搜档网
当前位置:搜档网 › 第一章 碰撞和动量守恒 知识点总结

第一章 碰撞和动量守恒 知识点总结

第一章  碰撞和动量守恒  知识点总结
第一章  碰撞和动量守恒  知识点总结

第一章碰撞和动量守恒知识点总结

知识点1 物体的碰撞

1.生活中的各种碰撞现象

碰撞的种类有正碰和斜碰两种.

(1)正碰:像台球的碰撞中若两个小球碰撞时的速度沿着连心线方向,则称为正碰.

(2)斜碰:像台球的碰撞中若两个小球碰撞前的相对速度不在连心线上,则称为斜碰.

2.弹性碰撞和非弹性碰撞

(1)碰撞分为弹性碰撞和非弹性碰撞两种.

①弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变能完全恢复,则没有动能损失,碰撞前后两个物体构成的系统动能相等.

②非弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变不能完全恢复或完全不能恢复(黏合),则有动能损失(或损失最大),损失的动能转变为热能,碰撞前后两个物体构成的系统动能不再相等,碰撞后的总动能小于碰撞前的总动能.

(2)两种碰撞的区别:弹性碰撞没有能量损失,非弹性碰撞有能量损失.

当两个小球的碰撞发生在水平面上时,两小球碰撞前后的重力势能不变,变化的是动能,根据动能是否守恒,把小球的碰撞分为弹性碰撞和非弹性碰撞,如下所示:

(3)注意.

①非弹性碰撞一定有机械能损失,损失的机械能一般转化为内能.碰撞后的总机械能不可能增加,这一点尤为重要.

②系统发生爆炸时,内力对系统内的每一个物体都做正功,故爆炸时,系统的机械能是增加的,这一增加的机械能来源于炸药贮存的化学能.

知识点2 动量、冲量和动量定理

一、动量

1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。单位是kg·m/s;

2、动量和动能的区别和联系

①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

②动量是矢量,而动能是标量。因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。

③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。

④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mE k

3、动量的变化及其计算方法

动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:

(1)ΔP=P t一P0,主要计算P0、P t在一条直线上的情况。

(2)利用动量定理ΔP=F·t,通常用来解决P0、P t;不在一条直线上或F为恒力的情况。

二、冲量

1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。单位是N ·s ;

2、冲量的计算方法

(1)I=F ·t .采用定义式直接计算、主要解决恒力的冲量计算问题。

(2)利用动量定理 Ft=ΔP .主要解决变力的冲量计算问题,但要注意上式中F 为合外力(或某一方向上的合外力)。

三、动量定理

1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv t 一mv 0或 Ft =p t -p 0;该定理由牛顿第二定律推导出来:(质点m 在短时间Δt 内受合力为F 合,合力的冲量是F 合Δt ;质点的初、未动量是 mv 0、mv t ,动量的变化量是ΔP=Δ(mv )=mv t -mv 0.根据动量定理得:F 合=Δ(mv )/Δt )

2.单位:牛·秒(N ·S)与千克米/秒 统一:l 千克米/秒=1千克米/秒2·秒=牛·秒;

3.理解:(1)上式中F 为研究对象所受的包括重力在内的所有外力的合力。

(2)动量定理中的冲量和动量都是矢量。定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。

(3)动量定理的研究对象一般是单个质点。求变力的冲量时,可借助动量定理求,不可直接用冲量定义式.

4.应用动量定理的思路:

(1)明确研究对象和受力的时间(明确质量m 和时间t );

(2)分析对象受力和对象初、末速度(明确冲量I 合,和初、未动量P 0,P t );

(3)规定正方向,目的是将矢量运算转化为代数运算;

(4)根据动量定理列方程

(5)解方程。

四、动量定理应用的注意事项

1.动量定理的研究对象是单个物体或可看作单个物体的系统,当研究对象为物体系时,物体系的总动量的增量等于相应时间内物体系所受外力的合力的冲量,所谓物体系总动量的增量是指系统内各个的体动量变化量的矢量和。而物体系所受的合外力的冲量是把系统内各个物体所受的一切外力的冲量的矢量和。

