搜档网
当前位置:搜档网 › 4.5_电磁感应规律的应用

4.5_电磁感应规律的应用

4.5_电磁感应规律的应用
4.5_电磁感应规律的应用

4.5《电磁感应规律的应用》导学方案

学习要求

1.知道什么是感生电动势,会用楞次定律判断感生电场的方向

2.会解决电磁感应现象中的一些综合问题

学习重点难点

1.感生电动势与动生电动势的概念

2.对感生电动势与动生电动势实质的理解

学习过程

一.电磁感应现象中的感生电场

(探究一:电磁感应现象中的感生电场)

(回忆):电路中电动势的作用_________________________的作用。

每一个电动势都对应有一种非静电力——正是由于非静电力做功把其它形式的能转化

为电能。

(问题):感应电动势对应的非静电力是一种什么样的作用?一个闭合电路静止于磁场中,由于磁场强弱的变化,闭合电路内产生了感应电动势.这种情况下,哪一种作用是非静电力?

(看课本P19回答)

1、感生电场

(1)定义:变化的磁场在周围空间激发的电场叫感生电场(涡旋电场).

(2)方向:就是感生电流的方向. 用楞次定律判断.

(3)电场线:是闭合的曲线.

2、感生电动势由感生电场产生的感应电动势.

磁场变强感生电动势所对应的非静电力是感生电场对自由电荷的作用.

3.感生电场是产生感生电动势的原因.

实际问题中常要由磁场的方向和强弱变化的情况来判断感生电场的方向,或者相反。这时就要根据楞次定律用右手定则来确定它们之间的关系。

4.应用实例:电子感应加速器用——感生电场来加速电子的一种设备。

【例题1】如图,100匝线圈两端A,B与一个电压表相连.线圈内有指向纸内方向磁场,线圈中的磁通量在按图乙所示规律变化.

(1) 电压表的读数应该等于多少?

(2) 请在线圈位置上标出感生电场的方向.

(3) A、B两端,哪端应该与电压表标+号的接线柱连接?

二、洛伦兹力与动生电动势

(探究二:电磁感应现象中的洛伦兹力)

1.导体切割磁感线时也会产生感应电动势,该电动势产生的机理是什么?

2.导体切割磁感线产生的感应电动势的大小与哪些因素有关?

3.它是如何将其它形式的能转化为电能的?

1、由于导体的运动(切割磁感线)而产生的感应电动势叫动生电动势.

2、动生电动势所对应的非静电力是洛伦兹力的分力.

注意:动生电动势与洛伦兹力有关,但洛伦兹力始终不做功.

【例题2】设图4.5-5中的磁感应强度B=1T,平行导轨宽l=1m,MN、PQ金属棒均以1m/s速度贴着导轨向右运动,R=1Ω,其它电阻不计。

(1)运动的导线会产生感应电动势,相当于电源,用电池等符号画出这个装置的等效电路图

(2)通过R的电流方向如何?大小等于多少?

(3)通过MN、PQ金属棒的电流各沿什么方向?

三、课堂小结

课堂练习

1.(B级)在国庆50周年盛典上,我国的飞豹歼击轰炸机在天安门上沿水平方向自西向东呼啸而过。该机的翼展为1

2.7m,北京地区地磁场的竖直分量为4.7×10-5T,该机飞过天安门时的速度为声速的0.7倍,求该机两翼尖间的电势差。哪端的电势比较高?

2.(B级)如图4.5-6,单匝线圈ABCD在外力作用下以速度v向右匀速进入匀强磁场,第二次又以速度2v匀速进入同一匀强磁场。求:(1)第二次与第一次线圈中最大电流之比;(2)第二次与第一次外力做功的最大功率之比;(3)第二次与第一次线圈中产生热量之比。

拓展提高练习

题型一感生电动势的计算

例题1 有一面积为S=100㎝2的金属环,电阻为R=0.1Ω,环中磁场变化规律如图4-5-8乙所示,且磁场方向垂直环面向里,在t1到t2时间内,环中感应电流的方向如何?通过金属环的电荷量为多少?(逆时针方向0.01C)

练习1 如图所示,固定与水平面上的金属框cdef,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动。此时abed构成一个边长l的正方形,棒电阻r,其余电阻不计,开始时磁感应强度为B. (1)若以t=0时起,磁感应强度均匀增加,每秒增加量k,同时保持棒静止,球棒中的感应电流(2)在上述情况中,棒始终保持静止,当t=t1时需加垂直于棒的水平外力多大?

