搜档网
当前位置:搜档网 › 第三章 三角恒等变形-3(学生版)

第三章 三角恒等变形-3(学生版)

第三章 三角恒等变形-3(学生版)
第三章 三角恒等变形-3(学生版)

常见的三角恒等式

常见的三角恒等式及其证明 设A,B,C是三角形的三个内角 (1) tanA+tanB+tanC=tanAtanBtanC 证明: tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tan(π-c)(1-tanAtanB)+tanC=-ta nC(1-tanAtanB)+tanC=tanAtanBtanC (2) cotAcotB+cotBcotC+cotCcotA=1 证明: tanA+tanB+tanC=tanAtanBtanC cotX*tanX=1 tanA*cotAcotBcotC+tanB*cotAcotBcotC+tanC*cotAcotBcotC=tanAtanBtanC* cotAcotBcotC cotAcotB+cotBcotC+cotCcotA=1 (3) (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 证明: (cosA)^2+(cosB)^2+x^2+2cosAcosBx=1 x^2+2cosAcosBx+(cosA)^2+(cosB)^2-1=0 x={-2cosAcosB+-√[(2cosAcosB)^2-4((cosA)^2+(cosB)^2-1)]}/2 x=-cosAcosB+-√[(cosAcosB)^2-((cosA)^2+(cosB)^2-1)] x=-cosAcosB+-√[1-(cosA)^2][1-(cosB)^2] x=-cosAcosB+-√[(sinA)^2(sinB)^2] x=-cosAcosB+-sinAsinB x=-cos(A+B)或x=-cos(A-B) x=cosC或x=-cos(A-B) 所以 cosC是方程的一个根 所以 (cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1 (4) cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) 证明: cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2) cos(180-B-C)+cosB+cosC=1+2sin(A/2)[2sin(B/2)sin(C/2)] cos(180-B-C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)] -cos(B+C)+cosB+cosC=1+2cos(B/2+C/2)[2sin(B/2)sin(C/2)]

三角函数恒等变换(整理)

高考数学(文)难题专项训练:三角函数及三角恒等变换 1.已知O 是锐角三角形△ABC 的外接圆的圆心,且θ=∠A 若 AO m AC B C AB C B 2sin cos sin cos =+则=m ( ) A .θsin B. θcos C. θtan D. 不能确定 2.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ?∈,有 D l x ∈+,且)()(x f l x f ≥+,则称)(x f 为M 上的高调函数. 现给出下列命题: ①函数x x f -=2 )(为R 上的1高调函数; ②函数x x f 2sin )(=为R 上的高调函数; ③如果定义域为),1[+∞-的函数2 )(x x f =为),1[+∞-上m 高调函数,那么实数m 的取值范围是),2[+∞; ④函数)12lg()(+-=x x f 为),1[+∞上的2高调函数. 其中真命题的个数为( ) A .0 B .1 C .2 D .3 3. 已知)(x f 是定义在)3,3(-上的奇函数,当30<

4. 在ABC ?中,角C B A ,,所对的边分别为c b a ,,且c b a b 2sin 2sin log log ,22<>, bc a c b 3222+=+,若0

第三章:三角恒等变换中角变换的技巧.

1 三角恒等变换中角变换的技巧 一、利用条件中的角表示目标中的角 例1 设a B为锐角,且满足cos a=, tan (a— 3= —,求cos B的值. 二、利用目标中的角表示条件中的角 例2 设a为第四象限的角,若=,贝U tan 2 a=___________________ . 三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin=, 0

