“结构的理论能使学生从中提高他们 直觉地处理问题的效果。 ” 例1:(2002年全国高考数学文科试题第21题) 已知点P 到两个定点M ( PNM= ||PMN∴ sin £üPN | sin 2 故

例说数学解题的思维过程

例说数学解题的思维过程 陕西师范大学数学系 罗增儒 在数学教学中暴露思维过程早就引起了人们的关注。暴露概念的形成过程,暴露命题的 发现过程,暴露证明的探究过程等,包括暴露这些过程中犯错误的真实活动,但是,这种暴 露大多停留在可见事实的陈述上,而内在思维性质的细致揭示不多,也常常进行到思路初步 打通、结论初步得出时就停了下来。本文想从解题分析的角度提供一个简单例子,展示内在 的思维过程,并在证明得出之后仍继续进行下去。先给出题目: 两直线被第三条直线所截,外错角相等,则两直线平行。 1.浮现数学表象 通过认真阅读,我们接收到题目所提供的信息,首先在脑子里出现了一个图形(几何型 表象),与这个图形相伴随的是一个问题(代数型表象):由数量关系去确定位置关系。 在问题的牵引下,思维的齿轮开始启动,有3 个展开的起点。 (1)由图形表象,我们回想起“三线八角”基本图形,回想起与此图形有关的命题,如 两直线被第三条直线所截,有: 1)同位角相等?两直线平行; 2)内错角相等?两直线平行。 …… 这些命题的附图,在我们脑海里逐幅浮现出来。 (2)由条件∠1= ∠2(数量关系)所唤起的问题有: 1)由角的相等关系能得出什么? 2)图1 中有与∠1 相等的角吗?

3) 图1 中有与∠2 相等的角吗? …… 一开始,“由条件能推出什么”是一道开放性问题,我们不知道该往哪些地方推进,但 随着对结论思考的深化,会慢慢明朗起来。 (3) 由结论AB∥CD(位置关系)所唤起的问题有:得出直线平行需要什么条件?题目提供 了这样的条件没有?如果不是直接提供,那么间接提供没有? …… 由此激活了记忆储存中的相关知识,并又激活更多的记忆储存(扩散): 1) 同位角(内错角)相等,则两直线平行;进而问 2) 什么是同位角(内错角)?图1 中有同位角(内错角)吗?有相等的同位角(内错角)吗? 3) 己知条件的相等角能导出“同位角(内错角)相等”吗? …… 这是表象的一个有序深化的过程。 2.产生数学直感 上述三方面的思考,促使我们更专注于图形,图中有3 条直线,8 个角,8 条射线,1 条 线段,其中哪些信息对于我们解题是有用的,哪些是多余的呢?(这相当于一道条件过剩、 结论发散的开放题)当然,一开始我们并不清楚,但是目标意识驱使我们去考虑角的关系, 因为课本中两条直线平行的判定均与角有关,而已知条件又给出了等角。所以,我们的思考 逐渐集中到:从图形中找同位角(或内错角),找相等的角,找相等的同位角(或内错角)。 这时,伴随着问题的需要,图1 被分解出一系列的部分图形(图2 中实线图),并凸现在 我们的眼前: 图2

浅谈高中数学思维能力的培养

浅谈高中数学思维能力的培养 ——从一道高考试题谈起 福州市第十五中学代勇内容摘要:数学在培养和提高人的思维能力方面有着其它学科不可替代的独特作用,数学高考坚持的能力立意很好的体现了这一点。因此在数学教学中一定要下大气力来抓思维能力的培养,让学生在学习数学的过程中能迸发出更多的数学灵感。 关键词:数学思维能力、抽象概括能力、逻辑推理能力、选择判断能力、数学探索能力。 数学在培养和提高人的思维能力方面有着其它学科不可替代的独特作用,数学高考坚持的能力立意很好的体现了这一点。在整个高中数学,加上学生已有对数学的一些认识,牵涉到的概念、定理是不计其数的,不在理解的基础上,加以灵活应用,学生学的只是一些“死”的知识。有些学生只是记住一些题目,想想老师以前似曾这么讲过,这些都不能很好的学好数学,只要注重数学思维能力的培养,才能建立良好的学习态度,培养对数学的浓厚的兴趣,这才是学好数学的有效途径,那么,数学的思维能力,包括什么内容呢?在数学学习中可以直接培养的几种能力有:抽象概括能力、逻辑推理能力、选择判断能力和数学探索能力。现在的许多高考试题,一方面是老师认为出得好,出得妙,试题容易入手,运算量相应减小,另一方面却是老师教出来的学生认为出得难,出得怪,不知如何切题,有力使不上。如2005年高考数学试题(福建卷)选择题第12题:f(x)是定义在R上的以3为周期的偶函数,且f(2) = 0,则方程f(x) = 0在区间(0 , 6)内解的