题型二动生电动势的计算

例题2 如图4-5-10所示,水平的平行光滑导轨间距离为L=1m,左端接有定值电阻R=2Ω.金属棒PQ与导轨接触良好,PQ的电阻r=0.5Ω,导轨电阻不计,整个装置处于磁感应强度为B=1T的匀强磁场中,现使PQ在水平向右的恒力F=2N作用下运动,求:

(1)棒PQ中感应电流的方向;(Q P) (2)棒PQ中哪端电势高;(P端)

(3)棒PQ所受安培力的方向;(向左)(4)PQ棒的最大速度(5m/s)

题型3 电磁感应现象中能量转化

例题3 如图4-5-12所示,平行光滑的金属导轨竖直放置,宽为L,上端接有阻值为R的定值电阻。质量为m的金属杆与导轨垂直放置且接触良好,匀强磁场垂直于导轨平面,磁感应强度为B。导轨和杆的电阻不计,金属杆由静止开始下落,下落h时速度达到最大,重力加速度为g,求:(1)金属杆的最大速度v m; (2)金属杆由静止开始下落至速度最大过程中,电阻R上产生的热量Q.(答案mgR/(B2L2) mgh-m3g2R2/(2B4L4)

课后反思

法拉第电磁感应定律及应用

电磁感应定律的应用(一) 知识点1、感生电动势 例题1、一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示。现令磁感应强度B 随时间t 变化,先按图乙中所示的Oa 图象变化,后来又按图象bc 和cd 变化,令E 1、E 2、E 3分别表示这三段变化过程中感应电动势的大小,I 1,I 2,I 3分别表示对应的感应电流,则( BD ) A .E 1>E 2,I 1沿逆时针方向,I 2沿顺时针方向 B .E 10)那么在t 为多大时,金属棒开始移动? 2 212211,L L k mgR t mg R L kL L kt μμ==? ? 知识点2、动生电动势 例题.如图所示,空间存在两个磁场,磁感应强度大小均为,方向相反且垂直纸面,、为其边界,OO ′为其对称轴。一导线折成边长为的正方形闭合回路,回路在纸面内以恒定速度向右运动,当运动到关于OO ′对称的位置时( ACD ) A .穿过回路的磁通量为零 B .回路中感应电动势大小为2B C .回路中感应电流的方向为顺时针方向 D .回路中边与边所受安培力方向相同 练习1、如图,电阻r =5Ω的金属棒ab 放在水平光滑平行导轨PQMN 上(导轨足够长),ab 棒与导轨垂直放置,导轨间间距L =30cm ,导轨上接有一电阻R =10Ω,整个导轨置于竖直向下的磁感强度B =的匀强磁场中,其余电阻均不计。现使ab 棒以速度v =2.0m/s 向右作匀速直线运动,试求: (1)ab 棒中的电流方向及ab 棒两端的电压U ab ; (2)ab 棒所受的安培力大小F ab 和方向。 练习2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为 B 的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是( A ) 知识点3、动生中的图像描绘 例题、匀强磁场磁感应强度 B= T ,磁场宽度L=3rn ,一正方形金属框边长ab=l =1m ,每边电阻r=Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示,求: (1)画出金属框穿过磁场区的过程中,金属框内感应电流的I-t 图线 (2)画出ab 两端电压的U-t 图线

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

【精品专题】动量定理与电磁感应地综合应用

动量定理与电磁感应的综合应用 姓名:____________ 【例题精讲】 例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求: (1)t=0时刻,棒ab两端电压; (2)整个过程中R上产生的总热量是多少; (3)整个过程中ab棒的位移是多少 针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计). (1)求棒ab在向下运动距离d过程中回路产生的总焦耳热; (2)棒ab从静止释放经过时间t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。 (1)求0~0.10 s线圈中的感应电动势大小; (2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向; (3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。 针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。接通开关S后,棒对挡条的压力恰好为零。假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。 (1)求磁感应强度B2的大小,并指出磁场方向; (2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