五、分子、分母同乘以2n sin a求COS acos 2 a cos 4 a ?os 8a??C0S 2n—1 a 的值 例 5 求值:sin 10 sin 30 sin 50 sin 70 ° 4聚焦三角函数最值的求解策略 一、化为y = Asin( 3x+(j)+ B的形式求解 例1求函数f(x =的最值. 例2 求函数y = sin2x + 2sin xcos x + 3cos2x的最小值,并写出y取最小值时x的集合. 二、利用正、余弦函数的有界性求解 例3求函数y =的值域. 例4求函数y =的值域. 三、转化为一元二次函数在某确定区间上求最值 例5 设关于x的函数y= cos 2x —2acos x—2a的最小值为f(a,写出f(a的表达式. 例 6 试求函数y = sin x + cos x + 2sin xcos x + 2 的最值. 四、利用函数的单调性求解 例7求函数y =的最值. 例8 在Rt A ABC内有一内接正方形,它的一条边在斜边BC上,设AB = a, / ABC = 0,△ ABC的面积为P,正方形面积为Q.求的最小值. 易错问题纠错 一、求角时选择三角函数类型不当而致错例1 已知sin话,sin护,a和B都是锐角,求a+ B的值.

最常用三角公式(精心简洁整理,可直接打印)

最常用三角公式 1. 诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) = cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = - sin(a) cos(π + a) = - cos(a) 2. 两角和与差的三角函数 sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b) tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式 sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) - sin(b) = 2cos[(a + b)/2]sin[(a - b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]

三角函数及恒等变换高考题大全

三角函数题型分类总结 一.求值 1、sin330?= tan690° = o 585sin = 2、(1)(07全国Ⅰ) α是第四象限角,12 cos 13 α= ,则sin α= (2)(09北京文)若4 sin ,tan 05 θθ=->,则cos θ= . (3)(09全国卷Ⅱ文)已知△ABC 中,12 cot 5 A =- ,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) (07陕西) 已知sin ,5 α= 则44sin cos αα-= . (2)(04全国文)设(0,)2 π α∈,若3sin 5α= )4 π α+= . (3)(06福建)已知3( ,),sin ,25π απα∈=则tan()4 π α+= 4(07重庆)下列各式中,值为 2 3 的是( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5. (1)(07福建) sin15cos75cos15sin105+o o o o = (2)(06陕西)cos 43cos77sin 43cos167o o o o += 。 (3)sin163sin 223sin 253sin 313+=o o o o 。 6.(1) 若sin θ+cos θ= 1 5 ,则sin 2θ= (2)已知3 sin()45 x π-=,则sin 2x 的值为 (3) 若2tan =α ,则 α αα αcos sin cos sin -+= 7. (08北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 8.(07浙江) 已知cos( )2 π ?+= ,且||2 π ?<,则tan ?= 9. 若 cos 2π2sin 4αα=- ?? - ? ? ?cos sin αα+=

三角函数恒等变形公式

三角函数恒等变形公式-CAL-FENGHAI.-(YICAI)-Company One1

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 辅助角公式: Asi nα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中 sint=B/(A2+B2)^(1/2) cost=A/(A2+B2)^(1/2) tant=B/A Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B 倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan(2α)=2tanα/[1-tan2(α)] 三倍角公式: sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) 半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 万能公式: sinα=2tan(α/2)/[1+tan2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

第三章 三角恒等变换(教案)

三角恒等变换 知识点精讲: 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=. ⑵ 2222cos2cos sin 2cos 112sin ααααα =-=-=-( 2cos 21 cos 2 αα+= , 21cos 2sin 2 α α-= ). ⑶22tan tan 21tan α αα = -. 3、()sin cos ααα?A +B = +,其中tan ?B = A . 经典例题: 例 1.已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2 α 1-tan α的值.

例2.设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π 6)的最值. 例3.已知tan 2 θ=2tan 2 α+1,求证:cos2θ+sin 2 α=0. 例4.已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),c =( 3-1),其中x ∈R . (1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值. 例5.设函数f (x )=22cos(2x +π 4)+sin 2 x

最全面高中数学三角恒等式变形解题常用方法2021(完整版)

高中数学三角恒等式变形解题常用方法 一.知识分析 1. 三角函数恒等变形公式 (1)两角和与差公式 (2)二倍角公式 (3)三倍角公式 (4)半角公式 (5)万能公式 ,, (6)积化和差 , , ,

