搜档网
当前位置:搜档网 › 高等数学复变函数与积分变换第一章 复数与复变函数

高等数学复变函数与积分变换第一章 复数与复变函数

高等数学复变函数与积分变换第一章  复数与复变函数
高等数学复变函数与积分变换第一章  复数与复变函数

第一章 复数与复变函数

第一节 复数

1.复数域

每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。

复数111iy x z +=和2

22iy x z +=相等是指它们的实部与虚部分别相等。 如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。

复数的四则运算定义为:

)2

1()21()22()11(b b i a a ib a ib a ±+±=+±+)1

221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222

a i

b a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。

2.复平面

C 也可以看成平面2R ,我们称为复平面。

作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。

横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一

般称为z -平面,w -平面等。

3.复数的模与辐角

复数z x iy =+可以等同于平面中的向量。向量的长度称为复数的模,定

(,)

x y

义为:||z

向量与正实轴之间的夹角称为复数的辐角,定义为:

Arg arctan 2y z i x

π=+(k Z ∈)。 复数的共轭定义为:z x iy =-;

复数的三角表示定义为:||(cos sin )z z Argz i Argz =+;

复数加法的几何表示:

设1z 、2

z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:

关于两个复数的和与差的模,有以下不等式:

(1)、||||||1212z z z z +≤+;(2)、||||||||1212

z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212

z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =;

例1.1试用复数表示圆的方程:

22()0a x y bx cy d ++++= (0a ≠)

其中a,b,c,d 是实常数。

解:方程为 0azz z z d ββ+++=,其中1()2

b i

c β=+。

2z

例1.2、设1z 、2

z 是两个复数,证明 ,12121212

z z z z z z z z +=+= 11

z z = 利用复数的三角表示,我们可以更简单的表示复数的乘法与除法:设1z 、2

z 是两个非零复数,则有 ||(cos sin )1111z z Argz i Argz =+,||(cos sin )2222z z Argz i Argz =+ 则有

||||[cos()121212 sin()]12

z z z z Argz Argz i Argz Argz =+++ 即||||||1212z z z z =,()1212

Arg z z Argz Argz =+,其中后一个式子应理解为集合相等。

同理,对除法,有

/||/||[cos()121212 sin()]12

z z z z Argz Argz i Argz Argz =-+- 即|/|||/||1212

z z z z =,(/)1212Arg z z Argz Argz =-,其后一个式子也应理解为集合相等。

例1.3、设1z 、2

z 是两个复数,求证: 222||||||2Re(),121212

z z z z z z +=++ 例1.4、作出过复平面C 上不同两点a,b 的直线及过不共线三点 a,b,c 的圆的表示式。 解:直线:Im 0z a b a -=-; 圆:Im()0z a c a z b c b --=--

4.复数的乘幂与方根

利用复数的三角表示,我们也可以考虑复数的乘幂:

||(cos sin )n n z z nArgz i nArgz =+ 令1n z n z

-=,则 ||[cos()sin()]n n z z nArgz i nArgz --=-+-

进一步,有

111|[cos()sin()]n z Argz i Argz n n

=+ 共有n -个值。

例1.5

解:由于1sin )44i i ππ

+=+,所以有 11

(2)sin (2)]4444

k i k ππππ+++

2[cos()sin()]162162

k k i ππππ+++ 其中,0,1,2,3k =。

第二节 复平面上的点集

1.初步概念:

设 ,(0,)a C r ∈∈+∞,a 的r -邻域(,)U a r 定义为

{| ||,},z z a r z C -<∈

称集合

{| ||,},z z a r z C -≤∈

为以a 为中心,r 为半径的闭圆盘,记为(,)U a r 。

设,E C a C ?∈,

若0,(,)r U a r E ?>?中有无穷个点,则a 称为E 的极限点; 若0r ?>,使得(,)U a r E ?,则称a 为E 的内点;

若0,(,)r U a r E ?>?中既有属于E 的点,由有不属于E 的点,则称a 为E 的边界点;

集E 的全部边界点所组成的集合称为E 的边界,记为E ?; E E ??称为E 的闭包,记为E ;

若0r ?>,使得(,){}U a r E a ?=,则称a 为E 的孤立点(是边界点但

不是聚点);

开集:所有点为内点的集合;

闭集E :或者没有聚点,或者所有聚点都属于E ;则任何集合E 的闭包E 一定是闭集;