个数的最小值是()A.5 B.4 C.3 D.2.高考中经常会出现一些平时学习、训练不曾出现的新面孔试题,学生不能采用“把问题放到严密的数学体系中,将思维重点放到如何剖去具体问题的外部伪装,将其中的数学本质挖掘出来,找到解决问题的关键”的作法。而想的更多是如何套上以往见过的哪一类题型,想来想去想不出,以致想到没有时间为止。因此在数学教学中一定要下大气力来抓思维能力的培养,让学生在学习数学的过程中能迸发出更多的数学灵感。(一)抽象概括能力 数学抽象概括能力是数学思维能力,也是数学能力的核心。它具体表现为对概括的独特的热情,发现在普遍现象中存在着差异的能力,在各类现象间建立联系的能力,分离出问题的核心和实质的能力,由特殊到一般的能力,从非本质的细节中使自己摆脱出来的能力,把本质的与非本质的东西区分开来的能力,善于把具体问题抽象为数学模型的能力等方面。在数学抽象概括能力方面,不同数学能力的学生有不同的差异。具有数学能力的学生在收集数学材料所提供的信息时,明显表现出使数学材料形式化,能迅速地完成抽象概括的任务,同时具有概括的欲望,乐意地、积极主动地进行概括工作。抽象概括能力是学习数学的基础,我们必须把握概念的本质,从而能够应用概念去解决问题,例如,求两个集合的交集,同学应该知道,交集是两个集合元素共同部分组成的一个集合,那么有针对性地应用这个概念去寻找两个集会的公共部分,问题就解决了,有些同学之所以不能区分,交集、并集的概念,就在于不注重对概念的理解,以致做很多的题目,也只能是事倍而功半了。 数学教学中如何培养学生的抽象概括能力呢?我认为从以下几方面入手: 1.教学中将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括

高中数学解题八个思维模式和十个思维策略

高中数学解题八种思维模式 和十种思维策略 引言 “数学是思维的体操” “数学教学是数学(思维)活动的教学。” 学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。 高中数学思维中的重要向题 它可以包括: 高中数学思维的基本形式 高中数学思维的一般方法 高中数学中的重要思维模式 高中数学解题常用的数学思维策略 高中数学非逻辑思维(包括形象思维、直觉思维)问题研究; 高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究; 高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性 高中数学思维的基本形式 从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维 一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式。3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。 二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感。6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。7图形

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

高考数学解题思维能力是怎样练成的.doc

高考数学解题思维能力是怎样练成的 纵观近几年高考数学试题,可以看出高考数学试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强,下面是我给大家带来的,希望对你有帮助。 高考数学解题思维能力怎样练成的 第一,从求解(证)入手——寻找解题途径的基本方法遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到"需知"后,将"需知"作为新的问题,直到与"已知"所能获得的"可知"相沟通,将问题解决。事实上,在不等式证明中采用的"分析法"就是这种思维的充分体现,我们将这种思维称为"逆向思维"——必要性思维。 第二,数学式子变形——完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢? 其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还

必须注意的是,一切转换必须是等价的,否则解答将出现错误。 解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的 桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。 第三、回归课本---夯实基础。 1)揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维 方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去"悟"出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。 2)构建网络----融会贯通在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。 例如: 若f(x+a)=f(b-x)则f(x)关于对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,