2.动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时F 则是合外力对作用时间的平均值。

3.动量定理公式中的Δ(mv )是研究对象的动量的增量,是过程终态的动量减去过程始态的动量(要考虑方向),切不能颠倒始、终态的顺序。

4.动量定理公式中的等号表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同。但考生不能认为合外力的冲量就是动量的增量,合外力的冲量是导致研究对象运动改变的外因,而动量的增量却是研究对象受外部冲量作用后的必然结果。

5.用动量定理解题,只能选取地球或相对地球做匀速直线运动的物体做参照物。忽视冲量和动量的方向性,造成I 与P 正负取值的混乱,或忽视动量的相对性,选取相对地球做变速运动的物体做参照物,是解题错误的常见情况。

六、动量定理的拓展应用

1、动量定理F Δt =mv t -mv 0可以用一种更简洁的方式F Δt=ΔP 表达,式中左边表示物体受到的冲量,右边表示动量的增量(变化量)。此式稍加变形就得0t mv mv p F t t

-?==?? 其含义是:物体所受外力(若物体同时受几个力作用,则为合外力)等于物体动量的变化率。这一公式通常称为“牛顿第二定律的动量形式”。这一形式更接近于牛顿自己对牛顿第二定律的表述。应用这个

表述我们在分析解决某些问题时会使思路更加清晰、简洁。

知识点3动量守恒定律

一、动量守恒定律

1、内容:相互作用的物体,如果不受外力或所受外力的合力为零,它们的总动量保持不变,即作用前的总动量与作用后的总动量相等.

2、动量守恒定律适用的条件

①系统不受外力或所受合外力为零.

②当内力远大于外力时.

③某一方向不受外力或所受合外力为零,或该方向上内力远大于外力时,该方向的动量守恒.

3、常见的表达式

①p t=p0,其中p t、p0分别表示系统的末动量和初动量,表示系统作用前的总动量等于作用后的总动量。

②Δp=0 ,表示系统总动量的增量等于零。

③Δp1=-Δp2,其中Δp1、Δp2分别表示系统内两个物体初、末动量的变化量,表示两个物体组成的系统,各自动量的增量大小相等、方向相反。

其中①的形式最常见,具体来说有以下几种形式

A、m1v l+m2v2=m1v/l+m2v/2,各个动量必须相对同一个参照物,适用于作用前后都运动的两个物体组成的系统。

B、0= m1v l+m2v2,适用于原来静止的两个物体组成的系统。

C、m1v l+m2v2=(m1+m2)v,适用于两物体作用后结合在一起或具有共同的速度。

5、对动量守恒定律的理解

(1)动量守恒定律是说系统内部物体间的相互作用只能改变每个物体的动量,而不能改变系统的总动量,在系统运动变化过程中的任一时刻,单个物体的动量可以不同,但系统的总动量相同。

(2)应用此定律时我们应该选择地面或相对地面静止或匀速直线运动的物体做参照物,不能选择相对地面作加速运动的物体为参照物。

(3)动量是矢量,系统的总动量不变是说系统内各个物体的动量的矢量和不变。等号的含义是说等号的两边不但大小相同,而且方向相同。

6、动量守恒定律的“四性”

在应用动量守恒定律处理问题时,要注意“四性”

①矢量性:动量守恒定律是一个矢量式,,对于一维的运动情况,应选取统一的正方向,凡与正方向相同的动量为正,相反的为负。若方向未知可设与正方向相同而列方程,由解得的结果的正负判定未知量的方向。

②瞬时性:动量是一个状态量,即瞬时值,动量守恒指的是系统任一瞬时的动量恒定,列方程m1v l+m2v2=m1v/l+m2v/2时,等号左侧是作用前各物体的动量和,等号右边是作用后各物体的动量和,不同时刻的动量不能相加。

③相对性:由于动量大小与参照系的选取有关,应用动量守恒定律时,应注意各物体的速度必须是相对于同一惯性参照系的速度,一般以地球为参照系

④普适性:动量守恒定律不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统,不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。

7、应用动量守恒定律的基本思路

1.明确研究对象和力的作用时间,即要明确要对哪个系统,对哪个过程应用动量守恒定律。

2.分析系统所受外力、内力,判定系统动量是否守恒。

3.分析系统初、末状态各质点的速度,明确系统初、末状态的动量。

5.解方程。如解出两个答案或带有负号要说明其意义。

知识点 4 碰撞的种类以及在碰撞中应用动量守恒

1.碰撞的特点

(1)作用时间极短,内力远大于外力,总动量总是守恒的.