法拉第电磁感应定律的应用

法拉第电磁感应定律 2.确定目标 本节课讲解应用法拉第电磁感应定律计算感应电动势问题,会区别感应电动势平均值和瞬时值。 二 精讲精练 (一)回归教材、注重基础 例 (见教材练习题P21 T2)如图甲所示,匝数为100匝,电阻为5Ω的线圈(为表示线 圈的绕向图中只画了2匝)两端A 、B 与一个电压表相连,线圈内有指向纸内方向的磁场,线圈中的磁通量按图乙所示规律变化。 (1)求电压表的读数?确定电压表的正极应接在A 还是接在B ? (2)若在电压表两端并联一个阻值为20Ω的电阻R .求通过电阻R 的电流大小和 方向? ,面 时间内,匀强磁场平行于线圈轴线向右穿过,则该段时间线圈两12)t B --

变式3.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为 B,用电阻率为ρ、横 截面积为S的导线做成的边长为L的正方形线框abcd水平放置,OO′为过ad、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框 左半部分以OO′为轴向上转动60°,如图中虚线所示。若转动后磁感应强度随时 间按kt 变化(k为常量),求: B B+ = (1)在0到t 0时间内通过导线横截面的电荷量? (2)t0时刻ab边受到的安培力? (三)真题检测,品味高考 1.(2014·新课标全国Ⅰ)如图 (a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

2. (2012·福建)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀 强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B 随时间t 的变化关系如图乙所示(T0为已知量)。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。当t=0T 到t=05.1T 这段时间内的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.求:这段时间内,细管内涡旋电场的场强大小E 。 (四)拓展深挖、把握先机 拓展:如图甲所示,匝数为n 匝,电阻为r,半径为a 的线圈两端A 、B 与电容为C 的电容器 和电阻R 相连,线圈中的磁感应强度按图乙所示规律变化(取垂直纸面向内方向为正方向)。求: (1)流过电阻的电流大小为多少? (2)电容器的电量为多少? 三 总结归纳 1. 应用法拉第电磁感应定律计算感应电动势。 2. 会判断导体两端电势的高低。

电磁感应现象及电磁在生活中的应用

电磁感应现象及电磁在生活中的应用 摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。 电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。是经过很多人的探索和努力一步一步走到现在的。 正文: 电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。由电磁感应现象产生的电流叫做感应电流。 电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。法拉第发现,铁环并不是必须的。拿走铁环,再做这个实验,上述现象仍然发生。只是线圈B中的电流弱些。为了透彻研究电磁感应现象,法拉第做了许多实验。1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。 电磁感应是指因磁通量变化产生感应电动势的现象。电磁感应现象的发现,乃是电磁学中伟大的成就之一。它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。 若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。 磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。 (2)公式:Φ=BS 当平面与磁场方向不垂直时: Φ=BS⊥=BScosθ(θ为两个平面的二面角) (3)物理意义

高中物理-电磁感应综合应用练习

高中物理-电磁感应综合应用练习 1.如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( ) A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 解析:选C.小磁块下落过程中,在塑料管Q中只受到重力,而在铜管P中还受到向上的磁场力,即只在Q中做自由落体运动,故选项A、B错误;小磁块在P 中加速度较小,故在P中下落时间较长,落至底部时在P中的速度较小,选项C正确,D错误. 2.(多选)如图所示,竖直平面内的虚线上方是一匀强磁场B,从虚线下方竖直上抛一正方形线圈,线圈越过虚线进入磁场,最后又落回原处,运动过程中线圈平面保持在竖直平面内,不计空气阻力,则( ) A.上升过程克服磁场力做的功大于下降过程克服磁场力做的功 B.上升过程克服磁场力做的功等于下降过程克服磁场力做的功 C.上升过程克服重力做功的平均功率大于下降过程中重力的平均功率 D.上升过程克服重力做功的平均功率等于下降过程中重力的平均功率 解析:选AC.线圈上升过程中,加速度增大且在减速,下降过程中,运动情况比较复杂,有加速、减速或匀速等,把上升过程看成反向的加速,可以比较当运动到同一位置时,线圈速度都比下降过程中相应的速度要大,可以得到结论:上升过程中克服安培力做功多;上升过程时间短,所以上升过程克服重力做功的平均功率大于下降过程中重力的平均功率,故正确选项为A、C.

