搜档网
当前位置:搜档网 › 矩阵乘积的运算法则的证明

矩阵乘积的运算法则的证明

矩阵乘积的运算法则的证明
矩阵乘积的运算法则的证明

矩阵乘积的运算法则的证明

矩阵乘积的运算法则

1 乘法结合律:若n m C A ?∈,p n C B ?∈ , q p C C ?∈,则C AB BC A )()(=.

2 乘法左分配律:若A 和B 是两个n m ?矩阵,且C 是一个p n ?矩阵,则BC AC C B A +=+)(.

3 乘法右分配律:若A 是一个n m ?矩阵,并且B 和C 是两个p n ?矩阵,则BC AC C B A +=+)(.

4 若α是一个标量,并且A 和B 是两个m n ?矩阵,则B A B A ααα+=+)(. 证明 1

①先设n 阶矩阵为)(ij a A =,)(ij b B =, )(ij c C =,)(ij d AB =,)(ij e BC = )(ij f ABC =,)()(ij g BC A =,有矩阵的乘法得:

故对任意n j i 2,1,=有:

=ij g

故)()(BC A C AB =

②再看 mn ik a A )(= ,np kj b B )(=,pq jt c C )(=, mp ij d AB )(= , nq kt e BC )(= , mq it g BC A )()(=,

有矩阵的乘法得:

故对任意的,2,1m i = ,2,1p j = ,2,1n k = q t 2,1=有:

6nt in t i t i e a e a e a +++= 2211

=ij g

故)()(BC A C AB =

证明

2

设ij A 表示矩阵A 的第i 行,第j 列上的元素,则有

=ij ij BC AC )()(+

故证出矩阵乘法左分配律.

证明

3

同理矩阵乘法左分配律可得

= []ij C B A )(+

故证出矩阵乘法左分配律.

证明 4 设????????????==mn m m n n mn ij a a a a a a a a a a A 2122221

11211)(,????????????==mn m m n n mn ij b b b b b b b b b b B 2

12222111211)(, 可得=+B A ????????????+++++++++mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a

221

12222

2221211112

121111, =A α????????????mn m m n n a a a a a a a a a ααααααααα 212222111211,B α????????????=mn m m n n b b b b b b b b b ααααααααα 21

2222111211, B A αα+????

???????

?+++++++++=)()()()()()()()()(221122222221211112121111mn mn m m m m n n n n b a b a b a b a b a b a b a b a b a ααααααααα , 所以)(B A +α=B A αα+.