(2)碰撞过程中,总动能不增.因为没有其他形式的能量转化为动能.

(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.

(4)碰撞过程中,两物体产生的位移可忽略.

2.判定碰撞可能性问题的分析思路

(1)判定系统动量是否守恒.

(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.

(3)判定碰撞前后动能是否增加.

3.碰撞的种类及特点

(1)弹性碰撞.

特点:碰撞时产生弹性形变,碰撞结束后,形变完全恢复.

原理:动量守恒,机械能守恒.

弹性碰撞模型:在光滑水平面上,有两个小球,质量分别为 m 1,m 2,球 1 以速度 v 0 向右运动,与静止的球 2 发生碰撞.碰撞过程中没有能量损失,由动量守恒和能量守恒,有

?????

m 1v 0=m 1v 1+m 2v 2

12m 1v 20=12m 1v 21+12m 2v 22

得到v 1=m 1-m 2m 1+m 2v 0 v 2=2m 1m 1+m 2v 0

①若m 1?m 2,则v 1=v 0,v 2=2v 0

②若 m 1>m 2,则 v 1>0,v 2>0

③若 m 1=m 2,则 v 1=0,v 2=v 0

④若 m 10

⑤若 m 1?m 2,则 v 1=-v 0,v 2=0

(2)非完全弹性碰撞.

特点:碰撞时的形变不能完全恢复,有一部分机械能转变为内能.

原理:动量守恒.

碰后的机械能小于碰前的机械能.

(3)完全非弹性碰撞.

特点:碰撞时的形变完全不能恢复,机械能损失最大,损失的机械能转变为内能,碰后速度相同. 原理:动量守恒.

能量守恒——如果作用过程中有摩擦力做功,满足:fs 相对=ΔE 损.

知识点5 反冲运动

1、指在系统内力作用下,系统内一部分物体向某发生动量变化时,系统内其余部分物体向相反方向发生动量变化的现象

2.研究反冲运动的目的是找反冲速度的规律,求反冲速度的关键是确定相互作用的物体系统和其中各物体对地的运动状态.

动量守恒定律模块知识点总结

动量守恒定律模块知识点总结 1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。 2.一般数学表达式:''11221122m v m v m v m v +=+ 3.动量守恒定律的适用条件 : ①系统不受外力或受到的外力之和为零(∑F 合=0); ②系统所受的外力远小于内力(F 外 F 内),则系统动量近似守恒; ③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒) 4.动量恒定律的五个特性 ①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等 ②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算 ③同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度 ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系 ⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷 例题. 1.质量为m 的人随平板车以速度V 在平直跑道上匀速前进,不考虑摩擦阻力,当此人相对于车竖直跳起至落回原起跳位置的过程中,平板车的速度 ( A ) A .保持不变 B .变大 C .变小 D .先变大后变小 E .先变小后变大 2.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是 ( B ). A .若甲先抛球,则一定是V 甲>V 乙 B .若乙最后接球,则一定是V 甲>V 乙 C .只有甲先抛球,乙最后接球,才有V 甲>V 乙 D .无论怎样抛球和接球,都是V 甲>V 乙 3.一小型宇宙飞船在高空绕地球做匀速圆周运动如果飞船沿其速度相反的方向弹射出一个质量较大的物体,则下列说法中正确的是( CD ). A .物体与飞船都可按原轨道运行 B .物体与飞船都不可能按原轨道运行 C .物体运行的轨道半径无论怎样变化,飞船运行的轨道半径一定增加 D .物体可能沿地球半径方向竖直下落 4.在质量为M 的小车中挂有一单摆,摆球的质量为m 。,小车(和单摆)以恒定的速度V 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的( BC ). A.小车、木块、摆球的速度都发生变化,分别变为V 1、V 2、V 3,满足(m 。十M )V =MV l 十mV 2十m 。V 3 B .摆球的速度不变,小车和木块的速度变为V 1、V 2,满足MV =MV l 十mV 2 C .摆球的速度不变,小车和木块的速度都变为V ’,满足MV=(M 十m )V ’ D.小车和摆球的速度都变为V 1,木块的速度变为V 2,满足(M +m o )V =(M +m o )V l +mV 2