(7)和差化积 , , ,2.网络结构

3. 基础知识疑点辨析 (1)正弦、余弦的和差角公式能否统一成一个三角公式? 实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。另外,公式虽然形式不同,结构不同,但本质相同: 。

(2)怎样正确理解正切的和差角公式? 正确理解正切的和差角公式需要把握以下三点: ①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。 ②公式都适用于为任意角,但运用公式时,必须限定,都不等于。 ③用代替,可把转化为,其限制条件同②。 (3)正弦、余弦、正切的和差角公式有哪些应用? ①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。 ②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。 ③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函 数式,要注意公式可以正用,逆用和变用。运用这些公式可求得简单三角函数式的最大值或最 小值。 (4)利用单角的三角函数表示半角的三角函数时应注意什么? 先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,, 分别叫做正弦、余弦、正切的半角公式。公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。另外,容易 证明。 4. 三角函数变换的方法总结 三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三 角变换的解题方法与技巧,而三角变换主要为三角恒等变换。三角恒等变换在整个初等数学中

三角函数恒等变换

§6.3 两 角 和 与 差 的 三 角 函 数 【复习目标】 1.掌握两角和与差的三角函数公式,掌握二倍角公式; 2.能正确地运用三角函数的有关公式进行三角函数式的求值. 3.能正确地运用三角公式进行三角函数式的化简与恒等式证明. 【双基诊断】 (以下巩固公式) 1、163°223°253°313°等于 ( ) A.-2 1 B.2 1 C.- 2 3 D. 2 3 2、在△中,已知2,那么△一定是 ( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形 3、??-?70sin 20sin 10cos 2的值是 ( ) A.2 1 B. 2 3 C. 3 D.2 4、已知α-β=2 1,α-β=3 1,则(α-β).

5、已知5 3sin ),,2 (=∈αππα,则=+)4 tan(πα 。 6、若 t =+)sin(απ,其中α是第二象限的角,则 =-)cos(απ 。 7、化简 1tan151tan15 +-等于 ( ) ()A () B () C 3 () D 1 8、(1tan 20)(1tan 21)(1tan 24)(1tan 25)++++= ( ) ()A 2 ()B 4 ()C 8 ()D 16 9、已知α和(4 π-α)是方程2 0的两个根,则a 、b 、c 的关系是 ( ) B.2 10、0015tan 75tan += 。 11、设14°14°,16°16°, 6 6,则a 、b 、c 的大小关系是 ( ) <b <c <c <b <c <a <a <c 12、△中,若2a ,60°,则.

13、f (x )= x x x x cos sin 1cos sin ++的值域为 ( ) A.(-3 -1,-1)∪(-1, 3 -1) B. (21 3-- ,2 13-) C.[2 1 2--,-1]∪(-1, 2 12-) D. [21 2-- ,2 12-] 14、已知∈(0,2 π),β∈(2 π,π),(α+β)=65 33,β=- 13 5 ,则α. 15、下列各式中,值为2 1的是 ( ) 15°15° B.2 2 12 π- 1 C. 2 30cos 1? + D. ? -?5.22tan 15.22tan 2 16、已知2θ 2θ3 32,那么θ的值为,2θ的值为. 17、=000080cos 60cos 40cos 20cos 。

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

3-2-2 三角恒等式的应用

能 力 提 升 一、选择题 1.函数y =sin x 1+cos x 的周期等于( ) A.π2 B .π C .2π D .3π [答案] C [解析] y =2sin x 2cos x 2 2cos 2x 2=tan x 2,T =π 1 2=2π. 2.函数y =1 2sin2x +sin 2x 的值域是( ) A.??????-12,32 B.???? ??-32,12 C.??????-22+12,22+12 D.? ????? -22-12,22-12 [答案] C [解析] ∵y =12sin2x +sin 2x =12sin2x +1-cos2x 2=12+22sin ? ? ? ??2x -π4, ∴值域为??????12 -22,12+22. 3.已知函数f (x )=sin x +a cos x 的图象的一条对称轴是x =5π 3,则

