搜档网
当前位置:搜档网 › 01 通信原理课程设计 - 基于Simulink的卷积码编码技术 仿真与性能分析

01 通信原理课程设计 - 基于Simulink的卷积码编码技术 仿真与性能分析

01 通信原理课程设计 - 基于Simulink的卷积码编码技术 仿真与性能分析
01 通信原理课程设计 - 基于Simulink的卷积码编码技术 仿真与性能分析

长沙理工大学

《通信原理》课程设计报告

***

学院城南学院专业通信工程班级学号

学生姓名指导老师熊文杰

课程成绩完成日期2015年1月9日

课程设计成绩评定

学院城南学院专业通信工程班级学号

学生姓名指导老师熊文杰

课程成绩完成日期2015年1月9日指导教师对学生在课程设计中的评价

指导教师对课程设计的评定意见

基于Simulink的卷积码编码技术

仿真与性能分析

学生姓名:*** 指导老师:熊文杰

摘要本课程设计主要解决通信系统中基带传输信道纠错编码技术中的卷积码编码技术。产生一段随机的二进制非归零码的基带信号,对其进行卷积编码,而后采用维特比(Viterbi)译码输出,并通过Matlab软件进行设计与仿真,并进行差错率-误码率曲线绘制和性能分析。

关键词卷积码编码器;维特比译码器,Simulink;设计与仿真,性能分析

1 引言

本课程设计主要解决信号传输过程中的卷积编码和卷积解码的问题。对一个串非归零二进制信号卷积码序列进行维特比(Viterbi)译码输出,并通过Matlab软件进行设计与仿真。

1.1 课程设计目的

本课程设计的目的主要是仿真通信系统中基带传输信道纠错编码技术中的卷积码编码技术。产生一段随机的二进制非归零码的基带信号,对其进行卷积码编码后再送入二进制对称信道传输,在接收端对其进行卷积解码以恢复原信号,观察还原是否成功,改变二进制对称信道的差错率,计算传输前后的误码率,绘制信道差错率-误码率曲线,并与理论曲线比较进行说明。

卷积码是一种向前纠错控制编码。它将连续的信息比特序列映射为连续的编

码器输出符号。这种映射是高度结构化的,使得卷积码的译码方法与分组码译码所采用的方法完全不同。可以验证的是在同样复杂度情况下,卷积码的编码增益要大于分组码的编码增益。对于某个特定的应用,采用分组编码还是采用卷积编码哪一种更好则取决于这一应用的具体情况和进行比较时可用的技术。

1.2 课程设计要求

本设计开发平台为MATLAB中的Simulink。模型设计应该符合工程实际,模块参数设置必须与原理相符合。处理结果和分析结论应该一致,而且应符合理论。独立完成课程设计并按要求编写课程设计报告书。

1.3 课程设计原理

卷积编码的最佳译码准则为:在给定已知编码结构、信道特性和接收序列的情况下,译码器将把与已经发送的序列最相似的序列作为传送的码字序列的估值。对于二进制对称信道,最相似传送序列就是在汉明距离上与接收序列最近的序列。

卷积码的编码器一般都比较简单。

如下图1-1是一般情况下的卷积码编码器框图。它包括NK级的输入移位器,一组n个模2和加法器和n级的输出移位寄存器。对应于每段k比特的输入序列,输出n个比特。由图可知,n个输出比特不但与当前的k个输入比特有关,而且与以前的(N-1)k个输入信息比特有关。整个编码过程可以看成是输入信息序列与由移位寄存器和模2加法器的连接方式所决定的另一个序列的卷积,卷积码由此得名。本文采用的是冲击响应描述法编码思想。

图1-1 卷积码编码器原理框图

图1-2 卷积编码器

如上图1-2是卷积码(2,1,3)卷积编码器的一个框图。左边是信息的输入。下面分别是系统位输出和校验位输出。其中间是3个移位寄存器和一个模2加法器。简单的说就是信息位经过移位寄存器和一个模2加法器产生一个系统位和校验位加在一起输出。可以看出:每输入一个比特,移位寄存器中就向右移动一个位子。原来的第三个寄存器就被移出。可见卷积编码不只与现在的输入比特有关还与前面的3-1个比特有关。所以约束长度是3。在这里,其中K=1 ,n=2所以码率R=K/n=1/2。

卷积码的译码方法有两大类:一类是大数逻辑译码,又称门限译码(硬判决);另一种是概率译码(软判决),概率译码又分为维特比译码和序列译码两种。门限译码方法是以分组码理论为基础的,其译码设备简单,速度快,但其误码性能要比概率译码法差。

当卷积码的约束长度不太大时,与序列译码相比,维特比译码器比较简单,计算速度快。维特比译码算法是1967年由Viterbi提出,近年来有大的发展。目前在数字通信的前向纠错系统中用的较多,而且在卫星深空通信中应用更多,该算法在卫星通信中已被采用作为标准技术。

采用概率译码的基本思想是:把已接收序列与所有可能的发送序列做比较,选择其中码距最小的一个序列作为发送序列。如果发送L组信息比特,那么对于(n,k)卷积码来说,可能发送的序列有2kL个,计算机或译码器需存储这些序列并进行比较,以找到码距最小的那个序列。当传信率和信息组数L较大时,使得译码器难以实现。维特比算法则对上述概率译码做了简化,以至成为了一种实用化的概率算法。它并不是在网格图上一次比较所有可能的2kL条路径(序列),而是接收一段,计算和比较一段,选择一段最大似然可能的码段,从而达到整个码序列是一个最大似然值得序列。

