搜档网
当前位置:搜档网 › 电器学电磁铁设计.

电器学电磁铁设计.

电器学电磁铁设计.
电器学电磁铁设计.

目录

引言 (1)

1 概述 (2)

1.1 基本公式及概念 (2)

1.2 一个简单电磁铁产品的结构图 (6)

1.3 电磁铁的结构形式 (7)

2直流电磁铁的设计要求 (9)

3 直流电磁铁的设计与计算 (10)

3.1 电磁铁设计点的选择 (10)

3.2选择电磁铁的结构形式 (11)

3.2.1用结构因数选择电磁铁的结构形式 (11)

3.3 直流电磁铁的初步设计 (12)

3.3.1 决定铁心半径和极靴半径 (12)

3.3.2 计算线圈磁通势 (13)

3.3.3 计算线圈高度及厚度 (14)

3.3.4计算线圈导线直径及匝数 (16)

3.4 计算极靴、衔铁和铁轭的尺寸 (16)

3.5 电磁铁草图 (18)

4 电磁铁性能验算 (19)

5结论 (22)

心得体会 (23)

参考文献 (24)

引言

电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算.

电磁铁是通电产生电磁的一种装置。在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性,它也叫做电磁铁。我们通常把它制成条形或蹄形状,以使铁芯更加容易磁化。另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料来制做。这样的电磁铁在通电时有磁性,断电后磁就随之消失。电磁铁在我们的日常生活中有着极其广泛的应用,由于它的发明也使发电机的功率得到了很大的提高。

1 概述

1.1 基本公式及概念 电磁铁是通电产生电磁的一种装置。在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性,它也叫做电磁铁(electromagnet)。我们通常把它制成条形或蹄形状,以使铁芯更加容易磁化。另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料来制做。这样的电磁铁在通电时有磁性,断电后磁就随之消失。电磁铁在我们的日常生活中有着极其广泛的应用,由于它的发明也使发电机的功率得到了很大的提高。

1、均匀磁场B=S

Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=

L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路

4、磁导率μ=H

B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0

μμ 5. 磁通Φ=M

R NI 磁阻R M =s

l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=qv

F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的B=

21μ0nI 。 8、磁效率

《电磁铁》教学设计

《电磁铁》教学设计 《电磁铁》教学设计 一、教学目标: 1、科学概念: 电磁铁具有接通电流产生磁性、断开电流磁性消失的基本性质; 改变电池正负极的连接方法或改变线圈缠绕的方向会改变电磁铁的`南北极。 2、过程与方法: 制作铁钉电磁铁; 做研究电磁铁南北极的实验。 3、情感、态度、价值观: 养成认真细致、合作研究的品质。 二、教学准备 1、学生:每组1号电池2节,铁钉2根,单股网线2根,小铁钉若干、指南针2只 2、教师:电脑课件、大指南针等 三、教学流程: (一)复习导入 1、学生谈学习了《电和磁》一课的收获。 2、提出任务:利用前一课所学知识设计一个装置吸引小铁钉。 (二)制作电磁铁

1、学生说方法并演示把导线绕到铁钉上。 2、出示课件并提出要求:朝一个方向均匀绕导线,两端打结固 定(示范方法) 3、取材料,比一比哪些组绕得又快又好! 4、用绕好的装置吸小铁钉,发现不能将铁钉吸起来。 5、领取电池实验并交流发现。(提醒:由于导线较短,只能接 触很短一段时间。) 6、归纳:接通电流产生磁性,断开电流磁性消失。 7、请学生给这样一个装置命名,引出“电磁铁”概念及其组成。 8、引导学生思考电磁铁有没有南北极。 (三)铁钉电磁铁的南北极 1、学生猜测电磁铁有无南北极并请说说如何判断。 2、学生交流方法、补充。(如果学生没有补充完整则设问:钉 尖如果和指 南针南极吸引是不是一定能证明这端是北极) 3、学生领取指南针实验并记录。 4、各组依次反馈汇总,确定电磁铁有南北极并引发新的探究问题——电磁铁的南北极跟什么因素有关? 5、分组研究是否真的和这些因素有关。 6、交流实验结果。 7、小组讨论实验结果不一致的原因。 8、再次实验验证(控制条件)。 9、形成研究结论:电磁铁有南北极,电磁铁南北极跟电池正负 极连接方法或线圈缠绕方向都有关。

