搜档网
当前位置:搜档网 › 专题函数常见题型归纳(教师版)

专题函数常见题型归纳(教师版)

专题函数常见题型归纳(教师版)
专题函数常见题型归纳(教师版)

专题函数常见题型归纳

本专题热点考点可总结为六类:一是分段函数的求值问题,二是函数的性质及其应用,三是基本函数的图像和性质,四是函数图像的应用,五是方程根的问题,六是函数的零点问题。

考点一 分段函数求值问题

【例1】 已知函数f (x )=?

????

2x

,x >0,

x +1,x ≤0. 若f (a )+f (1)=0,则实数a 的值等于( )

【解析】 由已知,得f (1)=2;又当x >0时,f (x )=2x >1,而f (a )+f (1)=0,∴f (a )=-2,且a <0,∴a +1=-2,解得a =-3 【例2】设f (x )=??? lg x ,x >0,

10x

,x ≤0,

则f (f (-2))=________.

【解析】 f (x )= ???

lg x ,x >0,

10x

,x ≤0,

-2<0,∴f (-2)=10-2; 10-2

>0,

∴f (10-2

)=lg10-2

=-2.

【解题技巧点睛】求f(g(x))类型的函数值时,应遵循先内后外的原则,而对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性.

考点二 函数性质的基本应用

【例3】下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2-|x | 【答案】B

【解析】 A 选项中,函数y =x 3是奇函数;B 选项中,y =||x +1是偶函数,且在()0,+∞上是增函数;C 选项中,y =-x 2

+1是偶函数,但在()0,+∞上

是减函数;D 选项中,y =2-|x |=? ????

12|x |是偶函数,但在()0,+∞上是减函数.故

选B.

【例4】若函数f (x )=

x

2x +1 x -a

为奇函数,则a =( )

【解析】 法一:由已知得f (x )=x

2x +1 x -a

定义域关于原点对称,由

于该函数定义域为????

??x ?

??

x ≠-

1

2且x ≠a ,知a =1

2,故选A.

法二:∵f (x )是奇函数,∴f (-x )=-f (x ),又f (x )=x

2x 2

+ 1-2a x -a

-x 2x 2

- 1-2a x -a =-x

2x 2+ 1-2a x -a

,因函数的定义域内恒成立,可得

(12)12,120,a a a --=-∴-=a =1

2

.

【例5】函数1

1y x =-的图像与函数2sin y x π=(24x -≤≤)的图像所有交点的

横坐标之和等于( ). A .2 B .4

C .6

D .8

【解题技巧点睛】在解决与函数性质有关的问题中,如果结合函数的性质画出函数的简图,根据简图进一步研究函数的性质,就可以把抽象问题变得直观形象、复杂问题变得简单明了,对问题的解决有很大的帮助. (1)一般的解题步骤:利用函数的周期性把大数变小或小数变大,然后利用函数的奇偶性调整正负号,最后利用函数的单调性判断大小; (2)画函数草图的步骤:由已知条件确定特殊点的位置,然后利用单调性确定一段区间的图象,再利用奇偶性确定对称区间的图象,最后利用周期性确定整个定义域内的图象.

考点三 基本函数的性质与图像

【例6】已知324log 0.3

log 3.4

log 3.6

15

,5

,,5a b c ??

=== ?

??

则( ).

A .a b c >>

B .b a c >>

C .a c b >>

D .c a b >> 【答案】C

【解析】根据对数函数的运算性质可知:3

2210log log 3.4

log 3.6

3

5,5

,5

,a b c ===再由指

数函数

()5x f x =为单调递增函数,因为22log 3.6log 41<=.22log 3.4log 21>=,

3

310log log 313>=,且3221010log log log 3.433

<<,所以a c b >>. 【例7】 对实数a 和b ,定义运算“?”:a ?b =??

?

a ,a -

b ≤1,b ,a -b >1.

设函数f (x )

=(x 2-2)?(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )

【解析】本题考查二次函数的性质和图像。 f (x )

?????

x 2-2,x 2

-2-()x -x 2≤1,x -x 2,x 2-2-()x -x 2>1

?