下面以图1-3的(2,1,3)卷积码编码器所编出的码为例,来说明维特比解码的方法和运作过程。为了能说明解码过程,这里给出该码的状态图1-4。

如上图所示,维特比译码需要利用图来说明移码过程。根据卷积码画网格的方法,我们可以画出该码的网格图,如下图1-5所示。该图设输入信息数目L=5,所以画L+N=8个时间单位,图中分别标以0至7。这里设编码器从a 状态开始运作。该网格图的每一条路径都对应着不同的输入信息序列。由于所有可能输入信息序列共有2kL 个,因而网格图中所有可能的路径也为2kL 条。这里节点a=00,b=01,c=10,d=11。

设输入编码器的信息序列为(11011000),则由编码器对应输出的序列为Y=(1101010001011100),编码器的状态转移路线为abdcbdca 。若收到的序列R=(0101011001011100),对照网格图来说明维特比译码的方法。

由于该卷积码的约束长度为6位,因此先选择接收序列的前6位序列R 1=(010101)同到达第3时刻的可能的8个码序列(即8条路径)进行比较,并计算出

b

a b

c d

节点号

1

2

3

4

5

6

7

图1-3 卷积码编码器

图1-4 (2,1,3)卷积码状态图

图1-5 卷积码网格图

码距。该例中到达第3时刻a 点的路径序列是(000000)和(111011),他们与R 1的距离分别为3和4;到达第3时刻b 点的路径序列是(000011)和(111000),他们与R 1的距离分别为3和4;到达第3时刻c 点的路径序列是(001110)和(110101),他们与R 1的距离分别为4和1;到达第3时刻d 点的路径序列是(001101)和(110110),他们与R 1的距离分别为2和3。上述每个节点都保留码距较小的路径作为幸存路径,所以幸存路径码序列是(000000)、(000011)、(1101001)和(001101),如下图1-6所示。用于上面类似的方法可以得到第4、5、6、7时刻的幸存路径。

需要指出的是,对于某个节点,如果比较两条路径与接收序列的累计码距值

相等时,则可以任意选者一条路径作为幸存路径,吃时不会影响最终的译码结果。在码的终了时刻a 状态,得到一条幸存路径。如下图1-7所示,由此可看到译码器

a b c d

节点号

1

2

3

a b c d

节点号

1

2

3

4

5

6

7 8

图1-6 维特比译码第3时刻幸存路径

图1-7 第8时刻幸存路径

输出是R’=(1101010001011100),即可变换成序列(11011000),恢复了发端原始信息。比较R’和R序列,可以看到在译码过程中已纠正了在码序列第1和第7位上的差错。当然如果差错出现太频繁,以致超出卷积码的纠错能力,还是会发生纠误的。

2 Simulink中卷积码编码器和译码器的设计与仿真

2.1 Simulink卷积码编码及模块参数设置

本设计是采用正弦波作为信源,整个信源模块如下图2-1所示:

图2-1 信源模块

其中,各个元件具体参数如下各图所示:

图2-2 正弦波参数设置

图2-3 zero-order hold参数设置

图2-4 Gain1参数设置

将所得到的采样信号进行PCM编码,PCM编码模块如下图2-5所示,再通过并串转换,如下图2-6所示:

图2-5 PCM编码模块

图2-6并串转换模块

具体参数设置如下列各图所示:

图2-7 Saturation参数设置

图2-8 Relay参数设置

图2-9 A-Law Compressor参数设置

图2-10 Buffer参数设置

在正弦波信号经过信源上述模块后,模拟信号将会变为非归零二进制基带信号,接着就可以进行本次设计的关键步骤了——卷积编码。

2.2 Simulink卷积码编码解码及参数设置

在得到二进制非归零信号后,为了增加数据的可靠性,就可以进行卷积编码了。卷积码编码模块设计如下图2-11所示。

图2-11 卷积编码,卷积解码模块

此模块分别由Convolutional Encoder(卷积码编码器),BSC信道,Viterbi Decoder(维特比译码器)。其各元件具体参数设置如下列各图所示:

图2-12 卷积编码器参数设置

图2-13 BSC信道参数设置

图2-14 维特比译码器参数设置

信道中差错率可以人为修改,这里暂时设为0。通过示波器观测,如下图2-15所示,可以看出延时34个码元。故Traceback depth 参数设置为34。

图2-15 卷积编码,卷积解码

2.3 Simulink卷积码编码还原及参数设置

为了得到完整的正弦波信号,就得接受到的信号进行延时补偿,PCM解码,串并转换,最后对信号还原,接入示波器中观察。其原理图如下图2-16所示:

图2-16 信宿模块

各元件参数设置均和编码时参数相同,接入信号还原元件,再接一个示波器观察原正弦波和还原后的正弦波的区别。Bit to Integer Converter和前面图2-5中的Integer to Bit Converter参数设置一样,参数设置如下图2-17所示:

图2-16 Bit to Integer Converter参数设置

2.4 Simulink卷积编码——维特比译码系统测试

完成上述三大步骤后,再接入Error Rate Calculation进行误码率统计。整个原理图如下图2-18所示:

由图2-2至2-6可知,本系统延时34,故如下图2-19所示参数设置。

图2-19 Error Rate calculation参数设置

完成上述参数设置后点击运行。运行结束后,观察示波器,所得信号和原信

号一样,说明该设计成功。各示波器显示如下图2-20所示:

图2-20 卷积编码输入,维特比译码输出

由图2-18可以看出,输入和输出对比,除了在时间上有34个码元的延迟以外,

波形是一样的,所以此卷积编码,维特比译码正确。如下图2-21所示:

图2-21 输入波形和输出波形对比

由上图2-21所示,输入波形和输出波形基本上一样,这是因为信道的差错率为0,改变信道的差错率为0.1。输入输出波形对比如下图2-22所示

图 2-22加入噪声的输入波形和输出波形

由此可知,信道的特性是影响信息传输的一大因素,只有信道的差错率在一定范围内,才能保证信息的正确传输。

3 Matlab中卷积码差错率——误码率分析

执行M文件,随着信道差错率的提升,维特比译码所得结果的误码率升高,信道的可信度降低,本应该得出关系曲线图,但是由于部分原因并经查找资料都无法出现关系曲线图。

4出现的问题及解决办法

1、加入声源的问题及解决办法

最初本课程设计采用声源作为信源,要求采用8000HZ的声源,但是MATLAB 总是无法调用声源文件。

解决办法:把声源换成正弦波作为信源,成功解决信源问题。

2、各模块参数设置的问题及解决办法

该课程设计是采用的声源作为信源,因此前期各模块的参数是基于声源的前提下设置的,但是后面把信源修改为正弦波时需要修改各模块的参数,就需要对部分模块的参数进行设置。

解决办法:首先设置正弦波的参数,把正弦波的频率设置为3000。其次设置数字转换器(Quantizer)的量化区间(Quantization interval)设置为7位二进制,故设置为7。最后设置BSC信道的参数,误差为0的时候,还原后的图像基本上与原正弦波吻合;改变信道的误差为0.1,以便观察原正弦波和加入噪声的输出波形进行对比。

3、误码率分析的问题及解决办法

设计的最后步骤需要对误码率进行分析,但是无法产生关系曲线图。我们后期MATLAB学习中关注并解决该问题。

5 结束语

此课程设计对整个通信系统包含的编码、传输和译码都进行了设计与仿真,从这些过程中我们看到了通信系统的基本工作原理。通过整个卷积码系统的设计与仿真,使我们加深了对卷积码的理解,掌握维特比译码的基本思路,知道如何进行误码率分析从而选者合适的信道传输信号,更重要的是学会了使用Matlab作为学习工具来对我们的通信系统进行设计和仿真等操作,这对我们以后的学习和工作有着重要意义。

参考文献:

[1] 仇佩亮,《信息论与编码》,高等教育出版社

[2] 约翰·G·普罗克斯,马苏德·萨勒赫编,刘树棠译,《现代通信系统—使用MATLAB》,西安交通大学出版社

[3] 主编李贺冰,副主编袁杰萍孔俊霞,《SIMULINK通信仿真教程》,国防工业出版社

[4] 邓华等编著,《MA TLAB通信仿真及应用实例详解》,人民邮电出版社

[5] 张威编,《MATLAB基础与编程入门》,西安电子科技大学出版社

卷积码的编码及解码Viterbi解码Word版

卷积码的编码及解码(Viterbi 解码) 一、实验目的 1、了解卷积码的基本原理; 2、掌握卷积码编码的电路设计方法; 2、掌握卷积码 Viterbi 译码的基本方法和电路设计方法。 二、实验仪器 1、移动通信实验箱一台; 2、台式计算机一台; 三、实验原理 1.卷积码编码原理 卷积码是一个有限记忆系统,它也将信息序列切割成长度 k的一个个分组,与分组码不 同的是在某一分组编码时,不仅参看本时刻的分组而且参看本时刻以前的 L 个分组。我们把 L+1 称为约束长度。 2.卷积码的译码算法(硬判决 Viterbi 译码) Viterbi译码算法是一种最大似然算法,它不是在网络图上依次比较所有可能的路径, 而是接收一段,计算,比较一段,保留最有可能的路径,从而达到整个码序列是一个最大似然序列。Viterbi解码算法的基本步骤如下: 1、从某一时间单位j=m开始,对进入每一状态的所有长为j段分支的部分路径,计算部分路径度量。对每一状态,挑选并存储一条有最大度量的部分路径及 其部分度量,称此部分路径为留选(幸存)路径。 2、j增加1,把此时刻进入每一状态的所有分支度量,和同这些分支相连的前一时刻的留选路径的度量相加,得到了此时刻进入每一状态的留选路径,加以存储并删去其他所有的路径。因此留选路径延长了一个分支。 3、若j

基于matlab的2-3卷积码编码译码设计与仿真

西南科技大学 方向设计报告 课程名称:通信工程方向设计 设计名称:2/3卷积码编译码器仿真与性能分析 姓名: 学号: 班级: 指导教师: 起止日期:2011.12.12-2012.1.6 西南科技大学信息工程学院制

方向设计任务书 学生班级:学生姓名:学号: 设计名称:2/3卷积码编译码器仿真与性能分析 起止日期:2011.12.12-2012.1.6指导教师: 设计要求: (1)分析2/3卷积码编码器结构; (2)分析2/3卷积码译码的Viterbi算法; (3)基于SIMULINK进行2/3卷积码的纠错性能仿真; 方向设计学生日志 时间设计内容 12.15-12.17 查看题目及设计要求。 12.18-12.23 查阅相关资料,设计方案。 12.23-12.27 编写报告及调试程序。 12.28-12.29 完善修改课程设计报告。 12.30-12.31 答辩。

方向设计考勤表 周星期一星期二星期三星期四星期五 方向设计评语表 指导教师评语: 成绩:指导教师: 年月日

2/3卷积码编译码器仿真与性能分析 摘要: 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。 关键词: 卷积码编码器、viterbi译码器、SIMULINK

卷积码的编解码Matlab仿真

卷积码的编解码Matlab仿真摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力D随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和译码原理o并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。得出了以下三个结论z (1)当改变卷积码的码率时,系统的误码性能也将随之发生变化。 (2)对于码率一定的卷积码,当约束长度N发生变化时,系统的误码性能也会随之发生变化。 (3)回溯长度也会不同程度上地影响误码性能。 关键词:卷积码:码率:约束长度:回溯长度