电磁铁设计

直流电磁铁设计 共26 页 编写: 校对:

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=21 μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kυ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁的设计计算

电磁铁的设计计算 1原始数据 YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数 额定工作电压UH=24V 额定工作电压时的工作电流IH ≤1A 2 测试数据 测试参数工作行程δ=1mm 吸力F=7.5kg 电阻R=3.5Ω 4 设计程序 根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能 4.1 确定衔铁直径dc 电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力F=7.5kg 则电磁铁的结构因数 K = F/δ7.5/0.1=27 (1) 电磁铁的结构形式应为平面柱挡板中心管式 根据结构因数查参考资料,可得磁感应强度BP=10000 高斯 当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式 F= (Bp/5000)2×Π/4×dc2 (2) 式中Bp磁感应强度(高斯) dc 活动铁心直径(毫米) 可以求得衔铁直径为 dc= 5800×F Bp = 5800×7.510000 =1.59cm=15.9mm 取dc=16 mm 4.2 确定外壳内径D2 在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n 约为2~ 3 ,选取n=2.7 D2=n ×dc=2.76×16=28.16 毫米(3) 式中D2 外壳内径毫米 4.3 确定线圈厚度 bk= D2?dc 2 ?Δ(4) 式中bk -----线圈厚度毫米 Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米 bk= 28.16?16 2 ?1.7 =4.38毫米 今取bk=5 毫米 4.4 确定线圈长度 线圈的高度lk与厚度bk比值为β,则线圈高度

交流电磁铁课程设计

课程设计任务书 课程名称:电器课程设计题目:交流电磁铁的设计 专业班级: 学生姓名:学号: 指导老师: 审批: 任务书下达日期:2012年月日设计完成日期:2012年月日

目录 第一章手工计算 (1) 1.1 反力特性计算 (1) 1.1.1 电磁铁工作气隙计算 (1) 1.1.2 各部分反力计算 (1) 1.1.3 衔铁各位置反力计算 (2) 1.2 选择电磁铁结构形式并确定设计点 (5) 1.3 电磁铁的初步设计 (6) 1.3.1 确定铁芯尺寸 (6) 1.3.2 计算线圈的匝数 (6) 1.3.3 初算线圈磁势 (6) 1.3.4 计算线圈的尺寸 (7) 1.3.5 分磁环设计 (7) 1.3.6 确定其它结构尺寸 (8) 1.4 性能验算 (10) 1.4.1 线圈电阻 (10) 1.4.2 计算衔铁闭合位置工作气隙磁通 (10) 1.4.3 计算衔铁闭合位置线圈电流 (11) 1.4.4 计算线圈温升 (13) 1.4.5 计算衔铁在设计点的气隙磁通 (13) 1.4.6 计算线圈感抗 (14) 1.4.7 计算线圈电流 (14) 1.4.8 计算线圈反电动势 (15) 1.4.9 计算工作气隙磁通 (15) 1.4.10 计算平均吸力 (15)

1.4.11 计算衔铁闭合位置最小吸力 (15) 1.5 计算电磁铁材料重量及经济重量 (17) 第二章计算机优化设计 (18) 2.1 准备 (18) 2.2计算机优化设计步骤 (18) 2.3计算机优化设计结果 (19) 2.4 反力特性和吸力特性曲线 (21) 第三章制图 (21) 3.1 制图要求 (21) 3.2 电磁铁总装配图 (21) 结语 (22) 附录电磁铁总装配图 (23) 参考文献 (24) 电器课程设计评分表 (25)

电磁铁设计计算书

电磁铁设计计算书 河北科技大学电气工程学院 张刚 电磁铁设计中有许多计算方法,但有许多计算原理表达的不够清晰,本人参照“电 磁铁设计手册”一书,对相关内容进行了整理补充,完成了一个直流110V 拍合式电磁铁的计算。 设计一个拍合式电磁铁,它的额定工作行程为4mm ,该行程时的电磁吸力为0.8公 斤,用在电压110V 直流电路上,线圈容许温升为65℃。 1) 初步设计 第一步:计算极靴直径 电磁铁的结构因数为: 0.8 2.2F K φδ = = ≈ 查空气气隙磁感应强度与结构因数的经济表格,如下图所示: 从图中可查得,气隙磁感应强度最好取为p B =2000Gs 。 极靴的表面积为: 2 2 2500050000.852000n p S F cm B ????==?= ? ? ????? 极靴直径为: 445 2.52 3.14 n n S d cm π ?= = = 取n d =2.5cm ,则2 4.9n S cm =。磁感应强度p B 增加为2040Gs 。 第二步,计算铁芯直径 材料采用低碳钢,其磁感应强度取cm B =11000Gs ,漏磁系数σ取2,则:

222040 4.9 1.1811000 p n cm cm B S S cm B σ??= = = 铁芯直径为: 1.52c d cm = = = 取 1.5c d cm =,则2 1.77cm S cm = 第三步,计算线圈磁动势 线圈的磁动势NI 为工作气隙磁动势、铁芯磁动势和非工作气隙磁动势的和,记 为: ()()()cm n NI NI NI NI δ=++ 计算中,可取: ()()()cm n NI NI a NI += 这里a=0.15~0.3,也就是铁芯磁动势和非工作气隙磁动势的和约占总磁动势的 15%~30%。 因此,线圈的磁动势应为: ()()() 42 7 102040100.4109321141010.3p p B B NI a a δ μδμπ---????==?=≈--?-安匝 系统一般要求电压降到85%U n 时仍能正常工作,在额定电压U n 下的磁动势为: ()1 10950.85 NI NI = =安匝 计算温升时,一般取额定电压U n 的1.05~1.1倍,此时的磁动势为: ()2 1.051150NI NI =?=安匝 第四步,计算线圈尺寸 1)推导计算线圈厚度公式 线圈的温升公式为: m P S θμ= ? 这里: θ:温升,单位℃; P :功率,单位W ; m μ:线圈的散热系数,单位2/W cm ?℃;

《神奇的电磁铁》教学设计

以学定教,让探究活动更精彩 ——《神奇的电磁铁》教学设计 东城三小袁锦培 【教学内容】 义务教育课程标准实验教科书粤教版科学五年级上册P61-64。 【教材分析】 《神奇的电磁铁》是义务教育课程标准实验教科书五年级上册科学书中第十一课的内容。本课主要内容是让学生知道电能产生磁,以及电磁铁与磁铁的异同,电磁铁磁性的大小受哪些因素的影响。本课安排了两个学生实验:一是制作电磁铁;二是探究影响电磁铁磁性大小的因素。教材编排十分注重学生的科学探究能力培养和良好的情感态度的形成。其主要目的是使学生认识到科学就在我们身边,要善于发现、大胆猜测、勤于思考、勇于探索;使学生认识到在自然发生的条件下的观察,是发现科学原理的前提。从而对科学形成良好的情感态度。而意在于培养学生对科学的良好情感态度及科学探究的能力,使学生懂得科学研究是从问题开始的。 【学情分析】 “电磁铁”在学生的生活中应用非常广泛,身边可以找到许多实例。但是对于大部分学生来说,在身边的哪些电器应用了电磁铁了解的非常不够,因为学生根本不懂得什么是电磁铁。小学五年级的学生科学知识积累不多,特别是实验的机会比少、动手能力差,在教学过程中应重视探究性的学习方式,应教会他们的初步的实验探究的方法和步骤。小学生正处在生长发育阶段,好奇心比较强,凡事都想知道为什么。因此,在课前安排恰到好处的提问来吸引学生的注意力,提高学生学习科学的兴趣和积极性,由于本课内容较多,学生的年龄还小,大脑的兴奋性易疲劳,注意力时间比较短,因此在教学设计和教学活动中要不断变换教学方式给予刺激。 【设计理念】 1、以教师为主导,引导学生开展小组探究性合作学习,在合作中获取知识、技能,感情团队协作精神。 2、以学生为主体,引导学生经历“猜想——验证——结论”过程,帮助学生树立正确的科学结论观。 3、以实验为载体,借助简洁实验记录,有效提炼实验结论,培养学生的高级思维认知能