????

x 2

-2,-1≤x ≤3

2,x -x 2

,x <-1,或x >32,

则f ()x 的图象如图:

∵y =f (x )-c 的图象与x 轴恰有两个公共点, ∴y =f (x )与y =c 的图象恰有两个公共点, 由图象知c ≤-2,或-1

.

考点四 函数图像的应用

【例8】 设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图像可能是( )

【答案】B

【解析】 由f (-x )=f (x )可知函数为偶函数,其图像关于y 轴对称,可以结合选项排除A 、C ,再利用f (x +2)=f (x ),可知函数为周期函数,且T =2,必满足f (4)=f (2),排除D ,故只能选B.

【例9】 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数

y =f (x )的图像与函数y =|lg x |的图像的交点共有( )

【解析】考查数形结合思想,在同一直角坐标系中作出两个函数的图像,故下图.容易判断出两函数图像的交点个数为10个

【解题技巧点睛】函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力.利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点。

考点五 与方程根的相关问题

【例10】设n N +∈,一元二次方程240x x n -+=有整数..

根的充要条件是 n = . 【答案】 3或4.

【解析】直接利用求根公式进行计算,然后用完全平方数、整除等进行判断计算.41642

n

x ±-=

24n =±-,因为x 是整数,即24n ±-为整数,所以4n

-为整数,且4n …,又因为n N +∈,取1,2,3,4n =,验证可知3,4n =符合题意;反

之3,4n =时,可推出一元二次方程240x x n -+=有整数..

根. 【例11】已知函数f (x )=??

?

2x ,x ≥2,

x -1 3

,x <2.

若关于x 的方程f (x )=k 有

两个不同的实根,则实数k 的取值范围是________. 【答案】(0,1) 【解析】2

()(2)f x x x

=

≥单调递减且值域为(0,1],3()(1)(2)f x x x =-<单调递增 且值域为(,1)-∞,函数f (x )的图象如图所示,故()f x k =有两个不同的实根,则实数

k 的取值范围是(0,1).

考点六 函数零点问题

【例12】在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) 【解析】 因为f ? ????14=e 14-2<0,f ? ????12=e 12-1>0,所以f ? ????14·f ? ??

??

12<0,

又因为函数y =e x 是单调增函数,y =4x -3也是单调增函数, 所以函数f (x )=e x +4x -3是单调增函数, 所以函数f (x )=e x +4x -3的零点在? ??

??

14,12内.

【例13】已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.

【解析】 本题考查对数函数的单调性与函数零点定理的应用.因为21>log a 2,b -3<1

f (2)·f (3)=(lo

g a 2+2-b )(log a 3+3-b )<0,所以函数

的零点在(2,3)上,所以n =2.

【例14】 函数f (x )=x -cos x 在[0,+∞)内( ) A .没有零点 B .有且仅有一个零点C .有且仅有两个零点 D .有无穷多个零点 【答案】B

【解析】 在同一个坐标系中作出y =x 与y =cos x 的图象如图,

由图象可得函数f (x )=x -cos x 在[0,+∞)上只有一个零点.

【解题技巧点睛】判断函数在某个区间上是否存在零点,要根据具体问题灵活处理,当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理进行判断;当用零点存在性定理也无法判断时可画出图象判断.

针对性训练

一.填空题部分。

1.“2a <-”是“函数()3f x a x =+在区间[1,2]-上存在零点”的_______条件。解析:()3f x a x =+在区间[1,2]-上存在零点,则(1)(2)0f f -<,即(3)(23)0

a a -+<,∴3a >或32a <-,∴“2a <-”是“3a >或3

2

a <-”的充分不必要条件,∴“2a <-”是“函数()3f x a x =+在区间[1,2]-上存在零点”的充分不必要条件.