3.如图所示,有两个相邻的有界匀强磁场区域,磁感应强度的大小均为B,磁场方向相反,且与纸面垂直,磁场区域在x轴方向宽度均为a,在y轴方向足够宽.现有一高为a的正三角形导线框从图示位置开始向右沿x轴方向匀速穿过磁场区域.若以逆时针方向为电流的正方向,在以下选项中,线框中感应电流i与线框移动的位移x的关系图象正确的是( ) 解析:选 C.线框从开始进入到全部进入第一个磁场过程,磁通量向里增大,则由楞次定律可知,电流方向为逆时针方向,故B一定错误;因切割的有效长度均匀增大,故由E=BLv可知,电动势也均匀增加,而在全部进入第一个磁场时,磁通量达最大,该瞬间变化率为零,故电动势也为零,故A错误;当线框开始进入第二个磁场时,线框中磁通量向里减小,则可知电流方向为顺时针方向,故D错误;而进入第二个磁场后,分处两磁场的线框两部分产生的电流相同,且有效长度是均匀变大的,当将要全部进入第二个磁场时,线框中电流达最大2I0.故C正确.4.(多选)如图所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+kv(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为F A,电阻R 两端的电压为U R,感应电流的功率为P,它们随时间t变化图象可能正确的有( )

法拉第电磁感应定律及其应用

法拉第电磁感应定律及其应用 1. (法拉第电磁感应定律的应用)(优质试题·北京卷)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。磁感应强度B随时间均匀增大。两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响。下列说法正确的是() A.E a∶E b=4∶1,感应电流均沿逆时针方向 B.E a∶E b=4∶1,感应电流均沿顺时针方向 C.E a∶E b=2∶1,感应电流均沿逆时针方向 D.E a∶E b=2∶1,感应电流均沿顺时针方向 ,感应电流产生的磁场方向垂直圆环所在平面向里,由右手定则知,两圆环中电流均沿顺时针方向。圆环的半径之比为2∶1,则面积之比为4∶1,据法拉第电磁感应定律得E=为定值,故E a∶E b=4∶1,故选项B正确。 2.

(法拉第电磁感应定律的应用)如图所示,在水平面内固定着U形光滑金属导轨,轨道间距为50 cm,金属导体棒ab质量为0.1 kg,电阻为0.2 Ω,横放在导轨上,电阻R的阻值是0.8 Ω(导轨其余部分电阻不计)。现加上竖直向下的磁感应强度为0.2 T的匀强磁场。用水平向右的恒力F=0.1 N拉动ab,使其从静止开始运动,则() A.导体棒ab开始运动后,电阻R中的电流方向是从P流向M B.导体棒ab运动的最大速度为10 m/s C.导体棒ab开始运动后,a、b两点的电势差逐渐增加到1 V后保持不变 D.导体棒ab开始运动后任一时刻,F的功率总等于导体棒ab和电阻R的发热功率之和 R中的感应电流方向是从M流向P,A错;当金属导体棒受力平衡时,其速度将达到最大值,由F=BIl,I= 可得 总总 ,代入数据解得v m=10 m/s,B对;感应电动势的最大值E m=1 V,a、b F= 总 两点的电势差为路端电压,最大值小于1 V,C错;在达到最大速度以前,F所做的功一部分转化为内能,另一部分转化为导体棒的动能,D错。 3.(法拉第电磁感应定律的应用)(优质试题·海南文昌中学期中)关于电磁感应,下列说法正确的是() A.穿过回路的磁通量越大,则产生的感应电动势越大

电磁感应现象的应用

重点难点突破 一、电磁感应现象中的力学问题 1.通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本步骤是: (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度.(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向).(4)列动力学方程或平衡方程求解. 2.对电磁感应现象中的力学问题,要抓好受力情况和运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,要抓住a=0时,速度v达最大值的特点. 二、电磁感应中的能量转化问题 导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式的能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本步骤是: 1.用法拉第电磁感应定律和楞次定律确定电动势的大小和方向. 2.画出等效电路,求出回路中电阻消耗电功率的表达式. 3.分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程. 三、电能求解的思路主要有三种 1.利用安培力的功求解:电磁感应中产生的电能等于克服安培力所做的功; 2.利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能; 3.利用电路特征求解:根据电路结构直接计算电路中所产生的电能. 四、线圈穿越磁场的四种基本形式 1.恒速度穿越; 2.恒力作用穿越; 3.无外力作用穿越; 4.特殊磁场穿越. 典例精析 1.恒速度穿越 【例1】如图所示,在高度差为h的平行虚线区域内有磁感应强度为B,方向水平向里的匀强磁场.正方形线框abcd的质量为m,边长为L(L>h),电阻为R,线框平面与竖直平面平行,静止于位置“Ⅰ”时,cd边与磁场下边缘有一段距离H.现用一竖直向上的恒力F提线框,线框由位置“Ⅰ”无初速度向上运动,穿过磁场区域最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ab边保持水平.当cd边刚进入磁场时,线框恰好开始匀速运动.空气阻力不计,g=10 m/s2.求: (1)线框进入磁场前距磁场下边界的距离H; (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为多少?线框产生的热量为多少? 【解析】(1)线框进入磁场做匀速运动,设速度为v1,有: E=BLv1,I=ER,F安=BIL 根据线框在磁场中的受力,有F=mg+F安