如果0r ?>,使得(0,)E U r ?,则称E 是有界集,否则称是E 无界集; 复平面上的有界闭集称为紧集。

例1.6、圆盘(,)U a r 是有界开集;闭圆盘(,)U a r 是有界闭集; 例 1.7、集合{|||}z z a r -=是以a 为心,半径为r 的圆周,它是圆盘

(,)U a r 和闭圆盘(,)U a r 的边界。

例1.8、复平面、实轴、虚轴是无界集,复平面是无界开集。 例1.9、集合{|0||}E z z a r =<-<是去掉圆心的圆盘。圆心a E ∈?,它

是E ?的孤立点,是集合E 的聚点。

无穷远点的邻域:0r ?>,集合{|||,}z z r z C >∈∞称为无穷远点的一个邻域。类似地有,聚点、内点、边界点与孤立点,开集、闭集等概念。

C ∞我们也称为C 的一点紧化。

2.区域、曲线

复平面C 上的集合D ,如果满足:

(1)、D 是开集;

(2)、D 中任意两点可以用有限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于D 。

则称D 是一个区域。

结合前面的定义,有有界区域、无界区域。

性质(2)我们称为连通性,即区域是连通的开集。

区域D 内及其边界上全部点所组成的集称为闭区域。

扩充复平面C ∞上不含无穷远点的区域的定义同上;含无穷远点的区域是C 上的一个区域与无穷远点的一个邻域的并集。

设已给

(),()z z t a t b =≤≤

如果Re ()z t 和Im ()z t 都在闭区间[,]a b 上连续,则称集合{()|[,]}z t t a b ∈为一条连续曲线。

如果对[,]a b 上任意不同两点1t 及2

t ,但不同时是[,]a b 的端点,我

们有()()12

z t z t ≠,那么上述集合称为一条简单连续曲线,或若尔当曲线。若还有()()z a z b =,则称为一条简单连续闭曲线,或若尔当闭曲线。

若尔当定理: 任意一条若尔当闭曲线把整个复平面分成两个没有公

共点的区域:一个有界的称为内区域,一个无界的称为

外区域。

光滑曲线: 如果Re ()z t 和Im ()z t 都在闭区间[,]a b 上连续,且有连续

的导函数,在[,]a b 上,'()0z t ≠则称集合{()|[,]}z t t a b ∈为

一条光滑曲线;类似地,可以定义分段光滑曲线。

设D 是一个区域,在复平面C 上,如果D 内任何简单闭曲线的内区域中每一点都属于D ,则称D 是单连通区域,否则称D 是多连通区域。

C ∞中区域的连通性:如果

D 内任何简单闭曲线的内区域或外区域中每一点都属于D ,则称D 是单连通区域,否则称D 是多连通区域。 例1.10集合{|(1)(1)0}z i z i z -++>为半平面,它是一个单连通无界区域,其边界为直线

(1)(1)0i z i z -++=

即0x y +=。

例1.11集合{|2Re 3}z z <<为一个垂直带形,它是一个单连通无界区域,其边界为直线Re 2z =及Re 3z =。

例1.12集合{|2arg()3}z z i <-<为一角形,它是一个单连通无界区域,其边界为半射线

arg()2z i -=及arg()3z i -=。

例1.13集合{|2||3}z z i <-<为一个圆环,它是一个多连通有界区域,其边界为圆||2z i -=及||3z i -=。

例1.14在C ∞上,集合{|2||}z z <≤+∞与{|2||}z z <<+∞分别为单连通及多连通的无界区域,其边界分别为{||2}z =及{||2}{}z =?∞。

第三节 复变函数

1.复变函数的概念

设在复平面C 上以给点集E 。如果有一个法则f ,使得z x iy E ?=+∈,C w u iv ?=+∈同它对应,则称f 为在E 上定义了一个复变数函数,简称为复变函数,记为()w f z =。

注解1、同样可以定义函数的定义域与值域;

注解2、此定义与传统的定义不同,没有明确指出是否只有一个w 和z 对应;

注解3、复变函数等价于两个实变量的实值函数:若z x iy =+,Re ()Im ()(,)(,)w f z i f z u x y iv x y =+=+,则()w f z =等价于两个二元实变函数(,)u u x y =和(,)v v x y =。

函数f 也称为从E 到C 上的一个映射或映照。把集合E 表示在一个复平面上,称为z -平面;把相应的函数值()w f z =表示在另一个复平面上,称为w -平面。