2.若log 20(01)a a a <>≠且,则函数()log (1)a f x x =+的图像大致是

_______

解析: log 20(01),log 2log 1,0 1.a a a a a a <>≠∴<∴<< 且函数在定义域为减函数,将函数log log (1)a a y x x =+向左平移一个单位得,故答案为B 。

3.设若2

0lg ,0,()3,0,a

x x f x x t dt x >??

=?+≤???((1))1f f =,则a 的值是_________ 解析:230(1)lg10,(0)031, 1.a

f f t dt a a ===+==∴=?

4.实数0.2

220.2,log 0.2,2a b c ===的由小到大的关系是____________ 答案:b a c <<

解析:根据指数函数和

对数函数的性质,

2

0.22

log

0.200.21(2)b a c =<<=<<=。

5.函数()+22x f x x =-在定义域内零点的个数是_________

解析:在同一坐标系中画出函数|2|y x =+与2x y =的图像,可以看到2个函数的图像在第二象限有2个交点,在第一象限有1个交点,所以函数()+22x f x x =-在定义域内有3个零点。

6.若函数22()(sin cos )2cos f x x x x m =++-在0,2π??

????

上有零点,则m 的取值范围

为________

解析: 由函数22()(sin cos )2cos 1sin 2cos21f x x x x m x x m =++-=+++-

2sin(2)24x m π=++-得在0,2π??

????

上的最大值是22m +-,最小值是1m -

所以max min

()220

()10f x m f x m ?=+-≥??=-≤??,解得122m ≤≤+.

7.已知()f x 是奇函数,且(2)()f x f x -=,当[]2,3x ∈时,2()log (1)f x x =-,则当[]1,2x ∈时()f x =___________

解析: 由()f x 是奇函数,且(2)()f x f x -=,得(4)()f x f x +=,所以函数的周期4T =

又因为当[]2,3x ∈时,2()log (1)f x x =-,所以当[]2,1x ∈--时,2()log (3)f x x =+,因为函数()f x 是奇函数,所以当[]1,2x ∈时()()f x f x =--=2log (3)x --.

8.已知函数???<-≥=0,20,)(x x x e x f x 则关于x 的方程()[]0=+k x f f ,

给出下列四个命题:

①存在实数k ,使得方程恰有1个不同实根;②存在实数k ,使得方程恰有2个不同实根;③存在实数k ,使得方程恰有3个不同实根;④存在实数k ,使得方程恰有4个不同实根;其中假.命题的个数是 __________ 答案:2个

解析: 当0,(())(),x

x e x f f x f e e ≥==当20,(())(2),x x f f x f x e -<=-=

当0,x

e x y e ≥=是增函数,20,x x y e -<=是减函数,由()[]0=+k x

f f 得

(()),f f x k =-

方程(())f f x k =-解的个数即y k =-与(())y f f x =的图像交点的个数,由图像得当1,k e ≤-≤有1个解;当k e -≥时,有2解。

9.设()f x 是定义在R 上的增函数,且对于任意的x 都有(1)(1)0f x f x -++=

恒成立. 如果实数m n 、满足不等式组22

(623)(8)0

3f m m f n n m ?-++-

>?

,那么22m n +的取值范围是______________

解析:由(1)(1)0f x f x -++=得(1)(1)

f x f x -=-+,

又22

(623)(8)0f m m f n n -++-<,∴22

(623)[1(81)]

f m m f n n -+<-+--,∴222

(623)[1(81)](28)f m m f n n fn n -+<---=-+. ∵()f x 是R 上的增函数,∴2623m m -+<2

28n n

-+, ∴22

(3)(4)4

m n -+-< 又3m >,结合图象知22m n +为半圆22

(3)(4)4(3)

m n m -+-=>内的点到原点的距离,故22137mn <+<,∴22

1349.m n <+<

10.若(2)()

()x x m f x x

++=

为奇函数,则实数m = .