电磁铁设计

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁的设计计算

电磁铁的设计计算 一. 电磁铁的吸力计算 1. 曳引机的静转矩 T=[(1-φ)Q ·g ·D/(2i )]×10-3 式中:φ-------对重系数(0.4-0.5) g---------重力加速度 9.8m/s 2 i----------曳引比 Q---------额定负载 kg D--------曳引轮直径 mm T=[(1-Text1(3))×Text1(0) ×9.8×Text1(1)/(2×Text1(2))]×10-3 = Text1(16) Nm 2. 制动力矩 取安全系数S=1.75-2 取S= Text1(5) Mz=S ·T= Text1(5)×Text1(16)= Text1(6) Nm 3. 电磁铁的额定开闸力 u--------摩擦系数 0.4-0.5,取0.45; Dz------制动轮直径 Dz= Text1(8)mm F N = ) 321(103 1L L L uD L M Z Z ++? = Text1(6)×Text1(11)×103/(Text1(7)×Text1(6)×Text1(9)) = Text1(12)N L1,L2,L3所示详见右图 4. 电磁铁的过载能力 5.11=N F F F1----电磁铁的最大吸力; 5. 所需电磁铁的最大吸力 F1=1.5F N =1.5×Text1(12)= Text1(13)N 6. 电磁铁的额定功率 1021 F P == Text1(14) W 7. 电磁铁的额定工作电压,设计给定 U N =110 V 8. 额定工作电流 N N U P I == Text2(13) A 9. 导线直径的确定 (电密 J=5—6 A/mm 2 ) J= Text2(1) A/mm 2 裸线 J I d N π4'0== Text2(12) mm 绝缘后导线直径 d ’ = Text2(6) mm 10. 衔铁的直径(气隙磁密 B δ=0.9-1T )取B δ= Text2(2) T

电磁铁设计

一、引言 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 电磁铁有许多优点:电磁铁磁性的有无可以用通、断电流控制;磁性的大小可以用电流的强弱或线圈的匝数来控制;也可改变电阻控制电流大小来控制磁性大小;临朐昌盛磁电它的磁极可以由改变电流的方向来控制,等等。即:磁性的强弱可以改变、磁性的有无可以控制、磁极的方向可以改变,磁性可因电流的消失而消失。 电磁铁是电流磁效应(电生磁)的一个应用,与生活联系紧密,如电磁继电器、电磁起重机、磁悬浮列车、电磁流量计等。电磁铁可以分为直流电磁铁和交流电磁铁两大类型。如果按照用途来划分电磁铁,主要可分成以下五种:(1)牵引电磁铁──主要用来牵引机械装置、开启或关闭各种阀门,以执行自动控制任务。(2)起重电磁铁──用作起重装置来吊运钢锭、钢材、铁砂等铁磁性材料。(3)制动电磁铁──主要用于对电动机进行制动以达到准确停车的目的。(4)自动电器的电磁系统──如电磁继电器和接触器的电磁系统、自动开关的电磁脱扣器及操作电磁铁等。(5)其他用途的电磁铁──如磨床的电磁吸盘以及电磁振动器等。

二、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr = μμ 5、磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1 μ0nI 。 8、磁效率 图1-1 电磁铁工作循环图

电磁铁的设计计算

电磁铁的设计计算 一.电磁铁的吸力计算 1.曳引机的静转矩 T=[(1-φ)Q·g·D/(2i)]×10-3 式中:φ-------对重系数(0.4-0.5) g---------重力加速度9.8m/s2 i----------曳引比 Q---------额定负载kg D--------曳引轮直径mm T=[(1-Text1(3))×Text1(0) ×9.8×Text1(1)/(2×Text1(2))]×10-3 = Text1(16) Nm 2.制动力矩取安全系数S=1.75-2 取S= Text1(5) Mz=S·T= Text1(5)×Text1(16)= Text1(6) Nm 3.电磁铁的额定开闸力 u--------摩擦系数0.4-0.5,取0.45; Dz------制动轮直径Dz= Text1(8)mm F N = = Text1(6)×Text1(11)×103/(Text1(7)×Text1(6)×Text1(9)) = Text1(12)N L1,L2,L3所示详见右图 4.电磁铁的过载能力 F1----电磁铁的最大吸力; 5.所需电磁铁的最大吸力 F1=1.5F N =1.5×Text1(12)= Text1(13)N 6.电磁铁的额定功率 = Text1(14) W 7.电磁铁的额定工作电压,设计给定 U N =110 V 8.额定工作电流 = Text2(13) A 9.导线直径的确定(电密J=5—6 A/mm2)J= Text2(1) A/mm2 裸线= Text2(12) mm 绝缘后导线直径d’ = Text2(6) mm 10.衔铁的直径(气隙磁密Bδ=0.9-1T)取Bδ= Text2(2) T