直觉思维在高中数学解题中的应用举例

直觉思维在高中数学解题中的应用举例 【摘要】从某种意义上讲,数学思维可以分为逻辑思维和直觉思维。逻辑思维对高中生很重要,它要求学生严格遵守数学概念和数学演绎的规则,什么样的条件得到什么样的结论,训练学生思维的严密性。然而,“逻辑用于证明,直觉用于发明”,要开发学生的数学创造力,还应重视培养学生的直觉思维。直觉思维不受固定的逻辑规则约束,通过观察、猜想、假设等手段,直接领悟问题本质,从而得出问题的答案,是一种跳跃式的预见。本文主要通过举例说明直觉思维在高中数学解题中的应用。 【关键词】直觉直觉思维数学解题 【正文】 一、对直觉和直觉思维的认识 直觉有广义和狭义之分,广义的直觉是指一种心理现象,它不仅包括认知过程,还包括情感和意志的活动;而狭义的直觉是指一种思维方式,此时它只是一种认知过程、认知方式。因此,狭义的直觉又可以称之为直觉思维。 直觉思维是指不受某种固定的逻辑规则约束而直接领悟问题本质的一种思维形式,它以已有的知识、经验和技能为基础,通过观察、联想、类比、猜测之后对所研究的问题做出迅速而直接的综合判断,从而得到问题的答案。 直觉思维具有以下特征: 1、直接 这是直觉思维最显著的特征。即不用经过严密的逻辑推理,直接获得对问题的整体把握,从而得到结论。 2、迅速 这也是直觉思维的重要特征。即运用直觉思维,问题的结果产生迅速,甚至无法用正常的逻辑去解释。 3、飞跃 这是直觉思维区别于逻辑思维的重要标志。逻辑思维是按照固定的逻辑规则有步骤地进行,而直觉思维一旦出现,便摆脱固定逻辑规则的约束,从而使认知过程不断飞跃。 4、差异 直觉思维与个体的知识、经验和技能有关,因此会表现出明显的个体差异。 5、自信 运用直觉思维时,思考者理智清楚、意识明确,对结果的正确性非常自信。当然,也不排除对结果进行进一步逻辑分析的必要性。 6、偶然

(完整版)浅谈幼儿数学思维能力的培养

浅谈幼儿数学思维能力的培养 数学是一门创造性和应用性都很强的学科,21世纪需要开拓型、创造型的人才,创造性人才培养的一个重要方面就是对幼儿创造性思维的培养。创造性思维是创造力的核心,是人们完成创造性活动的基础。教育能促进幼儿创造力的发展,数学教育不仅能发展幼儿的逻辑思维,还可以培养其创造思维。通过数学领域中开展各种创造性的活动,发展幼儿思维的灵活性、变通性、独特性、培养幼儿探索发现的积极性,从而开发幼儿的创造潜能力。 为此,我在各种数学教育途径中渗透创造教育的精神与做法,在实践中探索促进创造力发展的教法。在幼儿数学活动中培养幼儿的创造性思维能力。 一、培养孩子的独立学习能力 (一)营造家庭和谐氛围,让孩子在宽松环境中成长 家庭是孩子接受第一教育的基础,构建和谐家庭是一个系统工程,包括家庭的方方面面。家长的生活态度、生活方式以及所受的教育程度等因素控制和主导着家庭成员的情感行为,他们的喜怒哀乐,会在家

庭中表现和宣泄,如果家长没有足够的宽容接纳态度,这种消极情绪就会转嫁给孩子。因此,家长的一种从容不迫的气度,谦抑的态度,便能从内心传导出一种饱和的力量,并将这种力量传递到孩子的心里,也就是人在自然状态中的一种和谐,在这样的状态下,才能触及到孩子学习能力的根部,并加以培养。 (二)潜移默化培养孩子的学习兴趣,让兴趣成为习惯 一个人的兴趣可以是自然发生的,但更多的时候是靠培养获得的,在孩子的日常生活中家长潜移默化给予孩子的积极的影响。培养孩子读书的兴趣并最终养成读书的习惯,让读书成为孩子终生受益,永远都喜欢并乐于做的事。 (三)充分利用社会资源,孩子无意中获取知识 有条件的家庭可以常带孩子去书店或图书馆,并且把它安排在日常生活的例事日程中,只要能坚持下去,孩子就会好学、会学、能学,自主学习的能力就会自然形成。有效利用网络资源可培养孩子自主学习能力。 二、幼儿数学兴趣的培养是创造性思维能力的关键 兴趣是学习的重要动力,兴趣也是创造性思维能

如何培养数学直觉思维

如何培养数学直觉思维 数学直觉思维的阐释 数学直觉是具有意识的人脑对数学对象的某种直接的领悟和洞察。直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。而直觉的研究对象则是抽象的数学结构及其关系。例如,我们仍无法想象千角形,但我们能够通过直觉一般地思考多角形,多角形把三角形作为一个特例包括进来。由此可见直觉是一种深层次的心理活动,没有具体的直观形象和可操作的逻辑顺序作思考的背景。从思维方式看,思维可以分为逻辑思维和直觉思维。长期以来人们刻意地把两者分离开来,其实这是一种误解,逻辑思维与直觉思维从来就不是割离的。有一种观点认为逻辑重于演绎,而直观重于分析。从侧重角度来看,此话不无道理,但侧重并不等于完全,数学逻辑中是否会有直觉成分?数学直觉是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件作出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。数学最初的概念都是基于直觉,在一定程度上就是在问题解决中得到发展的,问题解决也离不开直觉。下面我就以数学问题的证明为例,考察直觉在证明过程中所起的作用。