用Excel进矩阵计算

用Excel进行矩阵计算 一、Excel的数组、数组名和矩阵函数的设置 1矩阵不是一个数,而是一个数组。在Excel里,数组占用一片单元域,单元域用大括号表示,例如{A1:C3},以便和普通单元域A1:C3相区别。设置时先选定单元域,同时按Shift+Ctrl+Enter键,大括弧即自动产生,数组域得以确认。 2Excel的一个单元格就是一个变量,一片单元域也可以视为一组变量。为了计算上的方便,一组变量最好给一个数组名。例如A={A1:C3}、B={E1:G3}等。数组名的设置步骤是:选定数组域,点“插入”菜单下的“名称”,然后选择“定义”,输入数组名如A或B等,单击“确定”即可。 3矩阵函数是Excel进行矩阵计算的专用模块。常用的矩阵函数有MDETERM(计算一个矩阵的行列式)、MINVERSE(计算一个矩阵的逆矩阵)、MMULT(计算两个矩阵的乘积)、SUMPRODUCT(计算所有矩阵对应元素乘积之和)……函数可以通过点击“=”号,然后用键盘输入,可以通过点击“插入”菜单下的“函数”,或点击fx图标,然后选择“粘贴函数”中相应的函数输入。 二、矩阵的基本计算 数组计算和矩阵计算有很大的区别,我们用具体例子说明。 已知A={3 -2 5,6 0 3,1 5 4},B={2 3 -1,4 1 0,5 2 -1},将这些数据输入Excel相应的单元格,可设置成图1的形状,并作好数组的命名,即第一个数组命名为A,第二个数组命名为B。计算时先选定矩阵计算结果的输出域,3×3的矩阵,输出仍是3×3个单元格,然后输入公式,公式前必须加上=号,例如=A +B、=A-B、=A*B等。A+B、A-B数组运算和矩阵运算没有区别,“=A*B”是数组相乘计算公式,而“=MMULT(A,B)”则是矩阵相乘计算公式,“=A/B”是数组A除数组B的计算公式,而矩阵相除是矩阵A 乘B的逆矩阵,所以计算公式是“=MMULT(A,MINVERSE(B))”。公式输入后,同时按Shift+Ctrl+Enter 键得到计算结果。图1中的数组乘除写作A*B、A/B,矩阵乘除写作A·B、A÷B,以示区别。 三、矩阵计算的应用 下面让我们来计算一个灰色预测模型。 灰色预测是华中理工大学邓聚龙教授创立的理论,其中关键的计算公式是计算微分方程+B1x=B2的解,{B1,B2}=(XTX)-1(XTY),式中:XT是矩阵X的转置。 作为例子,已知X={-45.5 1,-79 1,-113.5 1,-149.5 1}Y={33,34,35,37} 在Excel表格中,{B2:C5}输入X,{E2:H3}输入X的转置。处理转置的方法是:选定原数组{B2:C5},点“编辑”菜单的“复制”,再选定数组转置区域{E2:H3},点“编辑”菜单的“选择性粘贴”,再点“转置”即可。{J2:J5}输入Y,然后选取{L2:L3}为B1、B2的输出区域,然后输入公式: =MMULT(MINVERSE(MMULT(E2:H3,B2:C5)),MMULT(E2:H3,J2:J5)) 公式输入完毕,同时按Shift+Ctrl+Enter键,B1、B2的答案就出来了,如图2。 如果计算的矩阵更复杂一些,就必须分步计算。不过,使用Excel也是很方便的。(江苏陈岁松) ==== POWERPOINT 演示文档https://www.sodocs.net/doc/8f15205343.html,.tw/~ccw/manage_math/array.ppt EXCEL矩陣運算(繁体中文)参考文献:https://www.sodocs.net/doc/8f15205343.html,/4/wenzi/wz042.htm

_矩阵的Kronecker乘积的性质与应用

矩阵Kronecker乘积的性质与应用 摘要 按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积B A ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。 本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。 矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。 关键词: 矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix Kronecker

product Abstract According to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product B A , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product). This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof. Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords: Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations 目录

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵连乘最佳加括号方式-动态规划算法

矩阵连乘最佳加括号方式-动态规划算法 一、问题描述 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C 的乘积并加括号,即A=(BC)。 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。 为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵 {A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,A n}(其中矩阵A i的维数为p i-1×p i,i=1,2,…,n),如何确定计算矩阵连乘积A1A2…A n的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。 穷举搜索法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。 二、算法思路

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

矩阵数值算法

计算实习报告 一 实习目的 (1)了解矩阵特征值与相应特征向量求解的意义,理解幂法和反幂法的原理, 能编制此算法的程序,并能求解实际问题。 (2)通过对比非线性方程的迭代法,理解线性方程组迭代解法的原理,学会编 写Jacobi 迭代法程序,并能求解中小型非线性方程组。初始点对收敛性质及收 敛速度的影响。 (3)理解 QR 法计算矩阵特征值与特征向量的原理,能编制此算法的程序,并 用于实际问题的求解。 二 问题定义及题目分析 1. 分别用幂法和幂法加速技术求矩阵 2.5 2.5 3.00.50.0 5.0 2.0 2.00.50.5 4.0 2.52.5 2.5 5.0 3.5-?? ?- ?= ?-- ?--?? A 的主特征值和特征向量. 2. 对于实对称矩阵n n ?∈A R ,用Jacobi 方法编写其程序,并用所编程序求下列矩阵的全部 特征值. 1515 4 1141144114114?-?? ?-- ? ?- ?= ? ?- ?-- ? ?-??A 3. 对于实矩阵n n ?∈A R ,用QR 方法编写其程序,并用所编程序求下列矩阵的全部特征值: 111 21 113,4,5,62311111n n n n n n ? ???? ?????==+? ????? ??+??A 三 概要设计 (1) 幂法用于求按模最大的特征值及其对应的特征向量的一种数值算法,