从集合论的观点,令{()|}A f z z E =∈,记作()A f E =,我们称映

射()w f z =把任意的0

z E ∈映射成为()00w f z A =∈,把集E 映射成集A 。

称0w 及A 分别为0z 和E 的象,而称0z 和E 分别为0

w 及A 的原象。

若()w f z =把E 中不同的点映射成A 中不同的点,则称它是一个从E 到A 的双射。

例1.15考虑映射w z α=+。

解:设z x iy =+,w u iv =+,a ib α=+,则有u x a =+,v y b =+,这

是一个z 平面到w 平面的双射,我们称为一个平移。

例1.16考虑映射w z α=,其中0α≠。

解:令(cos sin )r i αθθ=+,则它可以分解为以下两个映射的复合:

(cos sin )i ωθθ=+, w r ω=

第一个映射是一个旋转(旋转角为θ),第二个映射是一个以原点为中心的相似映射。

例1.17考虑映射1w z

=。 解:它可以分解为以下两个映射的复合:

11z z =, 1

w z = 映射1

w z =是一个关于实数轴的对称映射; 映射11z z =把z 映射成1

z ,其辐角与z 相同: Arg Arg Arg 1

z z z =-=

而模11||||1||z z z ==,满足||||11

z z =。我们称11z z =为关于单位圆的对称映射,z 与1

z 称为关于单位圆的互相对称点。 若规定1w z

=把0,z =∞映射成,0w =∞,则它是一个扩充z 平面到扩充w 平面的一个双射。

例1.18、考虑映射2w z =。

解:2222()2w z x iy x y ixy ==+=-+等价于

22u x y =-, 2v xy =。

2.复变函数的极限

设函数()w f z =在集合E 上确定,0

z 是E 的一个聚点,a 是一个复常数。如果任给0ε>,可以找到一个与ε有关的正数()0δδε=>,使得当z E ∈,并且0||0

z z δ<-<时, |()|f z a ε-<,

则称a 为函数()f z 当z 趋于0

z 时的极限,记作: lim ()()()0,0

f z a f z a z z z z z E =→→→∈或当 注解:1、复变函数的极限等价于两个实变二元函数的重极限。

2、关于极限的和、差、积、商等性质可以不加改变的推广到复变函数。

3.复变函数连续性的定义

设函数()(,)(,)w f z u x y iv x y ==+在集合E 上确定,0

z E ∈是E 的一个聚点,如果

lim ()()00

f z f z z z =→ 成立,则称()f z 在0z 处连续;如果()f z 在E 中每一点连续,则称()f z 在E 上连续。

注解1 如果000

z x iy =+,则()f z 在0z 处连续的充要条件为: lim (,)(,)00,00lim (,)(,)00,00

u x y u x y x x y y v x y v x y x x y y =→→=→→ 即一个复变函数的连续性等价于两个实变二元函数的连续性; 注解2 连续函数的四则运算结论成立:两个复变函数连续的加、减、

乘、除(分母不等于零)是复变函数连续;

注解3 如果函数()w f z =在集E 上连续,并且函数值属于集F ,而

在集F 上,函数()g w ζ=连续,那么复合函数[()]()g f z g f z ζ==在E 上连续。

4.一致连续性

设函数()w f z =在集合E 上确定,如果任给0ε>,可以找到一个仅与ε有关的正数()0δδε=>,使得当',''z z E ∈,并且|'''|z z δ-<时,

|(')('')|f z f z ε-<,

则称函数()f z 在E 上一致连续。

定理1.1、设函数)(z f 在简单曲线或有界闭区域E 上连续,那么它在E

上一致连续。

定理1.2、设函数()f z 在简单曲线或有界闭区域E 上连续,那么它在

E 上有界,即|()|f z =E 上有界。

定理1.3、设函数()f z 在简单曲线或有界闭区域E 上连续,那么()f z 在E 上达到它的最大模和最小模。

5.无穷大极限

设函数()w f z =在复平面上的区域或闭区域E 上确定,0

z 是E 的一个聚点,0

z 不属于E 。如果任给0A >,可以找到一个与A 有关的正数()0A δδ=>,使得当z E ∈,并且0||0

z z δ<-<时, |()|f z A >,

则称当z 趋于0

z 时,函数()f z 趋于无穷大,记作: lim (),0

f z z z z E =∞→∈ 设函数()w f z =在复平面上的无界区域或闭区域E 上确定。a 是一个有限复常数。如果任给0ε>,可以找到一个与ε有关的正数()0ρρε=>,使得当z E ∈,并且||z ρ>时,

|()|f z a ε-<,

则称当z 趋于∞时,函数()f z 趋于极限a ,记作:

lim (),f z a z z E

=→∞∈

第四节 复球面与无穷远点

在点坐标是(,,)x y u 的三维空间中,把 xOy 面看作就是z x iy =+面。考虑球面S :