电磁感应综合应用

电磁感应综合应用 1.闭合矩形导线框abcd 固定在匀强磁场中,磁场的方向与导线框所在平面垂直,磁感应强度B 随时间t 变化的规律如图所示。规定垂直纸面向里为磁场的正方向,abcda 的方向为线框中感应电流的正方向,水平向右为安培力的正方向。关于线框中的电流i 与ad 边所受的安培力F 随时间t 变化的图象,下列正确的是( ) 2.如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为B 的圆形匀 强磁场区域,导体棒中的感应电动势ε与导体棒位置x 关系的图像是(A) 3.电阻R 、电容C 与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示,现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流 方向和电容器极板的带电情况是( ) A .从a 到b ,上极板带正电 B .从a 到b ,下极板带正电 C .从b 到a ,上极板带正电 D .从b 到a ,下极板带正电 4.用相同导线绕制的边长为L 或2L 的四个闭合导体线框,以相同的速 度匀速进入右侧匀强磁场,如图所示。在每个线框进入磁场的过程中, M 、z 两点间的电压分别为U a 、U b 、U c 和U d 。下列判断正确的是 A .U a <U b <U c <U d B .U a <U b <U d <U c C .U a =U b <U c =U d D .U b <U a <U d <U c 5.如右图所示,在匀强磁场B 中放一电阻不计的平行金属导轨,导轨跟固定的 大导体矩形环M 相连接,导轨上放一根金属导体棒ab 并与导轨紧密接触,磁感 应线垂直于导轨所在平面。若导体棒匀速地向右做切割磁感线的运动,则在此 过程中M 所包围的固定闭合小矩形导体环N 中电流表内 ( ) A.有自下而上的恒定电流 B .产生自上而下的恒定电流 C .电流方向周期性变化 D .没有感应电流 6.如图所示电路中,L 是一电阻可忽略不计的电感线圈,a 、b 为L 上的左右两端点, A 、 B 、 C 为完全相同的三个灯泡,原来电键K 是闭合的,三个灯泡均在发光。某时 刻将电键K 打开,则下列说法正确的是( ) A .a 点电势高于b 点,A 灯闪亮后缓慢熄灭 B .b 点电势高于a 点,B 、 C 灯闪亮后缓慢熄灭 C .a 点电势高于b 点,B 、C 灯闪亮后缓慢熄灭 D .b 点电势高于a 点,B 、C 灯不会闪亮只是缓慢熄灭 7.如图甲所示, MN 左侧有一垂直纸面向里的匀强磁场。现将一边长为l 、质量为m 、电阻为R 的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc 边与磁场边界MN 重合。当t=0时,对线框施加一水平拉力F ,使线框由静止开始向右做匀加速直线运动;当t=t 0时,线框的ad 边与磁场边界MN 重合。图乙为拉力F 随时间变化的图线。由以上条件可知,磁场的磁感应强度B 的大小为 A .B = .B =C .B = . B = a d 0F 03F 0甲乙××××××B ××××

电磁感应的应用论文

电磁感应现象在生活中的应用 摘要:自法拉利历经十年发现电磁感应现象后,电磁感应便开始运用于生活中。电话筒、录音机、汽车车速表、熔炼金属等,无一不与生活息息相关,极大的方便了我们的生活,推动了社会的进步,和发展。同时,它的利用也是理论向实践的不断进步的过程,理论唯有利用于实践才更能发挥它的作用。 动圈式话筒 在剧场里,为了使观众能听清演员的声音,常常需要把声音放大,放大声音的装置主要包括话筒,扩音器和扬声器三部分。话筒是把声音转变为电信号的装置。动圈式话筒是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的线圈(叫做音圈)随着一起振动,音圈在永久磁铁的磁场里振动,其中就产生感应电流(电信号),感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。 磁带录音机 磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随

音频电流变化的磁场。磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。 ③汽车车速表 汽车驾驶室内的车速表是指示汽车行驶速度的仪表。它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。其中永久磁铁与驱动轴相连。在表壳上装有刻度为公里/小时的表盘。 永久磁铁一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。当驱动轴带动永久磁铁转动时,则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方,磁感线的数目逐渐增加,而后方则逐渐减少。由法拉第电磁感应原理知道,通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方