Simulation and Research on Encoding and Decoding of Convolution Code Abstract Convolution code has a superior performance of the channel code. It is easy to coding and decoding.An d it has a strong ability to correct e盯ors. As correcting coding theory has a long development,the practice of convolution code is more and more extensive.In由1S由esis,the principle of convolution coding and decoding is introduced simply白rstly. Then由e whole simulation module process of encoding,decoding and the Error Rate Calculation is completed in由is design. Finally,in order to understand 由eir performances of error rate,many changes in parameters of convolution code are calculated in the simulation process.Af ter simulation and me皿UTe,an analysis of test results is presented.Th e following由ree conclusions are draw: (l)Wh en the rate of convolution Code ch皿ges,HER performance of the systemwill change. (2) For a certain rate of convolution code,when由ere is a change in the constraint length of N,BER perfonnance of由e system will change. (3) Re位ospec咀ve length will affect BE R. Key words: convolution code; rate; cons缸aint leng由; retrospective length;

213卷积码编码和译码

No.15 (2,1,3)卷积码的编码及译码 摘要: 本报告对于(2,1,3)卷积码原理部分的论述主要参照啜刚教材和课件,编程仿真部分绝对原创,所有的程序都是在Codeblocks 8.02环境下用C语言编写的,编译运行都正常。完成了卷积码的编码程序,译码程序,因为对于短于3组的卷积码,即2 bit或4 bit纠错是没有意义的,所以对正确的短序列直接译码,对长序列纠错后译码,都能得到正确的译码结果。含仿真结果和程序源代码。 如果您不使用Codeblocks运行程序,则可能不支持中文输出显示,但是所有的数码输出都是正确的。

一、 卷积码编码原理 卷积码编码器对输入的数据流每次1bit 或k bit 进行编码,输出n bit 编码符号。但是输出的分支码字的每个码元不仅于此时可输入的k 个嘻嘻有关,业余前m 个连续式可输入的信息有关,因此编码器应包含m 级寄存器以记录这些信息。 通常卷积码表示为 (n,k,m). 编码率 k r n = 当k=1时,卷积码编码器的结构包括一个由m 个串接的寄存器构成的移位寄存器(成为m 级移位寄存器、n 个连接到指定寄存器的模二加法器以及把模二加法器的输出转化为穿行的转换开关。 本报告所讲的(2,1,3)卷积码是最简单的卷积码。就是2n =,1k =,3m =的卷积码。每次输入1 bit 输入信息,经过3级移位寄存器,2个连接到指定寄存器的模二加法器,并把加法器输出转化为串行输出。 编码器如题所示。 二、卷积码编码器程序仿真 C 语言编写的仿真程序。 为了简单起见,这里仅仅提供数组长度30 bit 的仿真程序,当然如果需要可以修改数组大小。为了更精练的实现算法,程序输入模块没有提供非法字符处理过程,如果需要也可以增加相应的功能。 进入程序后,先提示输入数据的长度,请用户输入int (整型数)程序默认用户输入的数据小于30,然后提示输入01数码,读入数码存储与input 数组中,然后运算输出卷积码。经过实验仿真,编码完全正确。 以下是举例: a.课件上的输入101 输出11 10 00 的实验

Matlab中卷积码译码器的误码率分析

长沙理工大学 《通信原理》课程设计报告 郭林 学院计算机与通信工程专业通信工程 班级540802 学号11 学生姓名郭林指导教师龙敏 课程成绩完成日期2008年1月11日

基于Matlab的卷积码译码器的 设计与仿真 学生姓名:郭林指导老师:** 摘要本课程设计主要解决对一个卷积码序列进行维特比(Viterbi)译码输出, 并通过Matlab软件进行设计与仿真,并进行误码率分析。在课程设计中,系统开发平台为Windows Vista Ultimate,程序设计与仿真均采用Matlab R2007a(7.4),最后仿真详单与理论分析一致。 关键词课程设计;卷积码译码器;Matlab;Simulink;设计与仿真 1引言 本课程设计主要解决对一个卷积码序列进行维特比(Viterbi)译码输出,并通 过Matlab软件进行设计与仿真。卷积码的译码有两种方法——软判决和硬判决,此课程设计采用硬判决的维特比译码。 1.1课程设计目的 卷积码是一种向前纠错控制编码。它将连续的信息比特序列映射为连续的编码器输出符号。这种映射是高度结构化的,使得卷积码的译码方法与分组码译码所采用的方法完全不同。可以验证的是在同样复杂度情况下,卷积码的编码增益要大于分组码的编码增益。对于某个特定的应用,采用分组编码还是采用卷积编码哪一种更好则取决于这一应用的具体情况和进行比较时可用的技术[1]。 本课程设计便是通过Matlab设计一个硬判决维特比译码输出的完整电路,并进行误码率分析。