解析:

(12)(1)(12)(1)

(1)(1),,133, 2.11

m m f f m m m -+-+++-=-∴=-∴-=+∴=--

11.已知函数1

2log (),40,()2cos ,0.x x f x x x --≤

围是 __ _. 答案:[)2,-+∞

解析:12

40,(0,4],log ()[2,);02cos [2,2],x x x x x -≤<∴-∈-∈-+∞≤≤π,∴∈- 若

方程()f x a =有解,即函数的值域即为a 的范围,故实数a 的取值范围是[2,).-+∞ 12.函数224

log ([2,4])log y x x x

=+

∈的最大值为 . 解析: 22log ,24,1log 2,1 2.t x x x t =≤≤∴≤≤∴≤≤ 令因对号函数4

y t t

=+在区间[1,2]上单调递减,故当1t =时函数取得最大值为5.

13.若不等式210x kx k -+->对(1,2)x ∈恒成立,则实数k 的取值范围是 .

解析: 2

2

110,10,,12, 2.1x x kx k x k x k x

--+->-<∴<

+>∴≤- 且 14.设函数()1f x x α=+()α∈Q 的定义域为[][],,b a a b -- ,其中0a b <<.若函数()f x 在区间[],a b 上的最大值为6,最小值为3,则()f x 在区间[],b a --上的最大值与最小值的和为__ _. 答案: 5-或9

解析: 令2,α=2()1,f x x =+()f x 在区间[],a b 上的最大值为()6f b =,最小值为

()3f a =,因()f x 为偶函数,故()f x 在区间[],b a --上的最大值与最小值为6和

3,和为9;

令3,α=3()1f x x =+图象关于(0,1)点对称,设()f x 在区间[],b a --上的最大值m 与最小值为n ,则有63

1,1,4,1,22

m n m n ++==∴=-=-故 5.m n +=- 综上m+n=-5或9

八年级数学上册 一次函数解析式常见题型分析 人教新课标版

求一次函数解析式常见题型解析 一次函数解析式的求法在初中数学教学内容中占有举足轻重的作用,如何把这一部分内容学的扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学门有所帮助。 一:定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 ,故一次函数的解析式为 注意:利用定义求一次函数解析式时,要保证。如本例中应保证 二. 点斜型 例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。 解:一次函数的图像过点(2,-1) ,即 这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。 三. 两点型 已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为 由题意得 故这个一次函数的解析式为 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为 由图可知一次函数的图像过点(1,0)、(0,2) 有 故这个一次函数的解析式为 五. 斜截型

例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线:;:。当,时, 直线与直线平行,。 又直线在y轴上的截距为2, 故直线的解析式为 六. 平移型 例6. 把直线向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为,直线向下平移2个单位得到的直线 与直线平行 直线在y轴上的截距为,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得,即 故所求函数的解析式为() 注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

(完整版)一次函数题型总结归纳

a a t 精心整理 一次函数题型总结 函数定义 1、判断下列变化过程存在函数关系的是() A.是变量, B.人的身高与年龄 C.三角形的底边长与面积 y x ,x y 2±=A 、1B 、2C 、3D 、42、若函数y=(3-m)x m-9是正比例函数,则m=。 3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数(2)是正比 例函数 一次函数与坐标系 1.一次函数y=-2x+4的图象经过第象限,y 的值随x 的值增大而(增大或减少)

2.已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= . 3.已知k >0,b >0,则直线y=kx+b 不经过第 象限. 4、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. B. C. D. 1-14 1-4 1(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度 是多少? 4、东从A 地出发以某一速度向B 地走去,同时小明从B 地 出发以 另一速度向A 地而行,如图所示,图中的线段、B 地的 1y 距离(千米)与所用时间(小时)的关系。 2

a t s ⑵试求出A 、B 两地之间的距离。 函数图像的平移 1.把直线向上平移3个单位所得到的直线的函数解析式为 .13 2+=x y 2、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是()。 A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2) 的增大而,当. 函数图像与坐标轴围成的三角形的面积 1、函数y=-5x+2与x 轴的交点是与y 轴的交点是与两坐标轴围成的三角形面积是。 2.已知直线y =x +6与x 轴、y 轴围成一个三角形,则这个三角形面积为___。3、已知:在直角坐标系中,一次函数y=的图象分别与x 轴、y 轴相交于23