加强辩证思考:升华直觉 无论是直觉思维,还是抽象思维,它们都是通过人的大脑进行的。人的大脑有左右两个半球,它们具有不同的功能。在数学教学过程中,往往是过度使用左脑,而右脑常常被忽视。其中一个重要原因就是人们对学生的学习缺乏深刻理解和认识。也就是说,人为地割裂了学习积累与“科学发现”的关系。现代教育理论认为,学生在学习过程中,虽然不一定能提出新概念、新理论和新方法等,但所学知识是第一次呈现在他们面前,相对学生来说。这些内容是全新的,从这个意义上说,学生除了模仿之外,也内含着创造性思维活动。 因此,我们可以围绕教学,展开科学上再创造、再发现,在这一过程中,使学生感觉和体悟何以为创造,何以为发明,何以为创新,使其学习过程向着发现过程转化。因此,无论脑科学,还是现代教育理论,都明晰地告诉了我们,在数学教学过程中,不仅要重视逻辑思维,更应有意识地培养学生使用直觉思维(想象、顿悟、灵感等)去探索和发现事物客观规律的能力。伊思?斯图尔说得好:“数学的全部力量在于直觉和严格性巧妙地结合在一起,受控制的精神和富有灵感的逻辑。”受控制的精神和富有灵感的逻辑正是数学的魅力所在,也是数学教育工作者努力的方向。 2如何培养学生的数学直觉思维 注意数形结合:感悟直觉 数学是什么?数学是研究现实世界的空间形式和数量关系的科学。可见,数与形在数学中的地位就非同一般。直觉始于观与察,而形是可

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

数学解题的思维过程

数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段 理解问题是解题思维活动的开始 第二阶段 转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段 计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段 反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。(三)恰当构造辅助元素: 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。 数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命

如何进行直觉思维训练

如何进行直觉思维训练 思维心理学认为,人的大脑把摄取的形形色色的信息分为两类,分别存储在不同的区域。那些常见的信息,因其摄入次数多,它们之间的相互联系被逐渐认识了。于是,它们被有规律地排列在大脑中的某一区域,呈有序态。一旦需要调用,就可有序地进行查找,这便是在常规解决问题中应用的以概念判断和推理为形式的逻辑思维。那些偶尔遇到,且很少利用的信息,大脑对其内在联系不甚了了,无法有序排列,只好杂乱地“堆放”在大脑中的某一区域。要想从中寻找东西,因无规则可循,只好乱翻,凭借机遇与直觉判断,这便是在非常规解决问题中应用的直觉思维。直觉思维不是去寻求阐明事物间的已知联系,而是要探明事物间的未知联系。运用非推理因素把似乎无关的知识联系起来以解决问题,这需要我们在日常的教学中注意下面几点: 一、打破思维方式 训练学生的直觉思维,首先应当要求学生在面临较复杂的问题情境时,迅速再现知识系统和经验储备中的相关信息,经过总体观察,对问题实质作出大胆的假设和试探,迅速做出判断,以抓住问题的关键,快捷地解决问题。人教版义务教育教材第九册第69页有这样一道题:一个学生的家离学校有3千米,他每天早晨骑车上学,每小时行15千米,这样恰好准时到校。一天早晨,因为逆风,开始的1千米,他只能以每小时行10千米的速度骑行。剩下的路程他应以每小时行多少千米的速度骑行,才能准时到校,学生用常规思路解答后,我提出两个问题,已行路程与剩下路有什么关系,准时到校是什么意思,片刻之后,不少同学对结果是20千米脱口而出。理由很简单:剩下路是已行路的2倍,时间不变,那么剩下路程骑行速度也应提高到原来的2倍。新颖、奇特的解法,必须以深厚的实践为基础,以丰富的知识经验为前提,以扎实的双基作为直觉思维的智力背景,因此教师平时要加强