1.2 课程设计的原理 卷积码,又称连环码,是由伊莱亚斯(P.elias)于1955年提出来的一种非分组码。 卷积编码的最佳译码准则为:在给定已知编码结构、信道特性和接收序列的情况下,译码器将把与已经发送的序列最相似的序列作为传送的码字序列的估值。对于二进制对称信道,最相似传送序列就是在汉明距离上与接收序列最近的序列。 卷积码的译码方法有两大类:一类是大数逻辑译码,又称门限译码(硬判决,编者注);另一种是概率译码(软判决,编者注),概率译码又分为维特比译码和序列译码两种。门限译码方法是以分组码理论为基础的,其译码设备简单,速度快,但其误码性能要比概率译码法差[2]。 当卷积码的约束长度不太大时,与序列译码相比,维特比译码器比较简单,计算速度快。维特比译码算法是1967年由Viterbi提出,近年来有大的发展。目前在数字通信的前向纠错系统中用的较多,而且在卫星深空通信中应用更多,该算法在卫星通信中已被采用作为标准技术。 2维特比译码原理 采用概率译码的基本思想是:把已接收序列与所有可能的发送序列做比较,选择其中码距最小的一个序列作为发送序列。如果发送L组信息比特,那么对于(n,k)卷积码来说,可能发送的序列有2kL个,计算机或译码器需存储这些序列并进行比较,以找到码距最小的那个序列。当传信率和信息组数L较大时,使得译码器难以实现。维特比算法则对上述概率译码做了简化,以至成为了一种实用化的概率算法。它并不是在网格图上一次比较所有可能的2kL条路径(序列),而是接收一段,计算和比较一段,选择一段最大似然可能的码段,从而达到整个码序列是一个最大似然值得序列。 下面以图2.1的(2,1,3)卷积码编码器所编出的码为例,来说明维特比解码的方法和运作过程。为了能说明解码过程,这里给出该码的状态图,如图2.2所

基于MATLAB的卷积码的分析与应用

基于MATLAB的卷积码的分析与应用

毕业设计(论文)任务书

基于MATLAB的卷积码的分析与应用 摘要 随着现代通信的发展,特别是在未来4G通信网络中,高速信息传输和高可靠性传输成为信息传输的两个主要方面,而可靠性尤其重要。因为信道状况的恶劣,信号不可避免会受到干扰而出错。为实现可靠性通信,主要有两种途径:一种是增加发送信号的功率,提高接收端的信号噪声比;另一种是采用编码的方法对信道差错进行控制。前者常常受条件限制,不是所有情况都能采用。因此差错控制编码得到了广泛应用。 介绍了多种信道编码方式,着重介绍了卷积码的编码方法和解码方式。介绍了MATLAB的使用方法、编程方法、语句、变量、函数、矩阵等。介绍了TD-SCDMA通信系统和该系统下的卷积码,搭建了系统通信模型。编写卷积码的编码和解码程序。用MATLAB仿真软件对TD-SCDMA系统的卷积码编解码进行仿真。对其纠正错码性能进行验证,并且对误码率进行仿真和分析。卷积码的编码解码方式有很多,重点仿真Viterbi算法。Viterbi算法就是利用卷积码编码器的格图来计算路径度量,选择从起始时刻到终止时刻的惟一幸存路径作为最大似然路径。沿着最大似然路径回溯到开始时刻,所走过的路径对应的编码输出就是最大似然译码输出序列。它是一种最大似然译码方法,当编码约束长度不大、或者误码率要求不是很高的情况下,Viterbi译码器设备比较简单,计算速度快,因而Viterbi译码器被广泛应用于各种领域。 关键词:卷积码;信道编码;TD-SCDMA;MATLAB

目录 毕业设计(论文)任务书 ............................................................................................I 摘要........................................................................................................................... II Abstract......................................................................................... 错误!未定义书签。第1章绪论 . (1) 1.1课题研究的背景和来源 (1) 1.2主要内容 (2) 第2章相关理论介绍 (3) 2.1信道编码 (3) 2.1.1 信道编码的分类 (3) 2.1.2 编码效率 (3) 2.2线性分组码 (3) 2.3循环码 (5) 2.4卷积码 (6) 2.4.1 卷积码简介 (7) 2.4.2 卷积码的编码 (7) 2.4.3 卷积码的解码 (13) 第3章MATLAB应用 (21) 3.1数和算术的表示方法 (21) 3.2向量与矩阵运算 (21) 3.2.1 通过语句和函数产生 (21) 3.2.2 矩阵操作 (22) 3.3矩阵的基本运算 (22) 3.3.1 矩阵乘法 (22) 3.3.2 矩阵除法 (23) 3.4MATLAB编程 (23) 3.4.1 关系运算 (23) 3.4.2 控制流 (25) 第4章卷积码的设计与仿真 (27) 4.1TD-SCDMA系统 (27) 4.1.1 系统简介 (27) 4.1.2 仿真通信系统模型 (27)

14卷积码编解码

实验四 卷积码的编解码 一、实验目的 1、掌握卷积码的编解码原理。 2、掌握卷积码的软件仿真方法。 3、掌握卷积码的硬件仿真方法。 4、掌握卷积码的硬件设计方法。 二、预习要求 1、掌握卷积码的编解码原理和方法。 2、熟悉matlab 的应用和仿真方法。 3、熟悉Quatus 的应用和FPGA 的开发方法。 三、实验原理 1、卷积码编码原理 在编码器复杂度相同的情况下,卷积码的性能优于分组码,因此卷积码几乎被应用在所有无线通信的标准之中,如GSM , IS95和CDMA 2000 的标准中。 卷积码通常记作( n0 , k0 , m) ,它将k 0 个信息比特编为n 0 个比特, 其编码效率为k0/ n0 , m 为约束长度。( n0 , k0 , m ) 卷积码可用k0 个输入、n0 个输出、输入存储为m 的线性有限状态移位寄存器及模2 加法计数器来实现。 本实验以(2,1,3)卷积码为例加以说明。图1就是卷积码编码器的结构。 图1 (2,1,3)卷积码编码器 其生成多项式为: 21()1G D D D =++; 2 2()1G D D =+; 如图1 所示的(2,1,3)卷积码编码器中,输入移位寄存器用转换开关代替,每输入一个信息比特经编码产生二个输出比特。假设移位寄存器的初始状态为全0,当第一个输入比特为0时,输出比特为00;若输入比特为1,则输出比特为11。随着第二个比特输入,第一个比特右移一位,此时输出比特同时受到当前输入比特和前一个输入比特的影响。第三个比特输入时,第一、二个比特分别右移一位,同时输出二个由这三位移位寄存器存储内容所共同决定的比特。依次下去就完成了编码过程。 下面是卷积码的网格图表示。他是比较清楚而又紧凑的描述卷积码的一种方式,它是最常用的描述方