动量守恒定律,碰撞知识点总结

动量守恒定律,碰撞知识点总结 动量守恒定律 1.守恒条件 (1)系统不受外力或所受外力的合力为零,则系统动量守恒. (2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.几种常见表述及表达式 (1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′). (2)Δp=0(系统总动量不变). (3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反). 其(1)的形式最常用,具体到实际应用时又有以下三种常见形式: ①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统). ②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与 各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非 弹性碰撞). 3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性. 4.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明. 碰撞现象 2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律. 在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

动量、动量守恒定律知识点总结教学内容

龙文教育动量知识点总结 一、对冲量的理解 1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。 2、I 合 的求法: A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.t B 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP 的方向由v ?决定,与1p 、2p 无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统 2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 结论:等质量 弹性正碰 时,两者速度交换。 依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 动能和动量的关系:m p E K 22 = K mE p 2= 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型: 条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。

七、临界条件: “最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v。 八、动力学规律的选择依据: 1、题目涉及时间t,优先选择动量定理; 2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒; 3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律; 4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律; 九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。 典型练习 一、基本概念的理解:动量、冲量、动量的改变量 1、若一个物体的动量发生了改变,则物体的() A、速度大小一定变了 B、速度方向一定变了 C、速度一定发生了改变 D、加速度一定不为0 2、质量为m的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。则() A、物体所受支持力的冲量为0 B、物体所受支持力冲量为 θ cos mgt C、重力的冲量为mgt D、物体动量的变化量为 θ sin mgt 3、在光滑水平面上水平固定放置一端固定的轻质弹簧,质量为m的小球沿弹簧所位于的直线方向以速度v运动,并和弹簧发生碰撞,小球和弹簧作用后又以相同的速度反弹回去。在球和弹簧相互作用过程中,弹簧对小球的冲量I的大小和弹簧对小球所做的功W分别为: A、I=0、W=mv2 B、I=2mv、W = 0 C、I=mv、W = mv2/2 D、I=2mv、W = mv2/2 二、动量定理的应用: 4、下列运动过程中,在任意相等时间内,物体动量变化相等的是:() A、匀速圆周运动 B、自由落体运动 C、平抛运动 D、匀减速直线运动

物理选修3-5(碰撞与动量守恒)知识点与习题

碰撞与动量守恒 一、动量和冲量 【例1】质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大 【例3】一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少 二.动量定理 1.求动量及动量变化的方法。 图1【例1】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量 变化是多少 【例2】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向和大小为(D) A.向下,m(v2 - v1)B.向下,m(v2 + v1)C.向上,m(v2 - v1)D.向上,m(v2 + v1) 2.质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2.用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。 . (2).求解平均力问题 【例4】质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为,安全带伸直后长5m,求安全带所受的平均冲量.(g= 10m/s2) (3)、求解曲线运动问题 【例5】以V o =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小.

动量守恒弹性碰撞知识点

动量守恒弹性碰撞知识点 一、不同类型的碰撞 (1)非弹性碰撞:碰撞过程中物体往往会发生形变、发热、发声,一般会有动能损失.(2)完全非弹性碰撞:碰撞后物体结合在一起,动能损失最大. (3)弹性碰撞:碰撞过程中形变能够完全恢复,不发热、发声,没有动能损失. 二、弹性碰撞的实验研究和规律 质量m1的小球以速度v1与质量m2的静止小球发生弹性碰撞.根据动量守恒和动能守恒, 得m1v1=m1v1′+m2v2′,1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 碰后两球的速度分别为:v′1=m1-m2v1 m1+m2, v′2= 2m1v1 m1+m2 ①若m1>m2,v1′和v2′都是正值,表示v1′和v2′都与v1方向相同.(若m1?m2,v1′=v1,v2′=2v1,表示m1的速度不变,m2以2v1的速度被撞出去) ②若m1