2221x y u ++=

取定球面上一点(0,0,1)N 称为球极。 我们可以建立一个复平面C 到{}S N -之间的一个1-1对应:

''1'

x iy z x iy u +=+=- '2||1z z x z +=+,'2||1z z y z -=+,2||1'2||1

z u z -=+。 我们称上面的映射为球极射影。 对应于球极射影为N ,我们引入一个新的非正常复数无穷远点∞,称{}C ?∞为扩充复平面,记为C ∞。 关于∞,其实部、虚部、辐角无意义,模等于+∞;基本运算为(a 为有限复数):

(A x

a a ±∞=∞±=∞; (0)a a a ?∞=∞?=∞≠; (0); 0()0a a a a =∞≠=≠∞∞

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 我是一名自考生,通过网络学习这门课程,学习了不少以前书本上学不到的东西。它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。我深深地被复变函数与积分变换这门课程给吸引住了。同时网络学习也带给我了一定的帮助。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学习提供了必要的数学工具因此,学好这门课程非常必要然而,该课程一直是学生较难学的课程之一。 第一、学生普遍认为复变函数的应用性不强我们知道复变函数是建立在复数的基础上的,而复数中是一个虚数单位,从而大家对复数的真实性存在疑虑,所以很难想象它在现实生活和实践中的应用价值另外,在学习这门课程当中,复变函数这部分原理、规律多,内容枯燥、抽象,需要理解的概念和定义也多,学生普遍感觉到理论性偏强,有点抓不住重点;而积分变换这部分所涉及的背景较多,学生所面对的大多是一些抽象枯燥的变换公式这些会让学生们认为这是一门纯理论且没用的课程,也就没有兴趣可言。 第二、复变函数是实变函数在复数域的推广,它的许多概念性质和意义与实变函数有相同之处,同时又与实变函数有着诸多不同不少学生在学习当中往往只注意到相同点,而没有注意到它们的不同点,这让学生感觉可以直接把实变函数当中所学的知识和方法照搬过来即可,觉得这门课程与高等数学没什么区别,感觉是在重复学习,没多大意思。 第三、与后续专业课衔接不够紧密,复变函数与积分变换课程的讲授往往与后续专业课程的使用存在一定的时间差,在后续课程用到时,往往都要花一定得时间去复习,否则学生难于跟上,造成教学重复现象,课时利用率不高。所以网络学习给我们提供了一个后备平台。 们合理利用网络来学习其他课程。 第四、通过网络学习增强了我们对远程教育的了解,提高了我们对这门课程的认真度,同时鼓励同学

第1章复数与复变函数-难题解答

第一章 复数与复变函数 §习题 2.设12,,...,n z z z 是任意n 个复数,证明:1 1 ||||n n k k k k z z ==≤∑∑,并给出不等式中等号成立 的条件. (提示:可以用数学归纳法证明.等号成立的条件是12,,...,n z z z 线性相关). 3(Re Im )Re Im . z z z z z +≤≤+ 证明:设z a ib =+,则Re z a =,Im z b =,||z = .由题2知, z a bi a b ≤+=+ 故22 22 2222 2 22||2 2 22 a a b b a b a b a b ab z +++++= = +≤+=, (Re Im )Re Im . z z z z z +≤≤+ 4.若12||,0z z λλ=>,证明:21212||z z z z λλ-=-. 证明:不妨设2 2 2 21210.z z z z λ≠= 则2 2 2 2212122 121 112z z z z z z z z z z z z λλ-=-=-=- 即有21212||z z z z λλ-=-成立. 5.设|a |<1,证明:若|z|=1,则 11z a az -=-. 证明:由1z =得1zz = 故11z a z azz z az az -=-=-=-