浅谈学生数学思维能力的培养

浅谈学生数学思维能力的培养 教育家赞可夫指出:“在各科教学中要始终注意发展学生的逻辑思维,培养学生的思维的灵活性和创造性”。在数学教学过程中,教师要特别重视和发展学生的好奇心,让每一个学生养成想问题、问问题、挖问题和延伸问题的习惯。让所有的学生都知道自己有权力和能力提出新见解、发现新问题。这一点对学生的发展很重要,它有利于学生克服迷信和盲从,树立起科学的思想和方法,有利于学生形成良好的学习品质。 一、善于运用启发法和发现法,启发学生思维的积极性 如教学义务教育十一册教材中“圆的认识”一课时,教师首先要学生拿出一张圆形纸片,让他们将圆纸片对折打开,再对折再打开,如此多次,让学生观察在圆纸片上看到了什么?学生精力陡然集中,都想看看圆纸片上有什么?一生发现:圆纸片上有折痕。另一生又发现:圆纸片上有无数条折痕。老师表扬两生观察仔细。其它学生倍受鼓舞,纷纷发言:圆面上所有折痕相交于一点;折痕两旁的图形完全重合。这时,老师让学生打开课本,看一看交点叫什么?折痕叫什么?学生很快找到了答案并熟记。要学习在同一圆中直径和半径的关系了,老师让学生拿出尺子量一量,自己手中的圆纸片和同学手中的圆纸片的直径和半径,启发学生又发现了什么?学生很快得出结论。要画圆了,老师还是不讲画法,让学生先去画,满足他们操作圆规的好奇心,让学生自己去发现画圆的方法和步骤。整节课,学生的思维都处于兴奋状态之中,人人有动手操作、用眼观察、动口说理、动脑思维的机会,学生自己观察发现问题,积极探索得出结论,教学效果好。 二、精心设计教学内容,培养学生的求异思维 对于小学生来说,既要注意培养他们不盲从,喜欢质疑,打破框框,大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考独立解决问题的习惯。 如,一位教师教学“乘法意义”的运用一课时,她出示了这样一道加法题:9+9+9+5+9=?让学生用简便方法计算。于是一个学生提出了9×4+5的方法,而另一个学生则提出了“新方案”,建议用9×5-4的方法解。这个学生的思维有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了”一个实际并不存在的9,他假设在5的位置上是一个9,那么就可以把题目先假设为9×5。接着他的思维又参与了论证:9-4才是原题中的实际存在的5。对于这种在别人看不到的问题中发现问题和提出问题,这种创造性思维的闪现,教师要加倍珍惜和爱护。 三、利用一题多解,培养学生的“立体思维”模式 如,义务教育十二册教材中的这样一道应用题:“一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行30千米。驶回时逆风,每小时行驶的路程是顺风时的 5 4。这艘轮船最多驶出多远就应往回驶了?”老师要求学生用几种方法解答,并说出解题思路。