它要求矩阵 A 的特征值有如下关系: 12n ...λλλ>≥≥ ,对于相应 的特征向量。其算法如下: Step 0:初始化数据0,, 1.A z k = Step 1:计算1k k y A z +=。 Step 2:令 k k m y ∞=。 Step 3:令 k k k z y m = ;如果1k k m m +≈或1k k z z +≈,则 goto Step 4;否则 , k = k + 1 ,goto Step 1。 Step 4:输出结果 算法说明与要求 输入参数为实数矩阵、初始向量、误差限与最大迭代次数。输出 参数为特征值及相对应的特征向量。注意初始向量不能为“0”向量。 (2) 迭代法的原理 如果能将方程 Ax =b 改写成等价形式:x=Bx+f 。如果B 满足:ρ(B )<1,则对于任意初始向量 x (0) ,由迭代 x ( k + 1) = Bx (k ) + f 产生的序列均收敛到方程组的精确解。迭代法中两种最有名的迭代法就是Jacobi 迭代法,它的迭代矩阵 B 为: 1()J D L U -=-+,1 f D b -= 其中,D 为系数矩阵 A 的对角元所组成对角矩阵,L 为系数矩阵 A 的对角元下方所有元素所组成的下三角矩阵,U 为系数矩阵 A 的对角元上方所有元素所组成的上三角矩阵。 算法如下: Step 0:初始化数据 00,,,,k A b x δ=和ε。 Step 1:计算D,L,U,J 或G, 得到迭代矩阵B. Step 2::1k k =+ 0x B x f * =+ 0x x = 如果0x x δ-<或()f x ε≤,goto Step 3?否则 goto Step 2。 Step 3:输出结果。 程序说明与要求

Excel矩阵运算

Excel矩阵计算 目前有很多软件可进行矩阵运算,特别是Matlab,其矩阵运算功能尤为强大。但这些专业软件所占空间很大,价格昂贵。其实Excel就有矩阵运算功能,虽然比不上专业软件,但不比一些数学小软件差多少。下面把从网上搜集到的一些有关利用Excel进行矩阵计算的资料整理如下: 资料一: (1)数组和矩阵的定义 矩阵不是一个数,而是一个数组。在Excel里,数组占用一片单元域,单元域用大括号表示,例如{A1:C3},以便和普通单元域A1:C3相区别。设置时先选定单元域,同时按Shift+Ctrl+Enter键,大括弧即自动产生,数组域得以确认。 一个单元格就是一个变量,一片单元域也可以视为一组变量。为了计算上的方便,一组变量最好给一个数组名。例如A={A1:C3}、 B={E1:G3}等。数组名的设置步骤是:选定数组域,单击“插入”菜单,选择“名称”项中的“定义”命令,输入数组名,单击“确定”按钮即可。更简单的命名办法为:选择数组域,单击名称框,直接输入名称就行了。 矩阵函数是Excel进行矩阵计算的专用模块。用“插入”-“函数”命令打开“粘贴函数”对话框(如图11),选中函数分类栏中的“数学与三角函数”,在右边栏常用的矩阵函数有:MDETERM--计算一个矩阵的行列式;MINVERSE--计算一个矩阵的逆矩阵;MMULT--计算两个矩阵的乘积; SUMPRODUCT--计算所有矩阵对应元素乘积之和。 (2)矩阵的基本计算  数组计算和矩阵计算有很大的区别,比如下面这个例子中,A和B都是定义好的数组,因为这两个数组都是3×3的,输出结果也是3×3个单元格。计算时先选定矩阵计算结果的输出域,为3×3的单元格区域,然后输入公式。如果输入“=A+B”或“=A-B”,计算结果是数组对应项相加或相减,输入“=A*B”表示数组A和B相乘,输入“=A/B”表示数组A 除数组B。如果要进行矩阵计算,就要用到相应的矩阵函数。矩阵相加、相减与数组的加减表达形式是一样的,也是“=A+B”和“=A-B”,表示矩阵相乘可以输入“=MMULT(A,B)”,而矩阵相除是矩阵A乘B 的逆矩阵,所以计算公式是“=MMULT(A,MINVERSE(B))”。公

c语言矩阵乘积.