4.对于弹性碰撞,碰撞前后无动能损失;对非弹性碰撞,碰撞前后有动能损失;对于完全非弹性碰撞,碰撞前后动能损失最大. 四、碰撞过程的分析 1.判断依据 在所给条件不足的情况下,碰撞结果有各种可能,但不管哪种结果必须同时满足以下三条:(1)系统动量守恒,即p1+p2=p′1+p′2. (2)系统动能不增加,即E kl+E k2≥E′kl+E′k2或p21 2m1+ p22 2m2 ≥ p′21 2m1 + p′22 2m2 . (3)符合实际情况,如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.碰撞后,原来在前的物体的速度一定增大,且原来在前的物体速度大于或等于原来在后的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.爆炸与碰撞的异同 (1)共同点:相互作用的力为变力,作用力很大,作用时间极短,均可认为系统满足动量守恒. (2)不同点:爆炸有其他形式的能转化为动能,所以动能增加;弹性碰撞时动能不变,而非弹性碰撞时通常动能要损失,动能转化为内能,动能减小.

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

第十六章 动量守恒定律知识点总结

第十六章 动量守恒定律知识点总结 一、动量和动量定理 1、动量P (1)动量定义式:P=mv (2)单位:kg ·m/s (3)动量是矢量,方向与速度方向相同 2、动量的变化量ΔP 12P -P P =? (动量变化量=末动量-初动量) 注意:在求动量变化量时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 3/冲量 (1)定义式:I=Ft 物体所受到的力F 在t 时间内对物体产生的冲量为F 与t 的乘积 (2)单位:N ·s (2)冲量I 是矢量,方向跟力F 的方向相同 4、动量定理 (1)表达式:12P -P I =(合外力对物体的冲量=物体动量的变化量) 注意:应用动量定理时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 二、动量守恒定律 1、系统内力和外力 相互作用的两个(或多个)物体,组成一个系统,系统内物体之间的相互作用力,称为内力;系统外其他物体对系统内物体的作用力,称为外力。 2、动量守恒定律: (1)内容:如果一个系统不受外力,或者受外力的矢量和为零,这个系统的总动量保持不变。 (2)表达式:22112211v m v m v m v m '+'=+ (两物体相互作用前的总动量=相互作用后的总动量) (3)对条件的理解: ①系统不受外力或者受外力合力为零 ②系统所受外力远小于系统内力,外力可以忽略不计 ③系统合外力不为零,但是某个方向上合外力为零,则系统在该方向上总动量守恒 三、碰撞 1、碰撞三原则: (1)碰前后面的物体速度大,碰后前面的物体速度大,即:碰前21v v ?,碰后21 v v '?'; (2)碰撞前后系统总动量守恒 (3)碰撞前后动能不增加,即222211222211v m 2 1v m 21v m 21v m 21'+'≥+ 2、碰撞的分类Ⅰ (1)对心碰撞:两物体碰前碰后的速度都沿同一条直线。 (2)非对心碰撞:两物体碰前碰后的速度不沿同一条直线。

物理选修35碰撞与动量守恒知识点与习题

碰撞与动量守恒 一、动量与冲量 【例1】质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各就是多大? 【例3】一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各就是多少? 二、动量定理 1、求动量及动量变化的方法。 图1 【例1】以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变 化就是多少? 【例2】一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( ) A、过程I中钢珠的动量的改变量等于重力的冲量 B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小 C、I、Ⅱ两个过程中合外力的总冲量等于零 D、过程Ⅱ中钢珠的动量的改变量等于零 1.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向与大小为(D) A.向下,m(v2-v1) B.向下,m(v2+v1)C、向上,m(v2-v1)D.向上,m(v2+v1) 2、质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。 2、用动量定理求解相关问题 (1).简解多过程问题。 【例3】一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。 . (2)、求解平均力问题 【例4】质量就是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中、已知弹性安全带缓冲时间为1、2s,安全带伸直后长5m,求安全带所受的平均冲量、( g= 10m/s2) (3)、求解曲线运动问题 【例5】以V o =10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球、忽略空气阻力的作用,g取10m/s2、求抛出后第2s末小球速度的大小、