第一章集合与函数概念(教师用书)

第一章集合与函数概念 §1.1集合 1.1.1 集合的含义与表示(一) 1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力. 2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性. 1.元素与集合的概念 (1)把研究对象统称为元素,通常用小写拉丁字母表示. (2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母表示. 2.集合中元素的特性:确定性、互异性、无序性. 3.集合相等:只有构成两个集合的元素是一样的,才说这两个集合是相等的. 4.元素与集合的关系 (1)如果a是集合A的元素,就说a属于集合A,记作a∈A. (2)如果a不是集合A的元素,就说a不属于集合A,记作a A. 5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.

对点讲练 集合的概念 【例1】考查下列每组对象能否构成一个集合: (1)著名的数学家;(2)某校2007年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解; (5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体. 解(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(6)不能构成集合. 规律方法判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性. 变式迁移1 下列给出的对象中,能构成集合的是() A.高个子的人B.很大的数C.聪明的人D.小于3的实数 答案 D

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

一次函数知识点总结与常见题型

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯 一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =2 1-3x (5)y =x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值围是x ≥2的是( ) A .y B .y C .y D .y 函数y =x 的取值围是___________. 已知函数22 1+-=x y ,当11≤<-x 时,y 的取值围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线 y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1)解析式:y =kx (k 是常数,k ≠0) (2)必过点:(0,0)、(1,k ) (3)走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4)增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小

高三复习 高中数学复习讲义 第一课时函数概念及其性质

高中数学复习讲义 第一课时函数概念及其性质 第1课 函数的概念 【基础练习】 1. 设有函数组:①y x = ,y = y x = ,y = ;③y ,y = ;④1(0),1 (0), x y x >?=?-

(3) ()1f x x =+,(1,2]x ∈. 值域是(2,3]. 【范例解析】 例 1.设有函数组:①21 ()1 x f x x -=-,()1g x x =+; ②()f x = , ()g x = ③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有 . 例2.求下列函数的定义域:① 12y x =+- ② ()f x = 例3.求下列函数的值域: (1)242y x x =-+-,[0,3)x ∈; (2)2 2 1 x y x =+()x R ∈; (3 )y x =- 【反馈演练】 1.函数f (x )=x 21-的定义域是___________. 2.函数) 34(log 1 )(2 2-+-= x x x f 的定义域为_________________. 3. 函数2 1 ()1y x R x = ∈+的值域为________________. 4. 函数23y x =-+_____________. 5.函数)34(log 25.0x x y -= 的定义域为_____________________. 6.记函数f (x )=1 3 2++- x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ; (2) 若B ?A ,求实数a 的取值范围.

一次函数题型归纳解析

一次函数题型归纳解析 1.判断k 、b 的符号 在不作出函数图象的情况下,根据函数图象经过的象限,可判断出k 、b 的符号,反之亦然. 例1 正比例函数或一次函数(y=kx+b)的图象如图所示,则k 、b 的符号 ( ) A 、k <0,b >0. B 、k >0,b >0. C 、k <0,b <0. D 、k >0,b <0. 【评析】 注意到图象自左向右上升,函数值y 随着x 的增大而增大,图象自左向右下降,函数值y 随着x 的增大而减小;直线与y 轴正方向相交,k 为正,直线与y 轴的负方向 相交,k 为负.反之亦然. 2.判断直线经过的象限 例2下列图象中,表示直线y=x-1的是 ( ) (A)11O y x (B)-11 O y x (C)-1-1O y x (D)1-1O y x 3.确定函数的解析式 此类问题主要是考查考生利用待定系数法来求出有关函数一般解析式中的未知系数,从而确定该函数解析式的能力. 例3 某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下: 印数x (册) 5000 8000 10000 15000 …… 成本y (元) 28500 36000 41000 53500 …… (1)经过对上表中数据的探究,发现这种读物的投入成本y (元)是印数x (册)的一次函数,求这个一次函数的解析式(不要求写出x 的取值范围);