浅谈数学直觉思维能力的培养

浅谈数学直觉思维能力的培养 发表时间:2012-06-28T16:22:12.903Z 来源:《中小学教育》2012年9月总第110期供稿作者:衣振美 [导读] 总之,直觉思维与逻辑思维在培养学生的创造性思维中同等重要,偏离任何一方都会制约一个人思维能力的发展。 衣振美山东省栖霞市观里中学265300 摘要:“逻辑用于论证,直觉可用于发明”,数学直觉就是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。学生直觉思维能力的培养,需要教师运用直观教学法,努力拓宽学生的知识面,同时,在课堂上给学生留下一定的学习空间,鼓励学生进行合理的猜想,进而帮助学生养成自问和反思的习惯,形成较强的直觉思维能力。 关键词:数学直觉思维能力培养 “逻辑用于论证,直觉可用于发明”,庞加莱的这一名言精辟地指出了直觉在创造性思维活动中的作用。直觉,又称为顿悟,在某些领域中又称为灵感。平时,某人花了许多时间做一道题目,突然间他做出来了,但是还需为答案提出形式证明;或当别人向他提问时,他能够迅速作出很好的猜测,判定某事物是不是这样。这种“突发奇想”就是直觉思维。而数学直觉是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。许多数学高材生常常具备较强的直觉思维能力,解题时能够“单刀直入,立刻剖析问题的核心,而不是在外围大兜圈子”,其思维过程能够省略许多看来是思考的逻辑链上的必要环节,这对具有巨大潜能的初中学生来说,培养他们的猜想能力、想象能力和直觉思维能力就显得尤为重要了。 一、运用直观性教学。在数学教学中,要注意将客观事物中的数学特点抽象而构造出模型、表格、图形等直观形象,要尽可能为学生提供某种关于这些概念、定理、法则的直观性理解,这些直观形象有助于直觉思维的形成。第一,要注意数形结合。著名数学家华罗庚指出:“数缺形时少直观,形缺数时难入微。”数和形作为数学的两个基本对象,是现实世界中数量与空间形式的反映。因此,我们要把数、形之间的转化作为培养学生直觉思维能力的重要途径。当面对表示题目信息的“数”有明显意义的问题时,要求学生能直觉想象出相应的图形,利用“形”的直观来寻找解题途径;反之,对表示题目信息的“形”易于用数来表示的问题,要求学生能构造出相关的“数”的命题,用数的性质来解决问题。第二,要注意教学语言的直观性。数学教学中的直观性决不仅限于模型和画图,更重要的是要注意语言的直观形象性。形象化的语言描绘,可以摆脱实物、模型和图表等直观教具所需的时间、空间、设备等条件限制,使抽象的东西具体化、远处的东西近化、深奥的东西浅化。如丰富的数学知识的语言——数学名词、术语、符号等,要让学生不但熟悉这些语言,还应善于用通俗生动的语言、比喻等手段阐释抽象难懂的原理,借他山之石以攻玉,这样才有助于展开丰富的联想,培养学生直觉思维的能力。 二、丰富学生的知识。有“十月怀胎”才可能“一朝分娩”,要产生直觉,必须有量的积累。由直觉所带来的灵感,往往是突然爆发的,即突然有某一新奇的念头和想法跃入了脑际,一下子便把握了事物的实质或解决某一问题的方法与方向。这是因为人脑中储存着大量的信息,虽然有些信息在某一特定时刻是可能不被意识到的,但是由于主体在对问题有意识地进行思索,发散式地提供与该问题相近的信息,它很快便成为意识的对象,促进了问题的解决。在数学教学中,要注意提供丰富的背景材料,恰当地设置教学环境,促使学生作整体性思考,让他们在面临问题时,注意首先从整体上考虑其特点,着眼于从整体上揭示出数学对象的本质及内在联系,对各种信息作综合性考虑。学生有了广博的知识基础,才能广泛地联想,才能在不同知识领域里获取借鉴;当接触到新的数学问题后,才有可能作出应有的直觉判断。 三、拓宽学习空间。外国学者关于数学启发法是这样论述的:如果解题者面对所要解决的问题一无所措,数学启发法可能会给你一定的启示;但如果解题者对于如何求解问题已经有了自己的想法,这时最为恰当的做法就是,让他按自己的方法去做!因此,在教学中,要注意适当推迟做出结论的时机,给学生留下直觉思维的空间。阿基米德曾试图用各种方法测出结构复杂的皇冠的体积,但努力很久也未能成功。最后一次是在洗澡,当他躺进浴缸,看到浸入水中的身体与浴缸里的水溢出时,一个想法自发而生了,他所渴望以求的,不就是几何中的体积变换吗?一个久思不解的难题就这样解决了。这一特点也提示我们,在紧张的思维后,暂时放下工作,进入悠然闲适的状态更容易产生直觉。要使学生感到数学并不都是枯燥乏味的证明、推理,学习数学还可以从大千世界的万物生灵中得到启示,在玩中学,寓学于趣味之中,使他们对自己的直觉思维产生成功的喜悦感。 四、学会合理的猜想。科学家牛顿说过:“没有大胆的猜想,就做不出伟大的发现。”可见,对初中学生加强数学猜想的训练,培养他们提出数学猜想的能力,对于发展学生的创造性思维具有十分积极的作用。我们在教学中确实有许多“只可意会,不可言传”的东西,要说明为什么有时是很困难的,这时就需要具有较强的猜想能力。作为教师要转变教学观念,改变只看演绎过程的严密性而忽视直觉猜想的价值,注意利用问题的拓广来吸引学生多角度设想、多方位思维,引导学生从整体上把握问题,鼓励学生大胆地猜想,不懈地要求学生归纳与演绎交互使用、形象思维与抽象思维协同,使学生意识到每一个问题都可能有不同的解释或解决方法。实践证明,知识经验越多,想象力越丰富,提出数学猜想的方法掌握得越熟练,猜想的可信度就越高。 总之,直觉思维与逻辑思维在培养学生的创造性思维中同等重要,偏离任何一方都会制约一个人思维能力的发展。一个正确的直觉在创造发明中能起到不可估量的作用,我们在教学中要经常引领学生做做“头脑体操”,锻炼学生的直觉思维。

相关主题