矩阵乘积 Time Limit:1000MS Memory Limit:65536K Description 输入一个M×N的整数矩阵A,再输入一个N×M的整数矩阵B。计算C=A×B。 Input 先输入M和N(M和N均≤10),另起一行后输入一个M×N的整数矩阵A,然后再输入一个N×M的整数矩阵B。每列数据用逗号分隔,每行数据用回车分隔。 Output 计算A×B→C,输出矩阵C。 Sample Input 2 3 1 2 3 2 4 6 1 2 3 4 5 6 Sample Output 22 28 44 56 Hint C=A×B,C是一个M×M的矩阵。

代码以通过调试。 #include int main() { int a[10][10],b[10][10],c[10][10],d[10][10]; int i,k,q,n,m,j,s,p; for(i=0;i<10;i++) for(j=0;j<10;j++) d[i][j]=0; scanf("%d%d",&m,&n); for(i=0;i

矩阵乘积的运算法则的证明(新)

矩阵乘积的运算法则的证明 矩阵乘积的运算法则 1 乘法结合律:若n m C A ?∈,p n C B ?∈ , q p C C ?∈,则C AB BC A )()(=. 2 乘法左分配律:若A 和B 是两个n m ?矩阵,且C 是一个p n ?矩阵,则 BC AC C B A +=+)(. 3 乘法右分配律:若A 是一个n m ?矩阵,并且B 和C 是两个p n ?矩阵,则BC AC C B A +=+)(. 4 若α是一个标量,并且A 和B 是两个m n ?矩阵,则B A B A ααα+=+)(. 证明 1 ①先设n 阶矩阵为)(ij a A =,)(ij b B =, )(ij c C =,)(ij d AB =,)(ij e BC = )(ij f ABC =,)()(ij g BC A =,有矩阵的乘法得: n j i b a b a b a d nj in j i j i ij 2,1,.2211=+++= n j i c b c b c b e nj in j i j i ij 2,1,.2211=+++= n j i c d c d c d f nj in j i j i ij 2,1,.2211=+++= n j i e a e a e a g nj in j i j i ij 2,1,.2211=+++= 故对任意n j i 2,1,=有: nj in j i j i ij c d c d c d f +++= 2211 ++++=j n in i i c b a b a b a 11212111)( ++++j n in i i c b a b a b a 22222121)( nj nn in n i n i c b a b a b a )(2211++++ ++++=)(12121111nj n j j i c b c b c b a

矩阵链算法

/************************ Matrix Chain Multiplication ***************************/ /************************ 作者:Hugo ***************************/ /************************ 最后修改日期:2015.09.10 ***************************/ /************************ 最后修改人:Hugo ***************************/ using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Text.RegularExpressions; using System.Collections; namespace Matrix { class Program { public static int nummulti = 0; static ArrayList list1 = new ArrayList();//定义计算式存储列表 static ArrayList listrow = new ArrayList();//定义矩阵行数存储列表 static ArrayList listcolumn = new ArrayList();//定义矩阵列数存储列表 static void Main(string[] args) { /****************************************************************************** *****************/ //从键盘上获取矩阵 int nummatrix = Int32.Parse(Console.ReadLine()); int countmat = 0; for (countmat = 0; countmat < nummatrix; countmat++) { string s = Console.ReadLine(); string[] str = s.Split(' ');//把输入的一行字符按空格拆分 listrow.Add(Int32.Parse(str[1]));//行数存储到矩阵行数存储列表 listcolumn.Add(Int32.Parse(str[2]));//列数存储到矩阵列数存储列表

excel中矩阵的计算

Excel中矩阵的计算一、求逆矩阵 (1)打开一个新的空工作簿,如图所示 (2)输入数据。 (3)在另外的活动单元格中拉黑同行列,如图

(4)点击“公式”-fx,点击“数学与三角函数” (5)点击求逆矩阵的函数键MINVERSE (6)点击确定,输入原数据所在块的第一个数据的行列 ,加“:”,输入最后一个数据的行列