(2)如果出版社投入成本48000元,那么能印该读物多少册?分析(1)设所求一次函数的解析式为y=kx+b, 则 500028500, 800036000. k b k b += ? ? += ? 解得k=5 2 ,b=16000。 ∴所求的函数关系式为y=5 2 x+16000。 (2)∵48000=5 2 x+16000。 ∴x=12800。 答:能印该读物12800册. 评析此题主要考查待定系数法以及解方程(组)的运算能力.解题时应根据函数图象上的点的坐标与函数解析式之间的关系列出方程或方程组,然后再求解. 4.图表信息 例4某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如右下图所示,其中BA是线段,且BA∥x轴,AC是射线。 (1)当x≥30,求y与x之间的函数关系式; (2)若小李4月份上网20小时,他应付多少元的上网费用? (3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少? 分析:观察图象,求出函数解析式,确定函数的值。 解:(1)当x≥30时,设函数关系式为y=kx+b 则 3060 4090 k b k b += ? ? +=? 解得 3 30 k b = ? ? =- ? 所以y=3x-30。 (2)4月份上网20小时,应付上网费60元。 (3) 由75=3x-30解得x=35,所以5月份上网35个小时。 A C B 60 90 30 40 X小时 Y(元)

(完整版)一次函数解析式练习题

一次函数解析式练习题 一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。其中求一次函数解析式就是一类常见题型。 例1. 已知函数y m x m =-+-()3328是一次函数,求其解析式。 例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。 例3. 已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),求这个函数的解析式。 例4. 已知某个一次函数的图像如图所示,求函数的解析式。 例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为___________。 例6. 把直线y x =+21向下平移2个单位得到的图像解析式为___________。 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。 例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,求此直线的解析式。

练习题: 1. 已知直线y=3x -2, 当x=1时,y= 2. 已知直线经过点A (2,3),B (-1,-3),则直线解析式为________________ 3. 点(-1,2)在直线y=2x +4上吗? (填在或不在) 4. 当m 时,函数y=(m-2) +5是一次函数,此时函数解析式为 。 5. 已知直线y=3x+b 与两坐标轴所围成的三角形的面积为6,则函数的解析式为 . 6. 已知变量y 和x 成正比例,且x=2时,y=-2 1,则y 和x 的函数关系式为 。 7. 直线y=kx +2与x 轴交于点(-1,0),则k= 。 8. 若直线y=kx +b 平行直线y=3x +4,且过点(1,-2),则k= . 9. 已知A(-1,2), B(1,-1), C(5,1), D(2,4), E(2,2),其中在直线y=-x+6上的点有_________,在直 线y=3x-4上的点有_______ 10. 某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费2.4元, 以后每超过1分钟加收1元,若此人第一次通话t 分钟(3≤t ≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 . 11. 某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表 由上表得y 与x 之间的关系式是 12. 已知:一次函数的图象与正比例函数y=-3 2x 平行,且通过点(0,4), (1)求一次函数的解析式. (2)若点M(-8,m)和N(n,5)在一次函数的图象上,求m,n 的值 13. 已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= 12 x 的图象相交于点(2,a),求 (1)a 、k 、b 的值 (2)这两个函数图象与x 轴所围成的三角形面积. 32 m x