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

高中物理磁场知识点汇总

高中物理磁场知识点汇总 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在? ?奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。 3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线

动量、动量守恒定律知识点总结

1 / 3 选修3-5动量知识点总结 一、对冲量的理解 1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。 2、I合 的求法: A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.t B 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP的方向由v ?决定,与1p 、2p 无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解: 1、研究对象:相互作用的物体所组成的系统 2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 结论:等质量 弹性正碰 时,两者速度交换。 依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 动能和动量的关系:m p E K 22 = K mE p 2= 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型: 条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。 七、临界条件: “最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v 。 八、动力学规律的选择依据: 1、题目涉及时间t,优先选择动量定理; 2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒; 3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律; 4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律; 九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。 典型练习 一、基本概念的理解:动量、冲量、动量的改变量 1、若一个物体的动量发生了改变,则物体的( ) A、速度大小一定变了 B 、速度方向一定变了 C 、速度一定发生了改变 D 、加速度一定不为0 2、质量为m 的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t , 斜面倾角为θ。则( ) A 、物体所受支持力的冲量为0 B 、物体所受支持力冲量为θcos mgt C 、重力的冲量为mgt D 、物体动量的变化量为 θsin mgt 3、在光滑水平面上水平固定放置一端固定的轻质弹簧,质量为 m 的小球沿弹簧所位于的直线方向以速度v 运动,并和弹簧发生碰撞,小球和弹簧作用后又以相同的速度反弹回去。在球和弹簧相互作用过程中,弹簧对小球的冲量I 的大小和弹簧对小球所做的功W 分别为: A 、I =0、 W =mv 2 B 、I=2mv 、W = 0 C 、I =m v、 W = mv 2/2 D 、I=2mv 、 W = mv 2 /2 二、动量定理的应用: 4、下列运动过程中,在任意相等时间内,物体动量变化相等的是:( ) A 、匀速圆周运动 B 、自由落体运动 C 、平抛运动 D、匀减速直线运动

最新选修3-5动量守恒定律知识点

选修3-5 动量守恒定律知识点 动量守恒定律、碰撞、 反冲现象知识点归纳总结 一.知识总结归纳 1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。 2. 动量守恒定律的条件: (1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。 (2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。 (3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。 3. 动量守恒定律应用中需注意: (1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。 (2)系统性:即动量守恒是某系统内各物体的总动量保持不变。 (3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。 (4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物). 4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。 (1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。例如:钢球、玻璃球、微观粒子间的碰撞。 (2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。 (3)完全非弹性碰撞——碰撞结束后,形变完全保留,通常表现为碰后两物体合二为一,以同一速度运动,碰撞前后系统的总动量相等,动能损失最多。上述三种情况均不含其它形式的能转化为机械能的情况。 一维弹性碰撞的普适性结论: 在一光滑水平面上有两个质量分别为、的刚性小球A和B,以初速度、运动,若它们能发生碰撞(为一维弹性碰撞),碰撞后它们的速度分别为和。我们的任务是得出用、、、表达和的公式。 、、、是以地面为参考系的,将A和B看作系统。 由碰撞过程中系统动量守恒,有……① 有弹性碰撞中没有机械能损失,有……② 由①得 由②得 将上两式左右相比,可得 即或……③ 碰撞前B相对于A的速度为,碰撞后B相对于A的速度为,同理碰撞前A相对于B的速度为,碰撞后A相对于B的速度为,故③式为或, 其物理意义是: 碰撞后B相对于A的速度与碰撞前B相对于A的速度大小相等,方向相反; 碰撞后A相对于B的速度与碰撞前A相对于B的速度大小相等,方向相反; 故有:

高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

高中物理知识点总结:动量守恒定律知识讲解

一. 教学内容: 第十六章动量守恒定律 1. 实验:探究碰撞中的不变量 2. 动量守恒定律(一) 3. 动量守恒定律(二) 二. 知识要点: 1. 理解碰撞过程中动量守恒的探究过程。 2. 理解动量守恒定律的理论推导过程,理解动量守恒的意义,记住动量守恒定律的三种表达式,会应用动量守恒解相关问题。 三. 重难点解析: 1. 碰撞中守恒量的探究 实验的基本思路 我们只研究最简单的情况?D?D两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。 与物体运动有关的物理量可能有哪些呢?在一维碰撞的情况下只有物体的质量和物体的速度。设两个物体的质量分别为m2,碰撞前的速度分别为v1、v v。如果速度与我们设定的方向一致,取正值,否则取负值。 现在的问题是,碰撞前后哪个物理量可能是不变的?质量是不变的,但质量并不描述物体的运动状态,不是我们追寻的“不变量”。速度在碰撞前后是变化的,但一个物体的质量与它的速度的乘积是不是不变量?如果不是,那么,两个物体各自的质量与自己的速度的乘积之和是不是不变量?也就是说,关系式v1 v2=v m2 是否成立? 或者,各自的质量与自己的速度的二次方的乘积之和是不变量?也就是说,关系式v m2 =v m2 是否成立?

也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?也就是说,关系式 =是否成立? 也许…… 碰撞可能有很多情形。例如,两个质量相同的物体相碰撞,两个质量相差悬殊的物体相碰撞,两个速度大小相同、方向相反的物体相碰撞,一个运动物体与一个静止物体相碰撞……两个物体的质地不同,碰撞的情形也不一样。例如两个物体碰撞时可能碰后分开,也可能粘在一起不再分开…我们寻找的不变量必须在各种碰撞的情况下都不改变,这样才符合要求。 需要考虑的问题 实验中首要的问题是如何保证碰撞是一维的,即如何保证两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。此外,还要考虑怎样测量物体的质量、怎样测量两个物体在碰撞前后的速度。 质量可以用天平测量,本实验要解决的主要问题是怎样保证物体沿同一直线运动和怎样测量物体的速度。 关于实验数据的处理,下面的表格可供参考。填表时要注意: 如果小球碰撞后运动的速度与原来的方向相反,应该怎样记录?

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

高中物理磁场知识点总结+例题

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A?m)=1kg/(A ?s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 ⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在 导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增 条形磁铁蹄形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

动量守恒定律典型例题报告.doc

班级: 学号: 姓名: 动量守恒定律习题课 一、动量守恒定律知识点 1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) ,即p 1 +p 2=p 1+p 2, (2)Δp 1 +Δp 2=0,Δp 1= -Δp 2 。 3.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。 (2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。 (3)确定过程的始、末状态,写出初动量和末动量表达式。 注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)建立动量守恒方程求解。 二、碰撞 1.弹性碰撞 特点:系统动量守恒,机械能守恒。 设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则 由动量守恒定律可得:221101v m v m v m +=① 碰撞前后能量守恒、动能不变:2 22 212111210 121 v m v m v m +=② 联立①②得:01 2 12 1v v m m m m +-= 0222 11v v m m m += (注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论] ①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动) ⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动) 2.非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能,两物体仍能分离。 特点:动量守恒,能量不守恒。 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′ 机械能/动能的损失:2 2 22 1111 12112211222222()()k k k E E E m v m v m v m v ''?=-=+-+ 3.完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大。 特点:动量守恒,能量不守恒。 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v 动能损失:22 2 2 111 1112212222()()k k k E E E m v m v m m v ?=-=+-+ 解决碰撞问题须同时遵守的三个原则: ①系统动量守恒原则 ②能量不增加的原则 ③物理情景可行性原则:(例如:追赶碰撞: 碰撞前: 碰撞后:在前面运动的物体的速度一定不小于在后面运动的物体的速度) 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是( ) A .m 甲=m 乙 B.m 乙=2m 甲 C.m 乙=4m 甲 D.m 乙=6m 甲 解析:由碰撞中动量守恒可求得pA ′=2 kg ·m/s 要使A 追上 B , 则必有:vA >vB , 即 mB >1.4mA ① 碰后pA ′、pB ′均大于零,表示同向运动,则应有:vB ′≥vA ′ 被追追赶V ?V

相关主题