卷积码matlab程序

卷积编码程序: function [output, len_tal] = cnv_encd(secrettext, encodetext) g = [0 0 1 0 0 1 0 0; 0 0 0 0 0 0 0 1; 1 0 0 0 0 0 0 1; 0 1 0 0 1 1 0 1]; k0 = 1; % 读入文本文件并计算文件长度 frr = fopen(secrettext, 'r'); [msg, len] = fread(frr, 'ubit1'); msg = msg'; % check to see if extra zero padding is necessary if rem(length(msg), k0) > 0 msg = [msg, zeros(size(1:k0-rem(length(msg),k0)))]; end n = length(msg)/k0; % 把输入比特按k0分组,n为所得的组数。 % check the size of matrix g if rem(size(g, 2), k0) > 0 error('Error, g is not of the right size.'); end % determine L and n0 L = size(g, 2)/k0; n0 = size(g, 1); % add extra zeros,以保证编码器是从全0开始,并回到全0状态。 u = [zeros(size(1:(L-1)*k0)), msg, zeros(size(1:(L-1)*k0))]; % generate uu, a matrix whose columns are the contents of conv. encoder at % various clock cycles. u1 = u(L*k0: -1 :1); for i = 1:n+L-2 u1 = [u1, u((i+L)*k0:-1:i*k0+1)]; end uu = reshape(u1, L*k0, n+L-1); % determine the output output = reshape(rem(g*uu, 2), 1, n0*(L+n-1)); len_tal = n0*(L + n - 1);

实验九 (2,1,5)卷积码编码译码技术

实验九 (2,1,5)卷积码编码译码技术 一、实验目的 1、掌握(2,1,5)卷积码编码译码技术 2、了解纠错编码原理。 二、实验内容 1、(2,1,5)卷积码编码。 2、(2,1,5)卷积码译码。 三、预备知识 1、纠错编码原理。 2、(2,1,5)卷积码的工作原理。 四、实验原理 卷积码是将发送的信息序列通过一个线性的,有限状态的移位寄存器而产生的编码。通常卷积码的编码器由K级(每级K比特)的移位寄存器和n个线性代数函数发生器(这里是模2加法器)组成。 若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n 为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。卷积码将k 元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进行传输,时延小。与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。在编码器复杂性相同的情况下,卷积码的性能优于分组码。 编码器 随着信息序列不断输入,编码器就不断从一个状态转移到另一个状态并同时输出相应的码序列,所以图3所示状态图可以简单直观的描述编码器的编码过程。因此通过状态图很容易给出输入信息序列的编码结果,假定输入序列为110100,首先从零状态开始即图示a状态,由于输入信息为“1”,所以下一状态为b并输出“11”,继续输入信息“1”,由图知下一状态为d、输出“01”……其它输入信息依次类推,按照状态转移路径a->b->d->c->b->c->a输出其对应的编码结果“110101001011”。 译码方法 ⒈代数 代数译码是将卷积码的一个编码约束长度的码段看作是[n0(m+1),k0(m+1)]线性分组码,每次根据(m+1)分支长接收数字,对相应的最早的那个分支上的信息数字进行估计,然后向前推进一个分支。上例中信息序列 =(10111),相应的码序列 c=(11100001100111)。若接收序列R=(10100001110111),先根据R 的前三个分支(101000)和码树中前三个分支长的所有可能的 8条路径(000000…)、(000011…)、(001110…)、(001101…)、(111011…)、(111000…)、(110101…)和(110110…)进行比较,可知(111001)与接收

卷积码

卷积码 1、什么是卷积码? 卷积码作为一种编码方法,是将k个信息比特编成n个比特,但k和n通常很小,因此时延小,特别适合以串行形式进行传输。通常它更适合于前向纠错,因而对于许多实际情况它的性能优于分组码,而且运算较简单。 2、卷积码的编译原理? (1)编码原理 下图示出卷积码编码器一般原理方框图。编码器由三种主要元件构成,包括Nk级移存器、n个模2加法器和一个旋转开关。每个模2加法器的输入端数目可以不同,它连接到一些移存器的输出端。模2加法器的输出端接到旋转开关上。将时间分成等间隔的时隙,在每个时隙中有k比特从左端进入移存器,并且移存器各级暂存的信息向右移k位。旋转开关每时隙旋转一周,输出n比特(n)k)。 (2)译码原理 卷积码的解码方法可以分为两类:代数解码和概率解码。代数解码是利用编码本身的代数结构进行解码,不考虑信道的统计特性。概率解码则是基于信道的统计特性和卷积码的特点进行计算,其中一种概率解码方法是维特比算法。当码的约束长度较短时,它比序贯解码算法的效率更高、速度更快,目前得到广泛的使用。

维特比算法的基本原理是将接收到的信号序列和所有可能的发送信号序列比较,选择其中汉明距离最小的序列认为是当前发送信号序列。若发送一个k位序列,则有2k种可能的发送序列。计算机应存储这些序列,以便用作比较。当k较大时,存储量太大,使实用受到限制。维特比算法对此作了简化,使之能够实用。 3、与分组码相比,卷积码的优势是什么? 与分组码不同的是,卷积码编码后n个码元不但与本码组的k个信息码元有关,而且与前面的N-1段信息有关,编码的过程中相互关联的码元有N*n个。卷积码的纠错能力同样是随N的增大而增大,其差错率随N的增大而指数的下降。在编码器相同的情况下,卷积码的性能优于分组码。另一点不同是,分组码有严格的代数结构,但是卷积码至今没有严格的数学手段把纠错能力和码结构有机地联系起来,目前大都是采用计算机搜索来搜索好用的码组。 4、卷积码编译电路的组成结构? (1)信号发生器 (2)卷积码编码器 (3)信道 (4)卷积码译码器 参考文献: [1]通信原理(第6版)樊昌信、曹丽娜,国防工业出版社·北京,2012 [2]SystemView通信仿真开发手册,孙屹,国防工业出版社,2004 [3]SystemView动态系统分析及通信系统仿真设计,罗卫兵、孙桦、张捷,西安电子科技大学出版社,2001