函数的概念与表示复习讲义与习题.doc

第四讲函数的概念与表示 一.知识归纳: 1.映射 ( 1)映射:设 A 、 B 是两个集合,如果按照某种映射法则f,对于集合 A 中的任一个 元素,在集合 B 中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及 A到 B 的对应法则 f )叫做集合 A 到集合 B 的映射,记作 f : A→B。 ( 2)象与原象:如果给定一个从集合 A 到集合 B 的映射,那么集合 A 中的元素 a 对应的 B 中的元素 b 叫做 a 的象, a 叫做 b 的原象。 注意:( 1)对映射定义的理解。( 2)判断一个对应是映射的方法。 2.函数 ( 1)函数的定义 ①原始定义:设在某变化过程中有两个变量x、y,如果对于 x 在某一范围内的每一个确定的值, y 都有唯一确定的值与它对应,那么就称y 是 x 的函数, x 叫作自变量。 ②近代定义:设 A 、 B 都是非空的数的集合,f: x→y是从 A 到 B 的一个对应法则,那么从 A 到 B 的映射 f : A→B就叫做函数,记作y=f(x) ,其中 x∈ A,y ∈ B,原象集合 A 叫做函数的定义域,象集合 C 叫做函数的值域。 注意:①C B; ② A,B,C 均非空 ( 2)构成函数概念的三要素:①定义域②对应法则③值域 3.函数的表示方法:①解析法②列表法③图象法 注意:强调分段函数与复合函数的表示形式。 二.例题讲解: 【例 1】下列各组函数中,表示相同函数的是() (A) f(x)=lnx 2,g(x)=2lnx (B)f(x)= a log a x (a>0 且 a≠1),g(x)=x (C) f(x)= 1 x 2 , g(x)=1 - |x| (x ∈[ - 1,1]) (D) f(x)= log a a x (a>0 且 a≠1),g(x)= 3 x3 解答:选D 点评:判断两个函数是否相同主要是从定义域、对应法则两个方面加以分析。 变式:下列各对函数中,相同的是( D ) (A) f(x)= x 2, g(x)=x (B)f(x)=lgx 2 ,g(x)=2lgx (C)f(x)= lg x 1 , g(x)=lg(x - 1)- lg(x+1) (D) f(x)= 1 u 1 v 1 , g(x)= v x 1 u 1 【例 2】( 1)集合 A={3,4},B={5,6,7} ,那么可以建立从 A 到 B 的映射的个数是;从B 到 A 的映射的个数是。 ( 2)设集合 A 和 B 都是自然数集合N,映射 f:A→B把集合 A 中的元素 n 映射到集 合 B 中的元素2n+n,则在映射 f 下,像20 的原象是。 解答:( 1)从 A 到 B 可分两步进行,第一步 A 中的元素 3 可有 3 种对应方法( 5 或 6 精选

集合与函数概念

集合与函数概念 一.课标要求: 本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁 性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交 流的能力. 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型 来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展 学生对变量数学的认识. 1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号. 2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述 不同的具体问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力. 4、能在具体情境中,了解全集与空集的含义. 5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集,培养学生从 具体到抽象的思维能力. 6.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集. 7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 8.学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对 应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表 示法. 9.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当 地进行选择;会用描点法画一些简单函数的图象. 10.通过具体实例,了解简单的分段函数,并能简单应用. 11.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶 性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 12.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.

一次函数知识点及常见题型

一次函数知识点及常见类型 1、变量:在一个变化过程中不断发生变化的量;常量:在一个变化过程中保持不变的量。 例:在匀速运动公式vt s=中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是________. 2、函数:一般地,设在一个变化过程中有两个变量x和y,如果对于x允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么我们就说x是自变量,(y称为因变量,)称y是x的函数,如果x=a时,y=b,那么b叫做当自变量的值为a时函数值。 注意:函数不是数,它是指某一变化过程中两个变量之间的关系。 判断x是否为y的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应 例:下列函数(1)y=πx (2)y=2x-1 (3)y=1 x(4)y=2 -1-3x (5)y=x2-1中是一次函 数的有()(A)4个(B)3个(C)2个(D)1个3、自变量的取范围:确定自变量的取范的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,自变量的取范围还要和实际情况相符合,使之有意义。 例:1、下列函数中,自变量x的取值范围是x≥2的是() A. B. y=C. D. 2 、函数y=中的自变量x的取值范围是. 4、函数的图象 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵

坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 5、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。 6、描点法画函数图象的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 注意:根据“两点确定一条直线”的道理(也叫 两点法)。 一般的,一次函数y=kx+b(k≠0) 的图象过(0,b )和(-k b ,0)两点画直线即可;正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k )两点。 7、函数的表示方法 1.列表法 2.图象法 3.解析式法 例:1、东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是______________. 2、平行四边形相邻的两边长为x 、y ,周长是30,则y 与x 的函数关系式是__________. 3、小亮从家步行到公交车站台,等公交车去学校. 图中的 折线表示小亮的行程s (km)与所花时间t (min)之间的函 数关系. 下列说法错误.. 的是 ( ) A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 8、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数 叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k ≠0) (第3题图)

高一数学必修①第一章_集合与函数概念讲义

心智家三优教育高一特训营数学教学进度表

¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、 集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. ¤知识要点: 1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性. 2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ???,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集. 3. 通常用大写拉丁字母,,,A B C ???表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或 N +,整数集Z ,有理数集Q ,实数集R . 4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、?表示,例如3N ∈, 2N -?. ¤例题精讲: 【例1】试分别用列举法和描述法表示下列集合: (1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数. 【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B . 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2 y x =的自变量的值组成的集合. *【例4】已知集合2{| 1}2 x a A a x +==-有唯一实数解,试用列举法表示集合A .

数学必修1讲义

第一章集合与函数概念 一、集合有关概念 1、集合得含义: 一般地,我们把研究对象统称为元素,把一些元素组成得总体叫做集合(简称为集)。 2、集合得中元素得三个特性: (1)元素得确定性:对于一个给定得集合,集合中得元素就是确定得,任何一个对象或者就是或者不就是这个给定得集合得元素。 (2)元素得互异性:任何一个给定得集合中,任何两个元素都就是不同得对象,相同得对象归入一个集合时,仅算一个元素。 (3)元素得无序性:集合中得元素就是平等得,没有先后顺序,因此判定两个集合就是否一样,仅需比较它们得元素就是否一样,不需考查排列顺序就是否一样。 3、元素与集合得关系:2hf7sHC。51kBEbP。 (1)如果 a 就是集合 A 得元素,就说 a 属于A,记作: (2)如果 a 不就是集合 A 得元素,就说 a 不属于A,记作: 4、集合得表示: *用拉丁字母表示集合:A={我校得篮球队员},B={1,2,3,4,5} *常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R (1)列举法:把集合中得元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2} aypYuMZ。0DeBxzM。 (2) 图示法:Venn图 (3) 描述法(数学式子描述与语言描述):把集合中得元素得公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素得一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有得共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形}90qy1aJ。2fZxY1j。 5、集合得分类: (1)有限集含有有限个元素得集合 (2)无限集含有无限个元素得集合 (3)空集不含任何元素得集合例:{x|x2=-5} 二、集合间得基本关系 1、包含关系 (1)子集:真子集或相等 (2)真子集 2、相等关系:元素相同 两个结论:任何一个集合就是它本身得子集,即A A 对于集合A,B,C,如果 A B, B C ,那么 A C 3、空集 结论:空集就是任何集合得子集,就是任何非空集合得真子集 *集合子集公式:含n个元素得集合子集有2?个,真子集有2?-1个 三、集合得基本运算 1、并集 2、交集 *性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∩B=A, A∩B=B AUA=A, AUΦ=A,AUB=BUA ,AUB包含A, AUB包含B 3、全集与补集 *性质:CU(CUA)=A,(CUA)∩A=Φ,(CUA)∪A=U,(CuA)∩(CuB)= Cu(AUB),(CuA) U (CuB)= Cu(A∩B)al5t6aw。eN17HuK。 选择补充:集合中元素得个数: 四、函数有关概念

最新人教版高中数学必修一--第一章-集合与函数概念--知识点总结

人教版高中数学必修一第一章函数与集合 概念知识点总结 第一章集合与函数概念 一、集合有关概念: 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: (1)元素的确定性;(2)元素的互异性;(3)元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ …}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 (Ⅰ)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 (Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(文氏图): 4、常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 5、“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a ∈A ,相反,a不属于集合A 记作a?A 6、集合的分类: 1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合 二、集合间的基本关系 1.“包含”关系———子集 对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说两集合有包含关系,称集合A为集合B的子集,记作A?B

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

相关主题