(7) 点击确定后,计算后会返回一个值 (8)按F2,然后CRTL+SHIFT+ENTER,就会显示出一个三行三列的矩阵,即原矩阵的逆矩阵 二、其他:矩阵法解方程组 Excel的数组、数组名和矩阵函数的设置 矩阵不是一个数,而是一个数组。在Excel里,数组占用一片单元域,单元域用大括号表示,例如{A1:C3},以便和普通单元域A1:C3相区别。设置时先选定单元域,同时按Shift+Ctrl+Enter键,大括弧即自动产生,数组域得以确认。 Excel的一个单元格就是一个变量,一片单元域也可以视为一组变量。为了计算上的方便,一组变量最好给一个数组名。例如A={A1:C3}、B={E1:G3}等。 具体操作 1、数组名的设置。

选定数组域,点“插入”菜单下的“名称”,然后选择“定义”,输入数组名如A或B等,单击“确定”即可。 或是: 选定要命名的单元格,点右键——“命名单元格区域”出现下图即可“命名A”; 选定要命名的单元格,点右键——“命名单元格区域”出现下图即可“命名B”; 如:已知A={3 -2 5,6 0 3,1 5 4},B={2 3 -1,4 1 0,5 2 -1},将这些数据输入Excel 相应的单元格,可设置成图1的形状,并作好数组的命名,即第一个数组命名为A,第二个数组命名为B。 2、矩阵函数是Excel进行矩阵计算的专用模块。 常用的矩阵函数有: MDETERM(计算一个矩阵的行列式) MINVERSE(计算一个矩阵的逆矩阵) MMULT(计算两个矩阵的乘积) SUMPRODUCT(计算所有矩阵对应元素乘积之和) TRANSPOSE(计算矩阵的转置矩阵)…… 函数可以通过点击“=”号,然后用键盘输入,可以通过点击“插入”菜单下的“函数”; 或点击fx图标,然后选择“粘贴函数”中相应的函数输入。 3、计算时先选定矩阵计算结果的输出域,3×3的矩阵,输出仍是3×3个单元格,然后输入公式,公式前必须加上=号,例如=A+B、=A-B、=A*B等。 A+B、A-B数组运算和矩阵运算没有区别 =A+B 按enter,F2,Shift+Ctrl+Enter 然后选定预选区域,按F2,Shift+Ctrl+Enter,即可得结果 “=A*B”是数组相乘计算公式,而“=MMULT(A,B)”则是矩阵相乘计算公式, “=A/B”是数组A除数组B的计算公式,而矩阵相除是矩阵A乘B的逆矩阵,所以计算公式是“=MMULT(A,MINVERSE(B))”。 公式输入后,同时按F2, 然后Shift+Ctrl+Enter键得到计算结果。 图中的数组乘除写作A*B、A/B,矩阵乘除写作A·B、A÷B,以示区别。

矩阵连乘问题算法分析与设计

矩阵连乘问题《算法分析与设计》

设计性实验报告 课程名称:《算法分析与设计》矩阵连乘问题实验题目:长:组员一:成 二:成员成员三:数学与计算机科学系别:系专业班级:指导教师:实验日期: 一、实验目的和要求

实验目的 熟悉动态规划算法设计思想和设计步骤,掌握基 本的程序设计方法,培养学生用计算机解决实际问题的能力。 实验要求 1、根据实验内容,认真编写源程序代码、上机调试程序,书写实验报告。 2、本实验项目考察学生对教材中核心知识的掌握程度和解决实际问题的能力。 3、实验项目可