函数g (x )=a sin x +cos x 的最大值是( ) A.223 B.23 3 C.43 D.263 [答案] B [解析] 由于函数f (x )的图象关于x =5π 3对称, 则f (0)=f ? ?? ??10π3,∴a =-32-a 2, ∴a =-3 3, ∴g (x )=-3 3sin x +cos x =233sin ? ????x +2π3, ∴g (x )max =23 3. 4.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin(ωx +π 4)的一个单调递增区间是( ) A .[-π2,π 2] B .[5π4,9π4] C .[-π4,3π4] D .[π4,5π4] [答案] B [解析] y =cos 2ωx -sin 2ωx =cos2ωx (ω>0), 因为函数的最小正周期为π,故 2π 2ω=π,所以ω=1.则

三角函数恒等变换

三角函数恒等变换 一、三角函数的诱导公式 1、下列各角的终边与角α的终边的关系 角 2k π+α(k ∈Z) π+α -α 图示 与α角终边的关系 相同 关于原点对称 关于x 轴对称 角 π-α 2π -α 2 π +α 图示 与α角终边的关系 关于y 轴对称 关于直线y=x 对称 2、六组诱导公式 组数 一 二 三 四 五 六 角 2k π+α (k ∈Z) π+α -α π-α 2 π -α 2 π +α 正弦 sin α -sin α -sin α sin α cos α cos α 余弦 cos α - cos α cos α - cos α sin α -sin α 正切 tan α tan α - tan α - tan α 口诀 函数名不变 符号看象限 函数名改变 符号看象限 注:诱导公式可概括为的各三角函数值的化简公式。记忆规律是:奇变偶不变,

符号看象限。其中的奇、偶是指的奇数倍和偶数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号。 二、两角和与差的正弦、余弦和正切公式 1、两角和与差的正弦、余弦和正切公式 2、二倍角的正弦、余弦、正切公式 . sinα= 2 2tan 2 1tan 2 α α + , cosα= 2 2 1tan 2 1tan 2 α α - + 3、形如asinα+bcosα的化简 asinα+bcosα=22 a b +sin(α+β).其中cosβ= 22 a a b + ,sinβ= 22 b a b +三、简单的三角恒等变换

三角函数恒等变形公式

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos( a + 3)=cos a ? cos 3 -sin a ?sin 3 cos( a - 3)=cos a ? cos 3 +sin a ?sin 3 sin( a ±3 )=sin a ? cos 3 ±cos a ? sin 3 tan( a + 3)=(tan a +tan 3 )/(1-tan a ? tan 3 ) tan( a - 3)=(tan a -tan 3 )/(1+tan a ? tan 3 ) 三角和的三角函数: sin( a + 3 +Y )=sin a ? cos 3 ? cos 丫+cos a ? sin 3 ? cos 丫+cos a ? cos 3 ? sin 丫-sin a ? sin 3 ? sin 丫cos( a + 3 + Y )=cos a ? cos 3 ? cos 丫-cos a ? sin 3 ? sin Y -sin a ? cos 3 ? sin 丫-sin a ? sin 3 ? cos 丫 tan( a + 3 + Y )=(tan a +tan 3 +tan 丫-tan a ?tan 3 ? tan 丫)/(1-tan a ? tan 3 -tan 3 ? tan 丫-tan 丫? tan a ) 辅助角公式: Asin a +Bcos a =(A2+B2)A( 1/2)sin( a +t),其中 si nt=B/(A2+B2)A(1/2) cost=A/(A2+B2)A(1/2) tan t=B/A As in a -Bcos a =(A2+B2)A(1/2)cos( a -t) , tan t=A/B 倍角公式: sin (2 a )=2sin a? cos a :=2/(tan a +cot a ) cos(2 a )=cos2( a )- sin2( a )=2cos2( a )-仁1- 2sin2( a ) tan (2 a )=2tan a/[1- tan2( a )] 三倍角公式: sin (3 a )=3sin a-4sin3( a )=4sin a-sin(60+ a )sin(60- a ) cos(3 a )=4cos3( a )-3cos a =4cos a-cos(60+ a)cos(60- a ) tan(3 a )=tan a ? tan( n /3+a) ? tan( n /3-a) 半角公式: Sin( a /2)= ±V((1 -cos a )/2) cos( a /2)= ±V ((1+cos a )/2) tan( a /2)= ±V ((1 -cos a )/(1+cos a ))=sin a /(1+cos a )=(1-cos a )/sin a 降幕公式 sin2( a )=(1-cos(2 a ))/2=versin(2 a )/2 cos2( a )=(1+cos(2 a ))/2=covers(2 a )/2 tan2( a )=(1-cos(2 a ))/(1+cos(2 a )) 万能公式: sin a =2tan( a /2)/[1+tan2( a /2)] cos a =[1- tan2( a /2)]/[1+tan2( a /2)] tan a =2tan( a /2)/[1- tan2( a /2)] 积化和差公式:

新编人教A版高中数学必修4第三章三角恒等变换导学案

第三章 三角恒等变换 1.三角恒等变换中角的变换的技巧 三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角 例1.已知cos ? ????π6+α=33,求cos ? ??? ?5π6-α的值. 分析.将π6+α看作一个整体,观察π6+α与5π 6 -α的关系. 解.∵? ????π6+α+? ?? ? ?5π6-α=π, ∴ 5π6-α=π-? ?? ??π6 +α. ∴cos ? ????5π6-α=cos ???? ? ?π-? ????π6+α =-cos ? ????π6+α=-33,即cos ? ?? ??5π 6-α =-33. 二、利用目标中的角表示条件中的角 例 2.设 α 为第四象限角,若sin 3α sin α =13 5 ,则tan 2α= _______________________________. 分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=13 5中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α. 解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin α sin α =2cos 2 α+cos 2α=135 . ∵2cos 2 α+cos 2α=1+2cos 2α=135.∴cos 2α=45. ∵α为第四象限角,∴2k π+3π 2<α<2k π+2π(k ∈Z ), ∴4k π+3π<2α<4k π+4π(k ∈Z ),

第10讲 三角恒等式一(数学竞赛)

第10讲 三角恒等式与三角不等式(一) 【赛点突破】 1. 诱导公式:奇变偶不变,符号看象限。 2. 同角函数基本关系:平方关系,倒数关系,商关系。 3. 三角公式:和差倍半,和差化积,积化和差。 【范例解密】 例1若x 是锐角,证明:(1)sin tan x x x <<;(2) sin tan 2 x x x +>。 分析与解:(1)如图,在单位圆中, OAB OAB OBC S S S ??<<扇形,即sin tan x x x <<; (2)224tan tan 2tan sin tan 22 221tan 1tan 1tan 222 x x x x x x x x +=+= +-- 2tan 222 x x x >>?=。 注:(2)的变形值得回味。 例2 2tan x =-,求x 的取值范围。 解:原式左边= 1sin 1sin 2sin cos cos cos x x x x x x -+--=,故cos 0x >或者sin 0x =,则 22,22 k x k k Z π π ππ- <<+ ∈或者,x k k Z π=∈。 注:本题非常容易漏解,考查思维的严谨性。 例3 求15 ()()44f x x = ≤≤的最小值。 分析与解:sin()2 ()x f x π π-+=54x =取得最大值,分子当54x =取得最小值,故5 4 x = 原式取得最小值。 注:解决问题的思维值得借鉴。 例4求 1 tan10cos50 +的值。