即证之. 6.设|a |<1,|z|<1.证明: 11z a az -<-. 证明:提示:( 11z a az -<-?2222||2Re ||12Re ||||;z az a az a z -+<-+ 而2 2 2 2 2 2 1||||||||(1||)(1||)0;a z a z a z --+=-->) 7.设12,,...,n z z z ,12,,...,n ωωω是任意2n 个复数,证明复数形式的Lagrange 等式: 2 2 2 2 1 1 1 1()(),n n n k j j j j j j k j j j j k n z z z z ωωωω===≤<≤=- -∑∑∑∑ 并由此推出Cauchy 不等式: 22 2 1 11 n n n j j j j j j j z z ω ω===???? = ??? ???? ??? ∑∑∑. 证明:提示(记1212......n n z z z A ωωω?? = ??? , 1112'2212...det det()0.........n n n n z z z z z AA z ωωωωωω?? ? ?? ? =≥ ? ??? ? ??? , 2 det det ||j k j j j k k j j k k k z z z z z z ωωωωωω?? ??=- ? ? ? ????? ,则原式=2 10k j j k j k n z z ωω≤<≤-≥∑.(1) 另外,2111 112 22212 11...det det .........n n j j j j j n n n n j j j n j j n z z z z z z z z z ωωωωωωωωω====???? ? ??? ? ? = ? ? ??? ? ? ? ? ?? ??∑∑∑∑ 2 2 2 1 1 1 ()()0n n n j j j j j j j z z ωω ====- ≥∑ ∑∑.(2) 由(1)=(2)可得证.

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

复变函数论第一章复数与复变函数

引言 复数理论的产生、发展经历了漫长而又艰难的岁月.复数是16世纪人们在解代数方程时引入的. 1545年,意大利数学物理学家H Cardan (卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程(10)x x -的根,它求出形式的根为 5+525(15)40--=. 但由于这只是单纯从形式上推广而来引进,并且人民原先就已断言负数开平方是没有意义的.因而复数在历史上长期不能为人民所接受.“虚数”这一名词就恰好反映了这一点. 直到十八世纪,,D Alembert (达朗贝尔):L Euler (欧拉)等人逐步阐明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人民终于接受并理解了复数. 复变函数的理论基础是在十九世纪奠定的,主要是围绕..A L Cauchy (柯西),K Weierstrass (魏尔斯特拉斯)和B Riemann (黎曼)三人的工作进行的. 到本世纪,复变函数论是数学的重要分支之一,随着它的领域的不断扩大而发展成庞大的一门学科,在自然科学其它(如空气动力学、流体力学、电学、热学、理论物理等)及数学的其它分支(如微分方程、积分方程、概率论、数论等)中,复变函数论都有着重要应用. 第一章 §1 复数 教学目的与要求:了解复数的概念及复数的模与辐角; 掌握复数的代数运算复数的乘积与商﹑幂与根运算. 重点:德摩弗()DeMoiVre 公式. 难点:德摩弗()DeMoiVre 公式. 课时:2学时. 1. 复数域 形如z x iy =+或z z yi =+的数,称为复数,其中x 和y 均是实数,称为复数z 的 实部和虚部,记为Re x z =,Im y z = i =,称为虚单位. 两个复数111z x iy =+,与222z x iy =+相等,当且仅当它们的实部和虚部分别对应相等,即12x x =且12y y =虚部为零的复数可看作实数,即0x i x +=,特别地,000i +=,因此,全体实数是全体复数的一部分. 实数为零但虚部不为零的复数称为纯虚数,复数x iy +和x iy -称为互为共轭复数,记

泛函分析复习提要

泛函分析复习提要 一、填空 1. 设X 是度量空间,E 和M 是X 中两个子集,如果 ,则称集M 在集E 中 稠密。如果X 有一个可数的稠密子集,则称X 是 空间。 2. 设X 是度量空间, M 是X 中子集,若 ,则称M 是第一纲集。 3. 设T 为复Hilbert 空间X 上的有界线性算子,若对任何x X ∈,有*Tx T x =, 则T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是正常算子的充要条件是 。) 4. 若复Hilbert 空间X 上有界线性算子T 满足对一切x X ∈,,Tx x <>是实数,则 T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是自伴算子的充要条件是 。) 5.设X 是赋范线性空间,X '是X 的共轭空间,泛函列(1,2,)n f X n '∈= ,如果 存在f X '∈,使得对任意的x X ∈,都有 ,则称{}n f 弱*收敛于f 。 6. 设,X Y 是赋范线性空间,(,)n T B X Y ∈,1,2,n = ,若存在(,)T B X Y ∈使得对任意的x X ∈,有 ,则称{}n T 强收敛于T 。 7. 完备的赋范线性空间称为 空间,完备的内积空间称为 空间 8. 赋范线性空间X 到赋范线性空间Y 上的有界线性算子T 的范数T = 9. 设X 是内积空间,则称 是由内积导出的范数。 10.设X 是赋范空间,X 的范数是由内积引出的充要条件是 。 11. 设Y 是Hilbert 空间的闭子空间,则Y 与Y ⊥⊥满足 。 12.设X 是赋范空间,:()T D T X X ?→的线性算子,当T 满足 时, 则T 是闭算子。 二、叙述下列定义及定理 1. 里斯(Riesz )定理; 2. 实空间上的汉恩-巴拿赫泛函延拓定理;