以采用集中与分散实验相结合的方式进行,学生利用平时实验课时间和课外时间进行 实验,要求在学期末形成完整的项目程序设计报告。 二、实验内容提要 矩阵连乘问题给定n个矩阵{A,A,…,A}, 其中,Ai与Ai+1是可乘的,n21A,A,…,A。由于矩阵乘法满足结n-1。考查这n个矩阵的连乘积i=1,2,…,n12合律,故计算矩阵的连乘积可以有 许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反 复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可 递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 三、实验步骤下面考虑矩阵连乘积的最优计算次序问题的动态规划方法。(1)分析最优解的结构(最优子结构性质)设计求解具体问题的动态规划算法的第一步是刻画该问 题的最优解结构特征。对于矩阵乘积的最优计算次序问题也不例外。首先,为方便起见,降- 1 - 矩阵乘积Ai Ai+1…Aj简记为A[i:j]。

求逆矩阵的方法

求逆矩阵的方法与矩阵的秩 一、矩阵的初等行变换 (由定理2.4给出的求逆矩阵的伴随矩阵法,要求计算矩阵A 的行列式A 值和它的伴随矩阵*A .当A 的阶数较高时,它的计算量是很大的,因此用伴随矩阵法求逆矩阵是不方便的.下面介绍利用矩阵初等行变换求逆矩阵的方法.在介绍这种方法之前,先给出矩阵初等行变换的定义.) 定义2.13 矩阵的初等行变换是指对矩阵进行下列三种变换: (1) 将矩阵中某两行对换位置; (2) 将某一行遍乘一个非零常数k ; (3) 将矩阵的某一行遍乘一个常数k 加至另一行. 并称(1)为对换变换,称(2)为倍乘变换,称(3)为倍加变换. 矩阵A 经过初等行变换后变为B ,用 A →B 表示,并称矩阵B 与A 是等价的. (下面我们把)第i 行和第j , ”;把第i 行遍乘k k ”;第j 行的k 倍加至第i 为“ + k ”. 例如,矩阵 A = ????? ?????321321321c c c b b b a a a ???? ? ?????321 3 21321 c c c a a a b b b ???? ??????32 1 321321c c c b b b a a a ???? ? ?????32 1321321 kc kc kc b b b a a a ???? ? ?????32 1 321321 c c c b b b a a a ??? ? ? ??? ??+++32 1 332 2113 21 c c c ka b ka b ka b a a a (关于初等矩阵内容请大家自己阅读教材) 二、运用初等行变换求逆矩阵 由定理2.7的推论“任何非奇异矩阵均能经过初等行变换化为单位阵”可知,对于任意一个n 阶可逆矩阵A ,经过一系列的初等行变换可以化为单位阵I ,那么用一系列同样的初等行变换作用到单位阵I 上,就可以把I 化成A -1.因此,我们得到用初等行变换求逆矩阵的方法:在矩阵A 的右边写上一个同阶的单位矩阵I ,构成一个n ?2n 矩阵 ( A , I ),用初等行变换将左半部分的A 化成单位矩阵I ,与此同时,右半部分的I 就被化成了1-A .即 ( A , I )初等行变换 ?→???( I , A -1 ) 例1 设矩阵 A = ???? ? ?????--23 2 311111 ③k ①,② ②+①k

最新Excel中矩阵的运算

E x c e l中矩阵的运算

nxn方阵对应行列式的值 第二步,选中A4单元格,在“插入”菜单中选中“函数”菜单项: 第三步,在打开的“函数”对话框中,选中“MDETERM”函数如图2,并按“确定”按钮: 第四步,在弹出的对话框中输入矩阵所在的地址,按确定即得到行列式的值。 矩阵求和 已知 第二步,在A5单元格中输入公式:=A1+El,按回车,这时A5中显示数字7; 第三步,选中A5单元格,移动鼠标至其右下角,鼠标形状变为黑色十字时,按下鼠标左键往右拖至C5,B5和C5中分别显示一3.3。同样的方法选中A5:C5,往下拖至A7:C7,便得到A+B的值。 矩阵求逆 第一步,在A1:C3中输入矩阵A; 第二步。选中A5:C7,“插入”→“函数”→“MINVERSE”→“确定”: 第三步,在“array”项中输入A1:C3,按F2,同时按CTRL+SHIFF+ENTER 即可如图6。 5矩阵转置