电器学电磁铁设计

目录 引言 (1) 1 概述 (2) 1.1 基本公式及概念 (2) 1.2 一个简单电磁铁产品的结构图 (6) 1.3 电磁铁的结构形式 (7) 2直流电磁铁的设计要求 (9) 3 直流电磁铁的设计与计算 (10) 3.1 电磁铁设计点的选择 (10) 3.2选择电磁铁的结构形式 (11) 3.2.1用结构因数选择电磁铁的结构形式 (11) 3.3 直流电磁铁的初步设计 (12) 3.3.1 决定铁心半径和极靴半径 (12) 3.3.2 计算线圈磁通势 (13) 3.3.3 计算线圈高度及厚度 (14) 3.3.4计算线圈导线直径及匝数 (16) 3.4 计算极靴、衔铁和铁轭的尺寸 (16) 3.5 电磁铁草图 (18) 4 电磁铁性能验算 (19) 5结论 (22) 心得体会 (23) 参考文献 (24)

引言 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 电磁铁是通电产生电磁的一种装置。在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性,它也叫做电磁铁。我们通常把它制成条形或蹄形状,以使铁芯更加容易磁化。另外,为了使电磁铁断电立即消磁,我们往往采用消磁较快的的软铁或硅钢材料来制做。这样的电磁铁在通电时有磁性,断电后磁就随之消失。电磁铁在我们的日常生活中有着极其广泛的应用,由于它的发明也使发电机的功率得到了很大的提高。

08-3-29 直流电磁铁设计指导书 电子版要点

编著 2014年12月8日

第一部分手工计算 一、计算反力特性 (一)、计算工作气隙值: 1、衔铁打开(即主触头打开,称a点)位置的工作气隙δa: δa = (β1+γ1)?Kg 1 2、动断辅助(桥式)触头断开(称b点)时的工作气隙δb: δb = δa-γ2 ?Kg 2 3、主触头刚接触(闭合,称c点)时的工作气隙值δc: δc = γ1 ?Kg 1 4、动合辅助触头刚接触(闭合,称d点)时的工作气隙δd: δd = γ 2 ?Kg 2 5、衔铁完全闭合位置(称e点)时的工作气隙δe: 取δe = 0.1mm;其中镀锌层厚度δ镀层= 2?12?10-6m = 24?10-6m;(二)、计算各位置反力,并作反力特性曲线(如图1.1所示): 图1.1 反力特性曲线

1. 释放弹簧折算反力F fl 的特性曲线 F fl 实质是将释放弹簧初始反力Fs 0折算到铁芯中心线后的释放弹簧反力,其特性曲线是一条直线,从a 点到e 点。 ○1 δ= δa : F f1a = 3Kg Fso ○ 2 δ= δe : F f1e = [ Fso + 3)(C Kg e a s δδ-? ] 3 1 Kg ? ○3 F f1b 、F f1e 、F f1d 的反力则由F f1a 和F f1e 的连线,按比例(或相似三角形)求出; 2. 主触头刚接触(闭合)时的折算反力F f 2特性曲线 F f 2实质是将所有主触头的弹簧初始反力F 2O 和F 2Z 折算到铁芯中心线后的弹簧反力,其特性曲线是一条直线,从o 点到c 点 。 ○1 δ= δc : F f 2C = 110 1F n Kg ? ○2 δ= δe : F f 2e = 1 Z 11Kg F n ? ○ 3 F f 2d 的反力由 F f 2c 和 F f 2e 的连线按比例(或相似三角形)求出; 3、动合辅助触头折算反力F f 3 特性曲线 F f 3 实质是将所有动合辅助触头的弹簧初始反力 F 2O 和F 2Z 折算到铁芯中心线后的弹簧反力,其特性曲线是一条直线,从d 点到e 点。 ○1 δ= δd : F f 3d = 220 2F n Kg ? ○2 δ= δe : F f 3e = 2 Z 22Kg F n ? 4、动断辅助触头折算反力 F f 4 反力特性曲线