分析与解: 1cos802cos 40cos80cos402cos60cos 20 sin40sin80sin80sin80 ++ += = 2cos30cos10 3 sin80 ==。 注;tan10cot80 =是一个很好的变形,另外2cos40 cos802cos(12080) + =- cos802sin120sin80 +=是一个更启发思路的方法。 例5()sin2)sin()23,[0,] 42 f x x x a x ππ =-+++∈,若 () cos() 4 f x x π > - 恒成立,求a的取值范围。 分析与解:设sin cos x x t +=∈,则2 sin21 x t=-,原不等式化为 2 4 (2)22 t a t a t -+++>,即 2 (2)()0 t t a t -+-<,故 2 a t t >+恒成立,则3 a>。注:其中的三角换元是常用的重要方法,高次方程的分解因式是稍高的技巧。例6ABC ?中,求cos cos cos A B C ++的最大值。 分析与解:原式2 2cos cos cos2sin12sin 2222 A B A B C C C +- =+≤+-= 2 13 2(sin) 222 C --+,故当 3 A B C π ===时原式的最大值是 3 2 。 注(1)如果求cos cos cos A B C ++的值域呢? (2)3 cos cos cos cos2cos2cos 322 C A B A B C π π+ + +++≤+≤ 3 3 4cos 42 A B C π +++ =是很好的方法,由此如何解决sin sin sin A B C ++的最值问题,并和其他的方法比较。 例7,a b是正实数,且 sin cos8 55tan 15 cos sin 55 a b a b ππ π ππ + = - ,求 b a 的值。 分析与解:设tan, b x x a =是锐角,则 tan tan8 5tan 15 1tan tan 5 x x π π π + = - ,即 8 tan()tan 515 x ππ +=, 故 8 , 5153 x x πππ +==, b a = 注:本解法比较灵巧,还有多种基本的方法,请自己探索。

三角函数恒等变换含答案及高考题

三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=2 2 b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan == x x x ,又sin 2x +cos 2x =1, 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=?? ?????==x x x x 2.求 ) 330cos()150sin()690tan()480sin()210cos()120tan(ο ο ο οοο----的值. 解:原式 ) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o οοοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3.若 ,2cos sin cos sin =+-x x x x ,求sin x cos x 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ), 得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得 ,,?????? ?=-=?? ? ????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =103 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以sin x -cos x =2(sin x +cos x ),

三角函数恒等变换练习题与答案详解

两角和与差的正弦、余弦、正切 1.利用两角和与差的正弦、余弦、正切公式进行三角变换; 2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键. 知识点回顾 1. 两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β 1+tan αtan β (T α-β) tan(α+β)=tan α+tan β 1-tan αtan β (T α+β) 2. 二倍角公式 sin 2α=ααcos sin 2; cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α 1-tan 2α . 3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如 T α±β可变形为 tan α±tan β=tan(α±β)(1?tan_αtan_β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan β tan α-β-1. 4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)= a 2+ b 2sin(α+φ)或f (α)=a 2+b 2cos(α -φ),其中φ可由a ,b 的值唯一确定.

三角恒等变换 - 最全的总结· 学生版

三角恒等变换---完整版 三角函数------三角恒等变换公式: 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。(3)结合同角三角函数,化为二次函数求最值 (4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用 两角和与差的三角函数关系 sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos β sin α·sin β βαβαβαtan tan 1tan tan )tan(?±=± 倍角公式 sin2α=2sin α·cos α cos2α=cos 2α-sin 2α =2cos 2α-1=1-2sin 2α α α α2tan 1tan 22tan -= 半角公式 2 cos 12 sin αα -± =,2 cos 12 cos αα +± = α αα cos 1cos 12tan +-± ==αααα cos 1sin sin cos 1+=- 升幂公式 1+cos α=2 cos 22 α 1-cos α=2 sin 22 α 1±sin α=(2 cos 2 sin α α ±)2 1=sin 2α+ cos 2α sin α=2 cos 2 sin 2α α 降幂公式 sin 2α22cos 1α-= cos 2α22cos 1α+= sin 2α+ cos 2 α=1 sin α·cos α=α2sin 2 1 平方关系 sin 2α+ cos 2α=1, 商数关系 α α cos sin =tan α

相关主题