对电磁感应定律的理解和应用

第18卷 第12期 武汉科技学院学报 Vol.18 No.12 2005年12月 JOURNAL OF WUHAN UNIVERSITY OF SCIENCE AND ENGINEERING Dec. 2005 对电磁感应定律的理解和应用 袁作彬 (湖北民族学院 物理系,湖北 恩施 445000) 摘要:电磁感应定律是电磁学中的一条重要定律,它的两种表述形式,分别反映了电磁感应的宏观表现和微 观机制。对电磁感应定律的理解和运用是电磁学教学的一个重要内容。分析了现行教材中用法拉第电磁感应 定律判定感应电动势方向方法的弊端,提出了一种简便方法,并给出了验证的实例。 关键词:法拉第电磁感应定律;感应电动势;右手定则 中图分类号:O441.3 文献标识码:B 文章编号:1009-5160(2005)-0147-02 电磁感应定律是电磁学教学中的重要内容,结合教学实践,谈谈对于电磁感应定律两种表述及利用法拉第电磁感应定律判断感应电动势的简便方法。 1 电磁感应定律的两种表述 电磁感应定律是电磁学的重要规律,它有两种表述形式。电磁感应定律的第一种表述为: t d d φε?= (1) 式(1) 是电磁感应的宏观表现,它表明当通过闭合回路所围面积的磁通量发生变化时,回路中就产生感应电动势(不论引起磁通量变化的原因是什么)。同时,无论回路的绕行方向怎样选择,ε总与t d d φ的符号相反。 进一步分析引起磁通量变化的原因,有电磁感应定律的第二种表述:[1~3] →→ →→→?????×=∫∫∫S d t B l d B L S )(νε (2) 式(2)中的第一项就是由于导体运动而产生的动生电动势()d L B d l εν→→→ =×?∫,第二项则是由于磁场变化而产生的感生电动势S d t g ∫∫??=ε,式(2)反映出电磁感应的微观机制。由此可以看出,动生电动势和感生电动势的物理过程是有区别的。关于这两种表述表述是否等价的问题,有许多文献讨论,至今仍无定论。[4~6] 2 电磁感应定律的应用 式(2)所示的第二种表述是从微观机理出发揭示电磁感应现象,它不仅揭示了电磁感应现象的微观本质,而且也便于应用。利用式(2),既可以方便地计算由非闭合导体在磁场中做切割磁力线运动而产生的动生电动势,也便于计算静止的闭合导体由于磁场变化而产生的感生电动势,当然也可以计算闭合导体在变化的磁场中运动时产生的感应电动势。 对于第一种表述,现行教材中是这样处理的:在讨论ε的正负之前,将回路的绕向与以回路为边界的曲面法向矢量n r 统一在右手螺旋定则下。在图1所示的四种情形中,一律规定回路的绕向如图中虚线所示,按右手定则,以它为边界的曲面法 收稿日期:2005-08-23 作者简介:袁作彬(1966-),讲师,硕士,研究方向:理论物理.

专题四:41电磁感应定律及其应用

专题四:4.1电磁感应定律及其应用 一、单项选择题 1.下列说法正确的是( ) A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B .线圈中的磁通量越大,线圈中产生的感应电动势一定越大 C .线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 D .线圈中磁通量变化得越快,线圈中产生的感应电动势越大 [答案] D 2.如图所示,闭合线圈abcd 在磁场中运动到如图位置时,ab 边受到的磁场力竖直向上,此线圈的运动情况可能是( ) A .向右进入磁场 B .向左移出磁场 C .以ab 为轴转动 D .以ad 为轴转动 [答案] B 3.(2012·吉林期末质检) 如图所示,两块水平放置的金属板距离为d ,用导线、开关K 与一个n 匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中.两板间放一台小压力传感器,压力传感器上表面静止放置一个质量为m 、电荷量为+q 的小球,K 断开时传感器上有示数,K 闭合稳定后传感器上恰好无示数,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A .正在增加,ΔΦΔt =mgd q B .正在减弱,ΔΦΔt =mgd nq C .正在减弱,ΔΦΔt =mgd q D .正在增加,ΔΦΔt =mgd nq