第一章复数与复变函数

第一章复数与复变函数 (Complex number and function of the complex variable) 第一讲 授课题目:§1.1复数 §1.2 复数的三角表示 教学内容:复数的概念、复数的四则运算、复平面、复数的模和辐角、复数的三角不等式、复数的表示、复数的乘方与开方. 学时安排:2学时 教学目标:1、掌握复数的乘方、开方运算及它们的几何意义 2、切实理解掌握复数的辐角 3、掌握复数的表示 教学重点:复数的乘方、开方运算及它们的几何意义 教学难点:复数的辐角 教学方式:多媒体与板书相结合. P思考题:1、2、3.习题一:1-9 作业布置: 27 板书设计:一、复数的模和辐角 二、复数的表示 三、复数的乘方与开方 参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社. 2、《复变函数与积分变换学习辅导与习题全解》,高 等教育出版. 课后记事:1、基本掌握复数的乘方、开方运算 2、不能灵活掌握复数的辐角(要辅导) 3、能灵活运用复数的三角表示进行复数的运算

教学过程:

引言 复数的产生和复变函数理论的建立 1、1545年,意大利数学家Cardan在解三次方程时,首先产生了负数开平方的思想.后来,数学家引进了虚数,这在当时是不可接受的.这种状况随着17、18世纪微积分的发明和给出了虚数的几何解析而逐渐好转. 2、1777年,瑞士数学家Euler建立了系统的复数理论,发现了复指数函数和三角函数之间的关系,创立了复变函数论的一些基本定理,并开始把它们应用到水力学和地图制图学上.用符号i表示虚数单位,也是Euler首创的. 3、19世纪,法国数学家Cauchy、德国数学家 Riemann 和Weierstrass经过努力,建立了系统的复变函数理论,这些理论知直到今天都是比较完善的. 4、20世纪以来,复变函数理论形成了很多分支,如整函数与亚纯函数理论、解析函数的边值问题、复变函数逼近论、黎曼曲面、单叶解析函数论等等,并广泛用于理论物理、弹性物理和天体力学、流体力学、电学等领域. 5、复变函数课程主要任务为研究复变数之间的相互依赖关系.其中许多概念、理论和方法是实变函数在复变函数领域内的推广和发展,在学习过程中要注意它们相似之处和不同之处的比较.

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

复变函数发展历程

复变函数发展历程 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 校内发展的历史 《复变函数论》,又称《复分析》,是在《数学分析》的基础上,应用分析与积分方法研究复变量复值解析函数的一门分析数学,它是学习与研究《泛函分析》、《微分方程》等课程的重要基础。复变函数论是数学专业的一门专业必修课程,是数学分析的后续课程。它的理论和方法,对于其它数学学科,对于物理、力学及工程技术中某些二维问题,都有广泛的应用。通过本课程的教学,使学生掌握复变函数论的基本理论和方法,提高分析问题和解决问题的能力,培养学生独立地分析和解决某些有关的理论和实际问题的能力。 随着学校的升本成功,该门课程已在本科层面授课两届。 针对学生普遍基础薄弱的特点,在教学中,着力要求任课教师将基本概念讲解正确清楚,基本理论阐述系统简明,对学生的基本运算能力的训练也严格要求。教材选用了国内较成熟且讲解较为简单明了的钟玉泉的复变函数论(第2版),方便学生学习。 实际教学中注意本课程和其它课程的联系,特别是与数学分析的衔接,相应内容在处理方法上的异同。在基本运算方面,应通过适当的例题和习题,加强习题课和练习,使学