第一步,在Al:C3中输入矩阵A,并选中; 第二步,“编辑”→“复制”; 第三步,选中A5,“编辑”→“选择性粘贴”→“转置”→确定”。 矩阵求秩 6.1矩阵秩的概念 定义设A是mxn矩阵,从A中任取k行k列(k≤min(m,n)),由这些行、列相交处的元素按原来的次序所构成的阶行列式,称为矩阵A的一个k阶子行列式,简称k阶子式。 定义矩阵A的所有不为零的子式的最高阶数r称为矩阵A的秩,记作 r(A),即r(A)=r。 6.2矩阵秩的数学求法 6.2.1行列式法:即定义从矩阵的最高阶子式算起,计算出不等于零的子式的最高阶数r,此r即为该矩阵的秩。 6.2.2行初等变换法:用初等行变换化矩阵为阶梯形矩阵,此阶梯形矩阵非零行的行数r就是该矩阵的秩。 6.3利用EXCEL求矩阵秩 方法一,根据矩阵秩的定义,可以求所有不为零子式的最高阶数。 求矩阵A的秩. 显然A是4x4矩阵,4为其所有子式的最高阶数。先求IAI的值,若|A|不为零,则矩阵A的秩为4。若|A|为零,求所有阶数为3的子式的值。若存

矩阵连乘问题

目录: 矩阵连乘问题: 1. 描述矩阵连乘问题 2. 分析矩阵连乘问题以及对递归式的推导(1)直接递归思路 (2)备忘录思路 (3)动态规划思路 3. 伪代码的方式描述算法: (1)直接递归算法 (2)备忘录算法 (3)动态规划算法 4. 把算法转换成程序实现的过程及结果(1)直接递归算法程序 (2)备忘录算法程序 (3)动态规划算法程序

1.描述矩阵连乘问题: 给定n 个矩阵{n A A A ?,2,1},其中i A 和1+i A 是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积n A A A ?,2,1。由于矩阵乘法具有结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说连乘积已完全加括号,则可依次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A 是完全加括号的,则A 可表示为2个完全加括号的矩阵连乘B 和C 的乘积并加括号,即A=(BC )。 矩阵A 和B 可乘的条件是矩阵A 的列数等于矩阵B 的行数。若A 是一个p ×q 的矩阵,B 是一个q ×r 的矩阵,那么C=A ×B 就是一个p ×r 矩阵。它的计算是三重循环的,计算量是pqr 。如果加括号后矩阵的量是不同的,所以我们的问题就是要讨论如何给连乘的矩阵加括号才能使矩阵的计算量最少。 穷举搜索法:对于n 个矩阵的连乘积,设有不同的计算次序P(n)。由于可以先在第k 个和第k+1个矩阵之间将原矩阵序列分为两个矩阵子序列,k=1,2,...,n-1;然后分别对这两个矩阵子序列完全加括号;最后对所得的结果加括号,得到原矩阵序列的一种完全加括号方式。由此可得P(n)的递归式如下: 1 n=1 P (n )= ∑-=-1 1 )()(n k k n P k P n>1 解此递归方程可得,P(n)=C(n-1),而C(n)是一个指数增长的函数。因此穷举搜索法不是一个有效的算法。以下将用三种方法来解决矩阵连乘问题的最优加括号方式以及最优解。 2. 分析矩阵连乘问题以及对递归式的推导 将矩阵连乘积j i i A A A ?+,1,简记为A[i:j]。考察计算A[1:n]的最优计算次序。这个问题的一个关键特征是:计算A[1:n]的最优次序包含的计算矩阵子链A[1:k]和A[k+1:n]的次序也是最优的。这是因为:定义矩阵A i 的维数为p i-1×p i ,则A[i:k]的计算次数为p i-1×p k ,A[k+1,j]的计算次数为p k ×p j ,而这两个总的矩阵最后相乘时的计算量是固定的,为p i-1×p k ×p j 。所以,矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。 (1)、直接递归的思路:记计算A[i:j],1≤i ≤j ≤n ,所需最少数乘次数为m[i][j],则原问题的最优质为m[1][n]。由分析得知:m[i][j]可以递归的定义为: 0 i=j m[i][j]= }]][1[]][[{min 1j k i j k i p p p j k m k i m -≤≤+++ i

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

相关主题