初中物理:电磁铁教学设计

电磁铁 【教学目标】 1.知识和技能。 了解什么是电磁铁,学会制作电磁铁,认识影响电磁铁磁性的因素。 2.过程和方法。 经历探究影响电磁铁磁性的因素的过程,能表达自己的观点,初步具有评估和听取反馈意见的意识。 3.情感态度与价值观。 具有“从生活走向物理,从物理走向社会”的意识,养成主动与他人交流合作的精神,树立勇于有根据的怀疑、大胆想象的科学态度。 【教学器材】 干电池三节,大铁钉两枚,大钢钉一枚,铝筒一个,漆包线(1m和1.2m各一根),小刀一把,电流表一只,大头针(或细铁屑)适量,缝衣棉线若干,开关、滑动变阻器一只。 【教学过程】 一、引入:从生活走向物理 观看录像,画面上出现无锡钢铁总公司废钢分公司电磁铁搬运铁块的现场。看完的同学议一议,猜一猜。 师:你们已经看到了什么? 生:这是电磁铁…… 师:还想知道什么? 生甲:什么是电磁铁?我自己能不能做一个? 生乙:电磁铁是怎样工作的?通过它的电流有多大? 生丙:想知道电磁铁能吸住多重的东西。 师:同学们对这么多的问题感兴趣,很好。这节课希望同学们能解决一些问题,同时又产生许多新的问题。 评:联系实际,激发兴趣。 二、制作电磁铁 阅读课本,知道什么叫电磁铁、怎样制作电磁铁。依照课本的指导,自主选择器材。大约八、九分钟后,各组都制作完毕。(提醒学生用小刀将两头的绝缘漆刮掉。) 生甲:用1m细漆包线在大铁钉上顺一个方向绕制60匝的线圈,再用棉线在漆包线表面缠绕一层,使漆包线不致松散,这样就制成了一个电磁铁。同样的方法,用1.2m细漆包线在另一大铁钉上绕了80匝制作了另一个电磁铁。 1

生乙:我们也制作了两个电磁铁,不同的是一个绕在铁钉上,另一个绕在钢制的水泥钉上。我们想看看它们有什么不同。 生丙:我们做了三个电磁铁,除了跟甲一样外,我们还在铝筒上绕了一个60匝的电磁铁。 师:手脚真够快的,是不是经常帮妈妈绕毛线?(生愉快地笑了。) 生丁:乙、丙两位同学看书不认真。绕在钢钉或铝筒上不能叫电磁铁。生丙:书上说的不一定都对!亚里土多德曾经说过“我爱老师,我更爱真理”。我们想研究一下,同样是金属,铝筒究竟可不可以。(同学们给了他热烈的掌声。)师:丙同学的这种敢于怀疑、勇于探究的精神的确值得称道。 评:在平等的关系中,培养学生自主探究的能力。 三、实验探究:影响电磁铁磁性大小的因素 1.猜想。 师:“电磁铁能吸住多重的东西”,也就是电磁铁的磁性大小。那么,电磁铁的磁性大小究竟跟哪些因素有关呢?各个小组讨论一下,然后把你们的观点告诉大家。 甲组:跟通过漆包线的电流、它两端的电压以及漆包线的电阻有关。 乙组:还应当与线圈的匝数多少有关。 丙组:我们认为甲组的观点有些重复,根据欧姆定律,电压和电阻的共同作用就是电流,所以,我们的观点是:通过漆包线的电流大小和线圈匝数的多少会影响电磁铁磁性的大小。 师:大家的猜想都有道理,相比之下,丙组的猜想比甲组更合理一些。 丁组:电磁铁磁性的大小跟铁芯的粗细有关,越粗磁性越强。 师(有些惊讶):你们的这个猜想的确与众不同,坦率地讲,我也说不清楚铁芯的粗细是否对电磁铁的磁性有影响。给的器材里2枚大铁钉也是一般粗,不过,课后我们一起来研究。谢谢你们,能提出这么好的猜想来,让老师也大开眼界。 评:教师真实地在学生面前暴露自己的无知(甚至有意识地表现自己的无知),与学生一起探讨问题,使学生去除对教师的神秘感和权威感,主动承担探究的责任。 2.方案。 电流、匝数都影响电磁铁的磁性,各组讨论,解决以下问题: (1)采取何种步骤?(A.保持匝数不变,磁性与电流的关系;B.保持电流不变,磁性与匝数的关系。) (2)用什么方法来反映电磁铁磁性的强弱?(用吸引铁屑的多少,用吸引大头针的多少,用弹簧秤的方法。) (3)用什么方法来改变通过电磁铁的电流?(增减电池个数;或者用滑动变阻器。) 2