第一章-复数与复变函数

复变函数教案 2012—2013学年度第二学期 任课教师郭城 课程名称复变函数 采用教材高教三版(钟玉泉编) 周课时数 4 数统学院数学教育专业2010 年级1班

引言 数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。 我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

第一章 复数与复变函数

第一章 复数与复变函数 第一节 复数 1.复数域 每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。 复数111iy x z +=和2 22iy x z +=相等是指它们的实部与虚部分别相等。 如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。 复数的四则运算定义为: )2 1()21()22()11(b b i a a ib a ib a ±+±=+±+)1 221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222 a i b a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。 2.复平面 C 也可以看成平面2R ,我们称为复平面。 作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。 横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一 般称为z -平面,w -平面等。 3.复数的模与辐角 复数z x iy =+可以等同于平面中的向量。向量的长度称为复数的模,定 (,) x y

义为:||z 向量与正实轴之间的夹角称为复数的辐角,定义为: Arg arctan 2y z i x π=+(k Z ∈)。 复数的共轭定义为:z x iy =-; 复数的三角表示定义为:||(cos sin )z z Argz i Argz =+; 复数加法的几何表示: 设1 z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图: 关于两个复数的和与差的模,有以下不等式: (1)、||||||1212z z z z +≤+;(2)、||||||||1212 z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212 z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =; 例1.1试用复数表示圆的方程: 22()0a x y bx cy d ++++= (0a ≠) 其中a,b,c,d 是实常数。 解:方程为 0azz z z d ββ+++=,其中1()2 b i c β=+。 2z

泛函分析论文

泛函分析作业 数学系08级5班 08020170 赵英杰

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 一、度量空间和赋范线性空间 1、度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空

间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。 (一)、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 (二)、巴拿赫空间

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

1-2复变函数基本概念

§1.2 复数函数 授课要点:区域的概念,闭区域,复变函数的极限,连续的概念。 难点:极限概念及其与实变函数中相关概念的区别 1、 邻域:以0z 为圆心,以任意小ε半径作圆,则圆内所有点的集合称为0z 的邻域。 注意,这里说的是“圆内”,“圆边”上的不算。 内点、外点和边界点: 设有一个点集E ,若0z 及其领域均属于点集E ,则称0z 为E 的“内” ,若0z 及其邻域均不属于E ,则0z 为外点,若0z 的每个领域内,既有属于E 的点,也有不属于E 的点,则称0z 为E 的边界点,边界点的全体称为E 的边界线。 区域:(1)全由内点组成 (2)具有连通性,即点集中任意两点都可以用一条折线连起来,且折线上的点全都 属于该点集。 闭区域:区域B 及其边界线所组成的点集称为闭区域,用B 表示。 练习: 下面几个图所示的,哪个是区域? 答:(a),(b)皆为区域,(a)为单通区域,(b)为复连通区域,(c)不是区域. 例子: ||z r <代表一个圆内区域 ||z r <代表一个圆外区域 12||r z r <<代表一个圆环区域 将上面三个式中的 < 换成 ≤, > 换成 ≥,则变成闭区域。 注意:区域的边界并不属于区域,闭区域和区域是两个概念 2、复变函数 定义:形式和实变函数一样,()w f z =

复变函数的定义域不再限于实轴上某个区间,而是复平面上的某个区域. 函数的值域也可以对应复平面上的某个区域(也可能不是): 变量:z x iy =+ 函数:()(,)(,,)w f z u x y iv x y ==+ 复变函数的实部和虚部都是一个二元函数(实函数),关于二元实变函数的很多理论都可用于复变函数中(形式可能有所变化) 极限: 设函数f (z )在0z 点的领域内有定义,如果存在复数A ,对于任意的0ε>,总能找到一个()0δε>,使得:当0||z z δ-<时,恒有|()|f z A ε-<,则称0z z →时f (z )的极限为A ,即 0lim ()z z f z A →= 对于非数学专业的学生而言,这段话略显晦涩,一个不太严格但直观的表述是: 当z 以任意方式逼近0z ,()f z 都逼近A 不会因为z 逼近方式之不同,而导致()f z 逼近不同的值,或者发散 举例:(1)222()()xy f z i x y x y =+++ 222(,)xy u x y x y =+ 2222 lim 22(,)010 kx k u x y x x ky k y ==→++→ 结果将因k 之不同而不同,故极限不存在. (2)实变函数例子1()f x x = 0lim ()x f x +→=+∞, lim ()x x f x -→=-∞ 连续:0 0lim ()()z z f z A f z →== 因为()(,)(,)f z u x y iv x y =+,所以,复变函数的连续问题,可以归结为两个二元实变函数的连续问题。 几个简单的复变函数 (1) 多项式:2012n n a a z a z a z +++ (其中n 为整数) (2) 有理分式:20122012n n n n a a z a z a z b b z b z b z ++++++