[答案] D 5.(2012·海南卷)如图,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则() A.T1>mg,T2>mg B.T1mg,T2mg [答案] A 二、双项选择题 6.如图所示是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是() [答案]CD 7.(2012·长沙名校模考)如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带,根据穿过磁场后线圈间的距离,就能够检测出不合格线圈,通过观察图形.判断下列说法正确的是()

电磁感应现象及其应用生活实践中

西北农林科技大学 电磁感应现象及其应用 学院:风景园林艺术学院 班级:园林134 姓名:崔苗苗 学号:2913911465 134

电磁感应现象及其在生活中的应用 西北农林科技大学风景园林艺术学院 姓名崔苗苗班级园林134班学号 2013011465 摘要自法拉第历经十年发现电磁感应现象后,电磁感便开始应用生活中。话筒, 电磁炉,电视机,手机等生活用品,无不与人类生活息息相关,极大地方便了我们的生活,推动了社会历史的进步和发展。同时,它的应用也是理论向实践不断探索和改进的过程,理论唯有应用于实践,才更能发挥它的价值。 关键词电磁感应现象生活应用 电磁感应现象的发现不仅揭示了电与磁之间的内在联系,而且为电与磁之间的转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在生活中具有重大的意义。它的发现,标志着一场重大的工业和技术革命的到来。在电工技术,电子技术以及电磁测量等方面都有广泛的应用,人类社会从此迈入电气化时代,对推动生产力和科学技术发展发挥了重要作用。物理发现的重要性由此可见。本文主要介绍了电磁感应现象及其在人类生活中的相关应用。 一.电磁感应现象定义 闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。本质是闭合电路中磁通量的变化。而闭合电路中由电磁感应现象产生的电流叫做感应电流。 二.电磁感应发现历程 电磁学是物理学的一个重要分支,初中时代的奥斯特实验为我们打开电磁学的大门,此后高中三年这一部分内容也一直是学习的重中之重。继1820奥斯特实验之后,电与磁就不再是互不联系的两种物质,电流磁效应的发现引起许多物理学家的思考。当时,很多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,而迈克尔·法拉第即为其中一位。他在1821年发现了通电导线绕磁铁转动的现象,然后经历10年坚持不懈的努力,最终于1831年取得突破性进展。 法拉第将两个线圈绕在一个铁环上,其中一个线圈接直流电源,另一个线圈接电流表。他发现,当接直流电源的线圈电路接通或断开的瞬间,接电流表的线圈中会产生瞬时电流。而在这个过程中,铁环并不是必须的。无论是否拿走铁环,再做这个实验的时候,上述现象仍然发生,只是线圈中的电流弱些。 为了透彻研究电磁感应现象,法拉第又继续做了许多的实验。终于,在1831年11月24日,他在向皇家学会提交的一个报告中,将这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、

电磁感应中的综合应用

电磁感应中的综合应用 一、电磁感应中的电路问题 1. 切割磁感线的导体或磁通量发生变化的回路产生感应电动势, 确定感应电动势和内阻 2. 正确分析电路的结构,画出等效电路图 3. 利用电路规律求解?主要闭合电路欧姆定律、串并联电路性质特点、电功、 解未知物理量. 1. 把总电阻为2R 的均匀电阻丝焊接成一半径为 a 的圆环,水平固定在 竖直向下的磁感应强度为 B 的匀强磁场中,如右图所示,一长度为2a, 电阻等于R,粗细均匀的金属棒 MN 放在圆环上,它与圆环始终保持良 好的电接触.当金属棒以恒定速度 v 向右移动经过环心 0时,求: (1)棒上电流的大小和方向; ⑵棒两端的电压UMN ⑶在圆环和金属棒上消耗的总热功率. 0.4 0 6 0 3,th 则这部分电路就是等效电源, 电热的公式.求 R =0.6 Q 的电 B =0.6T 的匀强磁场,磁场区域宽 D =0.2m ,细金属棒A 1和 A 2用长为2 D =0.4m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直.每根金属棒 在导轨间 的电阻均为 r =0.3 Q 导轨电阻不计.使金属棒以恒定速度 v =1.0m/s 沿导轨向右穿越 磁场.计算从金属棒A 1进入磁场(t =0) 电流强度,并在图(b )中画出. 2.如图(a )所示,水平放置的两根据平行金属导轨,间距 阻.区域abed 内存在垂直于导轨平面 L=0.3m ,导轨左端连接 到A 2离开磁场的时间内,不同时间段通过电阻R 的 *9 A1* li A M fe I 如 0 16 □ 14 0 0,10 0 00 0 06 0.04 0.02 ■ III II ■III X- X X X X X X X X X X X 用 X X V