卷积码的编解码仿真与研究

卷积码的编解码仿真与研究 摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。得出了以下三个结论: (1)当改变卷积码的码率时,系统的误码性能也将随之发生变化。 (2)对于码率一定的卷积码,当约束长度N 发生变化时,系统的误码性能也会随之发生变化。 (3)回溯长度也会不同程度上地影响误码性能。 关键词:卷积码;码率;约束长度;回溯长度

Simulation and Research on Encoding and Decoding of Convolution Code Abstract Convolution code has a superior performance of the channel code. It is easy to coding and decoding. And it has a strong ability to correct errors. As correcting coding theory has a long development, the practice of convolution code is more and more extensive. In this thesis, the principle of convolution coding and decoding is introduced simply firstly. Then the whole simulation module process of encoding, decoding and the Error Rate Calculation is completed in this design. Finally, in order to understand their performances of error rate, many changes in parameters of convolution code are calculated in the simulation process. After simulation and measure, an analysis of test results is presented. The following three conclusions are draw: (1) When the rate of convolution Code changes, BER performance of the system will change. (2) For a certain rate of convolution code, when there is a change in the constraint length of N, BER performance of the system will change. (3) Retrospective length will affect BER. Key words: convolution code; rate; constraint length; retrospective length;

MATLAB OFDM卷积编码程序及代码

%bin22deci.m function y=bin22deci(x) %将二进制数转化为十进制数 t=size(x,2); y=(t-1:-1:0); y=2.^y; y=x*y'; %************************end of file*********************************** %comb.m %AWGN加噪声程序 function[iout,qout]=comb(idata,qdata,attn) %******************variables************************* %idata:输入I信道数据 %qdata:输入Q信道数据 %iout输出I信道数据 %qout输出Q信道数据 %attn:由信噪比导致的衰减系数 %****************************************************** iout=randn(1,length(idata)).*attn; qout=randn(1,length(qdata)).*attn; iout=iout+idata(1:length(idata)); qout=qout+qdata(1:length(qdata)); %************************end of file*********************************** %crdemapping.m %数据逆映射载波程序 function[iout,qout]=crdemapping(idata,qdata,fftlen,nd); %******************variables************************* %idata:输入I信道的数据 %qdata:输入Q信道的数据 %iout:输出I信道的数据 %qout:输出Q信道的数据 %fftlen:FFT的长度 %nd:OFDM符号数 %***************************************************** iout(1:26,:)=idata(2:27,:); qout(1:26,:)=qdata(2:27,:); iout(27:52,:)=idata(39:64,:); qout(27:52,:)=qdata(39:64,:); %********************end of file*************************** %crmapping.m

卷积码编译码课设 (2)

摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文对卷积码和卷积码的编译码有一个简单的介绍且给出了信道编码的发展历史及研究状况,然后详细讨论了(2,1,2)卷积码的编码过程和译码过程,通过状态转移方程和输出方程得出状态转移表和状态转移图,然后通过维特比译码器研究,总结出了维特比译码算法,最后通过Matlab软件进行设计与仿真,得到了编码程序和译码程序,其运行结果与理论分析一致。 关键字卷积码编码、信道编码、Viterbi译码、MATLAB仿真

目录 摘要........................................... 错误!未定义书签。 一、引言 (3) 1.1发展历史及研究状况 (3) 1.2设计目的和意义 (3) 1.3设计方法 (4) 二、卷积码编译码原理 (5) 2.1 卷积码编码原理 (5) 2.2编码器 (6) 2.3 卷积码译码原理 (7) 2.4 VITEBI 译码的关键步骤 (8) 2.4.1 输入与同步单元 (8) 2.4.2 支路量度计算 (8) 2.4.3 路径量度的存储与更新 (8) 2.4.4 信息序列的存储与更新 (8) 2.4.5 判决与输出单元 (8) 三、卷积码编码实现 (9) 3.1 编码原理分析 (9) 3.2 卷积码编码流程图 (10) 四、卷积码译码实现 (11) 4.1 译码编程思路 (11) 4.2 卷积码译码流程图 (11) 五、卷积码编译码程序的编译及仿真波形 (11) 5.1 卷积码编码仿真 (12) 5.2卷积码译码仿真 (13) 5.3卷积码纠错码仿真 (14) 六、总结 (15) 七、参考文献 (16) 附录 (17)