电磁铁设计参数表(推拉式)

DEANG 德昂电子科技 为了选择既经济又实用的电磁铁,烦请您填写下列相关的数据,我们会在最短的时间内提供解决方案及样品。 公司名称(全名):___________________ 地址:_______________________________________ 联系人及手机:____________________ 电话:____________________传真:____________________ 其它联系方式(EMAIL/QQ等):____________________ □以前一直有在使用该产品(请“√”选)□新开发产品用 一.电气参数 1.电压规格:(二选一) □交流AC : ___________V(是指额定电压) □直流 DC : ____________V(是指额定电压) 2.电流规格 :(可选项) 允许最小电流:______A,允许最大电流:______A 3.线圈电阻:(可选项) 要求电阻值: _________Ω。 二. 产品性能: 1.工作环境温度:____℃ 2.湿度要求:_________%RH(也可填:常规环境湿度,潮湿,非常干燥,置于液体内) 3.工作频率:(二选一) □连续工作:(通电在5分钟以上,设定为连续通电) □通,断工作时间:通电时间ON____ 秒,断电时间OFF___秒或工作频率_________(次/毫秒/秒/分) 4.工作方式 □通电后拉动机构做功 □通电后推动机构做功 5.力/行程特征: 总行程______mm. 行程在______mm时力量______克(通电初始力) _______________________________________ (特殊要求:其它行程及力量要求) 6.是否需要弹簧复位功能:□需要□不需要□或弹簧复位力度要求_____克 三. 产品结构要求: 框架形:长_____ *宽_____ *高_____或圆柱形:外径_____ *长_____(单位:mm) 其它尺寸要求(如:工作端打孔/铣槽/攻螺纹等): (补充:如方便请尽可能提供合格产品或应用的:样品/照片/图纸/检测方法/试验方案等) 成功源自专业,品质铸就未来!德昂竭诚为您服务!

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

电磁铁设计

直流电磁铁设计 共 26 页 编写: 校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B=S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr = μμ 5、 磁通Φ=M R NI

磁阻R M =s l 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。 6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。 我们的目的是使 Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 K 1=0A A A :输出的有效功

交流电磁铁课程设计

湖南工程学院 课程设计任务书 课程名称:电器课程设计题目:交流电磁铁的设计 专业班级: 学生姓名:学号: 指导老师: 审批: 任务书下达日期:2012年月日设计完成日期:2012年月日

目录 第一章手工计算 (1) 1.1 反力特性计算 (1) 1.1.1 电磁铁工作气隙计算 (1) 1.1.2 各部分反力计算 (1) 1.1.3 衔铁各位置反力计算 (2) 1.2 选择电磁铁结构形式并确定设计点 (5) 1.3 电磁铁的初步设计 (6) 1.3.1 确定铁芯尺寸 (6) 1.3.2 计算线圈的匝数 (6) 1.3.3 初算线圈磁势 (6) 1.3.4 计算线圈的尺寸 (7) 1.3.5 分磁环设计 (7) 1.3.6 确定其它结构尺寸 (8) 1.4 性能验算 (10) 1.4.1 线圈电阻 (10) 1.4.2 计算衔铁闭合位置工作气隙磁通 (10) 1.4.3 计算衔铁闭合位置线圈电流 (11) 1.4.4 计算线圈温升 (13) 1.4.5 计算衔铁在设计点的气隙磁通 (13) 1.4.6 计算线圈感抗 (14) 1.4.7 计算线圈电流 (14) 1.4.8 计算线圈反电动势 (15) 1.4.9 计算工作气隙磁通 (15) 1.4.10 计算平均吸力 (15)

1.4.11 计算衔铁闭合位置最小吸力 (15) 1.5 计算电磁铁材料重量及经济重量 (17) 第二章计算机优化设计 (18) 2.1 准备 (18) 2.2计算机优化设计步骤 (18) 2.3计算机优化设计结果 (19) 2.4 反力特性和吸力特性曲线 (21) 第三章制图 (21) 3.1 制图要求 (21) 3.2 电磁铁总装配图 (21) 结语 (22) 附录电磁铁总装配图 (23) 参考文献 (24) 电器课程设计评分表 (25)

直流电磁铁设计

直流电磁铁设计共26 页 编写:

校对: 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 ?(TB=) 1、均匀磁场S2、磁势F=NI,电流和匝数的乘积(A)NI(A/m),H=建立了电流和磁场的关系。 3、磁场强度L该公式适用于粗细均匀的磁路 B建立了磁场强度和磁感应强度(磁通密度)的关系。 4、磁导率=? H?-7 = 10相对磁导率享/米×=4 π??r0?0NIΦ5、磁

通=R M l =R磁阻M s这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。. F,磁感应强度与力的关系。6、磁感应强度的定义式B=qv7、真空中无限长螺线管B=μnI。对于长螺线管,端面处的01 nI。B=μ0ψ 2 8、磁效率 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时,工作

点由2~3。断电后工作点由3~0。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。. 我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A =K1A0A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G = K2A0G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正 确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数K φ每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K 这个判据。J. Q =Kφ Q-初始吸力(kg) δ-气隙长度(cm)

电器学课程设计 盘式起重电磁铁

摘要 起重电磁铁,顾名思义,就是在工业领域应用的,作为用于冶金、矿山、机械、交通运输等行业吊运钢铁等导磁性材料或用作电磁机械手,夹持钢铁等导磁性材料。其原理是内部带有铁芯的、利用通有电流的线圈使其像磁铁一样具有磁性的装置。通常制成条形或蹄形。铁芯要用容易磁化,又容易消失磁性的软铁或硅钢来制做。这样的电磁铁在通电时有磁性,断电后就随之消失。电磁铁在日常生活中有极其广泛的应用。 本设计为直流盘式起重电磁铁。起重电磁铁由铁芯和线圈组成,励磁电流通 过线圈产生磁势,负载闭合磁路,工作磁通起吊重物,钢铁料负载是起重电磁铁磁路的重要组成部分,负载的变化将导致电磁参数变化,因此要根据负载研究电、磁、力,认识起重电磁铁特性。基于系统集成的设计思想,给出了圆盘式电磁起重系统的组成原理,分别介绍了该系统的总体设计与单元设计中的几个关键问题,并对实际应用进行了分析。 关键词:电磁铁直流负载

1.1电磁铁结构设计 本直流盘式起重电磁铁的构成如图1-1所示,由一块铸钢圆盘和U型电磁铁组成。 1.3M M 5 . 4M 图1-1电磁 铁结构图 1.2 电磁铁材料的选用 电磁铁铁芯一般用ZG25铸钢或低碳钢制成,它有低的矫顽力和高饱和磁密,饱和磁密在20 000高斯以上,导磁率是空气的500^-2 200倍以上。本设计中U型电磁铁选用半径为0.65m的ZG25铸钢,线圈为铜线。下方选用直径为4米,高度为0.5m的铸钢圆盘。 1.3电磁铁参数要求 通电持续率:50% 环境温度: To= -5℃ ~ +40℃ 线圈额定电压:Ue =220V(直流) 最大额定电压: Umax =1.05Ue 允许温升:(H级绝缘)T = 160℃ 自重:≤3000kg 功率参考值:11.1KW 起重能力:生磁体或废钢 1100kg 铸铁铁屑 600kg 计算用等效衔铁厚度 0.08m

直流电磁铁设计

直流电磁铁设计 共26页 编写: ______________________ 校对: _______________________ 直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电 能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各

种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B丄(T) S 2、磁势F=NI,电流和匝数的乘积(A) 3、磁场强度日二寻(A/m),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率■二旦建立了磁场强度和磁感应强度(磁通密度)的关系 < H ^=4 n X 10-7享/米相对磁导率r='- #0 5、磁通①二巴 R M 磁阻R M二+ 这称为磁路的欧姆定律,由于铁磁材料的磁导率卩不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

真空中无限长螺线管 B= — it °nl 。 2 磁效率 电磁铁工作循环图 当电磁铁接上电源,磁力还不足克服反力,按0~2的直线进行 磁化,达到期初始工作点2。当磁力克服反力使气隙减小直至为零时, 工作点由2?3。断电后工作点由3?0。 面积I 为断电后剩留的能量,面积H 为作功前电磁铁储存的能 量,面积皿为电磁铁作的功 6、 磁感应强度的定义式 B=—,磁感应强度与力的关系。 qv 7、 B=卩o nl 。对于长螺线管,端面处的

相关主题