泛函分析论文

浅谈泛函分析 数学科学学院 张健 20111101710 2011级数学与应用数学汉班 摘 要 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。它在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 关键词 泛函分析、空间、度量、算子 泛函分析是20世纪30年代形成的数学分科,是从变分问题、积分方程和理论物理的研究中发展起来的。它综合运用函数论、几何学、现代数学的观点来研究无限维向量空间上的函数、算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 .1度量空间和赋范线性空间 1.1度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家.G 康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家..R M -弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X 为一个集合,一个映射d :R X X →?。若对于任何z y x ,,属于X ,有 ()1(正定性)(),0,≥y x d 且(),0,=y x d 当且仅当y x = ()2(对称性)()()x y d y x d ,,= ()3(三角不等式)()()()z y d y x d z x d ,,,+≤ 则称d 为集合X 的一个度量(或距离)。称偶对()X d ,为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。 2.1赋范线性空间

实变函数与泛函分析总复习题

第一章 复习题(一) 一、判断题 1、大人全体构成集合。(× ) 2、小个子全体构成集合。(× ) 3、所有集合都可用列举法表示。(× ) 4、所有集合都可用描述法表示。(√ ) 5、对任意集合A ,总有A ??。(√ ) 6、()A B B A -?=。(× ) 7、()()A B B A B B A A -?=?=-?。(√ ) 8、若B A ?,则()A B B A -?=。(√ ) 9、c A A ?≠?,c A A X ?=,其中X 表示全集。(× ) 10、A B B A ?=?。(× ) 11、()c c c A B A B ?=?,()c c c A B A B ?=?。(× ) 12、()()()A B C A C B C ??=???,()()()A B C A C B C ??=???。(√ ) 13、若A B ,B C ,则A C 。(√ ) 14、若A B ,则A B =,反之亦然。(√ ) 15、若12A A A =?,12B B B =?,且11A B ,22A B ,则A B 。(× ) 16、若A B ?,则A B ≤。(√ ) 17、若A B ?,且A B ≠,则A B <。(× ) 18、可数集的交集必为可数集。(× ) 19、有限或可数个可数集的并集必为可数集。(√ ) 20、因整数集Z ?有理数集Q ,所以Q 为不可数集。(× ) 21、()c c A A =。(√ ) 第二章 复习题 一、判断题 1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。(× ) 2、设P ,n Q R ∈,则(,)0P Q ρ>。(× ) 3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。(× ) 4、设点P 为点集E 的内点,则P E ∈。(√ )

复变函数与实变函数微积分理论的比较与应用

复变函数与实变函数微积分理论的比较与 应用 众所周知复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数,本学期我们数学专业的学生开始学习这门课程。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 这里先略微简述一下复变函数的历史。复数起源于求代数方程的根。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 下面我将对已学的复变函数微积分的相关知识做以总结和归纳。

⒈复变函数的微积分理论 ㈠复变函数的微分性质 我们知道函数的导数是由极限来定义的,所以我先把复变函数的极限理论做以梳理。 ①复变函数极限的概念: 函数ω=f(z)定义在z0的去心邻域0<│z-z0│<ρ内,如果有一确定的数A存在,对于任给的ε>0,相应的必有一个正数δ(ε)使得当0<│z-z0│<δ(0<δ≤ρ)时,有│f(z) -A│<ε。即称z→z0是的极限,记为另外复变函数的连续性叙述与实变函数中的叙述是相似的,此处不细表在实变函数时另有说明。②复变函数导数的概念:设函数ω= f(z)在包含z0的邻域D内有定义,如果极限存在,那么f(z)在z0处可导(或可微)。该极限成为f(z)在z0的导数,记做f’(z0)=│z=z。 = ③复变函数的求导法则 1,(C)’=0,C为复常数 2,(Z n)’=nZ n-1,n为正整数 3,[f(z)g(z)]’= 4,[f(z)g(z)]’=g(z)+f(z) 5,= 6,{ f[g(z)]}‘=,其中ω=

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

相关主题