MATLAB实现卷积码编译码-

本科生毕业论文(设计) 题目:MATLAB实现卷积码编译码 专业代码: 作者姓名: 学号: 单位: 指导教师: 年月日

目录 前言----------------------------------------------------- 1 1. 纠错码基本理论---------------------------------------- 2 1.1纠错码基本理论 ----------------------------------------------- 2 1.1.1纠错码概念 ------------------------------------------------- 2 1.1.2基本原理和性能参数 ----------------------------------------- 2 1.2几种常用的纠错码 --------------------------------------------- 6 2. 卷积码的基本理论-------------------------------------- 8 2.1卷积码介绍 --------------------------------------------------- 8 2.1.1卷积码的差错控制原理----------------------------------- 8 2.2卷积码编码原理 ---------------------------------------------- 10 2.2.1卷积码解析表示法-------------------------------------- 10 2.2.2卷积码图形表示法-------------------------------------- 11 2.3卷积码译码原理---------------------------------------------- 15 2.3.1卷积码三种译码方式------------------------------------ 15 2.3.2V ITERBI译码原理---------------------------------------- 16 3. 卷积码编译码及MATLAB仿真---------------------------- 18 3.1M ATLAB概述-------------------------------------------------- 18 3.1.1M ATLAB的特点------------------------------------------ 19 3.1.2M ATLAB工具箱和内容------------------------------------ 19 3.2卷积码编码及仿真 -------------------------------------------- 20 3.2.1编码程序 ---------------------------------------------- 20 3.3信道传输过程仿真-------------------------------------------- 21 3.4维特比译码程序及仿真 ---------------------------------------- 22 3.4.1维特比译码算法解析------------------------------------ 23 3.4.2V ITERBI译码程序--------------------------------------- 25 3.4.3 VITERBI译码MATLAB仿真----------------------------------- 28 3.4.4信噪比对卷积码译码性能的影响 -------------------------- 28

卷积码实验报告

苏州科技大学天平学院电子与信息工程学院 信道编码课程设计报告 课设名称卷积码编译及译码仿真 学生姓名圣鑫 学号1430119232 同组人周妍智 专业班级通信1422 指导教师潘欣欲 一、实验名称 基于MAATLAB的卷积码编码及译码仿真 二、实验目的 卷积码就是一种性能优越的信道编码。它的编码器与译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本实验简明地介绍了卷积码的编码原理与Viterbi译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码与译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真与实测,并对测试结果作了分析。 三、实验原理

1、卷积码编码原理 卷积码就是一种性能优越的信道编码,它的编码器与解码器都比较易于实现,同时还具有较强的纠错能力,这使得它的使用越来越广泛。卷积码一般表示为(n,k,K)的形式,即将 k个信息比特编码为 n 个比特的码组,K 为编码约束长度,说明编码过程中相互约束的码段个数。卷积码编码后的 n 各码元不经与当前组的 k 个信息比特有关,还与前 K-1 个输入组的信息比特有关。编码过程中相互关联的码元有 K*n 个。R=k/n 就是编码效率。编码效率与约束长度就是衡量卷积码的两个重要参数。典型的卷积码一般选 n,k 较小,K 值可取较大(>10),但以获得简单而高性能的卷积码。 卷积码的编码描述方式有很多种:冲激响应描述法、生成矩阵描述法、多项式乘积描述法、状态图描述,树图描述,网格图描述等。 2、卷积码Viterbi译码原理 卷积码概率译码的基本思路就是:以接收码流为基础,逐个计算它与其她所 有可能出现的、连续的网格图路径的距离,选出其中可能性最大的一条作为译码估值输出。概率最大在大多数场合可解释为距离最小,这种最小距离译码体现的正就是最大似然的准则。卷积码的最大似然译码与分组码的最大似然译码在原理上就是一样的,但实现方法上略有不同。主要区别在于:分组码就是孤立地求解单个码组的相似度,而卷积码就是求码字序列之间的相似度。基于网格图搜索的译码就是实现最大似然判决的重要方法与途径。用格图描述时,由于路径的汇聚消除了树状图中的多余度,译码过程中只需考虑整个路径集合中那些使似然函数最大的路径。如果在某一点上发现某条路径已不可能获得最大对数似然函数,就放弃这条路径,然后在剩下的“幸存”路径中重新选择路径。这样一直进行到最后第 L 级(L 为发送序列的长度)。由于这种方法较早地丢弃了那些不可能的路径,从而减轻了译码的工作量,Viterbi 译码正就是基于这种想法。对于(n, k, K )卷积码,其网格图中共 2kL 种状态。由网格图的前 K-1 条连续支路构成的路径互不相交,即最初 2k_1 条路径各不相同,当接收到第 K 条支路时,每条路径都有 2 条支路延伸到第 K 级上,而第 K 级上的每两条支路又都汇聚在一个节点上。在Viterbi译码算法中,把汇聚在每个节点上的两条路径的对数似然函数累加

卷积码的编解码Matlab仿真

卷积码的编解码Matlab仿真

卷积码的编解码Matlab仿真 摘要 卷积码是一种性能优越的信道编码。它的编码器和译码器都比较容易实现,同时它具有较强的纠错能力。随着纠错编码理论研究的不断深入,卷积码的实际应用越来越广泛。本文简明地介绍了卷积码的编码原理和译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。得出了以下三个结论: (1)当改变卷积码的码率时,系统的误码性能也将随之发生变化。 (2)对于码率一定的卷积码,当约束长度N 发生变化时,系统的误码性能也会随之发生变化。 (3)回溯长度也会不同程度上地影响误码性能。 关键词:卷积码;码率;约束长度;回溯长度

Simulation and Research on Encoding and Decoding of Convolution Code Abstract Convolution code has a superior performance of the channel code. It is easy to coding and decoding. And it has a strong ability to correct errors. As correcting coding theory has a long development, the practice of convolution code is more and more extensive. In this thesis, the principle of convolution coding and decoding is introduced simply firstly. Then the whole simulation module process of encoding, decoding and the Error Rate Calculation is completed in this design. Finally, in order to understand their performances of error rate, many changes in parameters of convolution code are calculated in the simulation process. After simulation and measure, an analysis of test results is presented. The following three conclusions are draw: (1) When the rate of convolution Code changes, BER performance of the system will change. (2) For a certain rate of convolution code, when there is a change in the constraint length of N, BER performance of the system will change. (3) Retrospective length will affect BER. Key words:convolution code; rate; constraint length; retrospective length;

相关主题