1003法拉第电磁感应定律应用

1003法拉第电磁感应定律应用1 一、电磁感应电路问题的理解和分类 1.对电源的理解:电源是将其他形式的能转化为电能的装置.在电磁感应现象里,通过导体切割磁感线和线圈磁通量的变化而将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类: (1)确定等效电源的正负极,感应电流的方向,电势高低,电容器极板带电性质等问题. (2)根据闭合电路求解电路中的总电阻,路端电压,电功率的问题. (3)根据电磁感应的平均感应电动势求解电路中通过的电荷量: 【针对训练】 1.(2009·广东汕头六都中学质检)如图所示,在磁感应强度B=0.5 T的匀强磁场中,有一等边三角形ABC的固定裸导体框架,框架平面与磁感线方向垂直,裸导体DE能沿着导体框架滑动,且滑动时一直能与框架保持良好的接触.已知三角形的边长为0.2 m,且三角形框架和导体DE的材料、横截面积相同,它们单位长度的电阻均为每米10 Ω,当导体DE以v=4.2 m/s的速度(速度方向与DE垂直)下滑至AB、AC的中点M、N时,求: (1)M、N两点间感应电动势的大小; (2)流过导体框底边BC的电流多大?方向如何? 二、求解电磁感应与力学综合题的思路 思路有两种:一种是力的观点,另一种是能量的观点. 1.力的观点 力的观点是指应用牛顿第二定律和运动学公式解决问题的方法.即先对研究对象进行受力分析,根据受力变化应用牛顿第二定律判断加速度变化情况,最后找出求解问题的方法.2.能量观点 动能定理、能量转化守恒定律在电磁感应中同样适用. 三、电磁感应综合题中的两部分研究对象 电磁感应中的综合题有两种基本类型.一是电磁感应与电路、电场的综合;二是电磁感应与磁场、导体的受力和运动的综合;或是这两种基本类型的复合题,题中电磁现象、力现象相互联系、相互影响和制约. 这类题综合程度高,涉及的知识面广,解题时可将问题分解为两部分:电学部分和力学部分. 1.电学部分思路:将产生感应电动势的那部分电路等效为电源.如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串、并联.分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.

10.4电磁感应与动量、能量的综合应用

1 电磁感应与动量、能量的综合应用 题组一:动量守恒、动量定理 【例1】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成。其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B ,导轨水平段上静止放置一金属棒 cd ,质量为2m 。,电阻为2r 。另一质量为m ,电阻为r 的金属棒ab ,从圆弧段M 处由静止释放下滑至N 处 进入水平段,圆弧段MN 半径为R ,所对圆心角为60°,求: (1)ab 棒在N 处进入磁场区速度多大?此时棒中电流是多少? (2)cd 棒能达到的最大速度是多大? (3)cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例2】(动量定律)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m 。两根质量均为 m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻 为R =0.50Ω。在t =0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t =5.0s ,金属杆甲的加速度为a =1.37m/s 2 ,问此时两金属杆的速度各为多少? 【例3】两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?

(计算题)法拉第电磁感应定律及其应用专题训练

法拉第电磁感应定律及其应用专题训练 计算题部分 1.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距L为1m,电阻不计.导轨所在的平面与磁感应强度B为1T的匀强磁场垂直.质量m=0.2kg、电阻r=1Ω的金属杆ab始终垂直于导轨并与其保持光滑接触,导轨的上端有阻值为R=3Ω的灯泡.金属杆从静止下落, 当下落高度为h=4m后灯泡保持正常发光.重力加速度为g=10m/s2.求: (1)灯泡的额定功率; (2)金属杆从静止下落4m的过程中通过灯泡的电荷量; (3)金属杆从静止下落4m的过程中所消耗的电能 2.如图所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1kg、电阻r=0.2Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10m/s2,sin37°=0.6. (1)试判断金属杆ab在匀强磁场中做何种运动,并请写出 推理过程; (2)求电阻R的阻值; (3)求金属杆ab自静止开始下滑通过位移x=1m所需的时 间t. 3.如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连。导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T。一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直。棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变。求: (1)电路中的电流; (2)金属棒在x=2m处的速度; (3)金属棒从x=0运动到x=2m过程中安培力做功的大小; (4)金属棒从x=0运动到x=2m过程中外力的平均功率

相关主题