搜档网
当前位置:搜档网 › 碳纤维远红外线电热管

碳纤维远红外线电热管

碳纤维远红外线电热管
碳纤维远红外线电热管

碳纤维远红外线电热管

产品简介:

碳纤维电热管又名碳纤维远红外电热管、碳纤维远红外石英电热管。是一种继金属管、石英管、卤素管、陶瓷管等传统发热管之后,近两年来刚兴起的一种高科技产品加热元件,其优异的性能愈来愈受国内外广大客户的欢迎。其发热体——碳纤维,具有功率余量大、耐高温、高热能力强、使用寿命长、且功率可随意调节等优点,被誉为是“本世纪最具竞争力的高科技材料”。它的出现在电热领域掀起了一场新的革命,碳纤维发热体替代金属发热体将成为一种必然的趋势。

它是一种区别于金属丝、卤素等传统电热管的高科技产品,具有使用寿命长、电热转换效率高、远红外线辐射、健康环保等优异性能。碳纤维发热材料是本世纪最具有竞争力的高科技材料,许多经济发达国家纷纷研制生产和使用碳纤维发热材料,以取代传统的金属、PTC等的发热材料。

特点:

该产品的发热基材是由聚丙稀腈和粘胶基碳纤维经特殊工艺复合而成的,其含碳量高达99.99%以上。具有功率余量大、耐高温、高热能力强等优点。电极选用耐高温的钼材料经特殊工艺加工而成,耐高温、寿命长。有效的保证了“远红外碳纤维电热管”的使用寿命。

符合GB/T2423.3-1993电子电工产品基本环境实验规规程,试验Ca:恒定湿热实验方法及GB4706.1-1998家用和类似电器的安全通用要求。

优点如下:

1、电热转换效率高,节能效果显著

a) 碳纤维是纯黑体材料,在电-热转换过程中几乎不存在可见光,只

要处理得当,在高温状态下使用不氧化,其单位面积电流的负荷也不会发生改变。在电热转换过程中不存在弥散性的局部击穿问题,也就不会存在电热功率衰减,因此具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快、抗拉强度高等特点。工作过程中光通量远远小于金属发热体的电热管,电热转换效率高达95%以上(也就是说你用1000W的普通电热管,用碳纤维电热管的时候只需要700W)。在电-热转换过程,可见光很小。

b) 烧水节能15.5%。

c) 在相同功率下,比镍铬金属电热管辐射温度高30℃,比钨钼丝石

英电热管高15℃。

d) 它所发出的远红外线,被人体、衣物、水等直接吸收性特强,在

热传递过程中热量损失小,节能性强;

e) 对碳水化合物吸收性更强,有良好碳原子谐振效应,产品效能大

大提高。

f) 升温速度极快,电气性能稳定,升温速度极快。

碳纤维电热管通电以后,在频繁启动、关闭和长期连续工作中,功率稳定在一定公差范围之内,不会产生任何的瞬间功率冲击。其在通电2秒时就可以感到轻微灼手的热量,在3-5秒时就能达到额定功率。比一般传统的金属电热材料(镍铬、钨钼等金属材料)节能达30%以上。比同功率的钨钼材料的金属发热体热效率提高30%以上,升温的时间节省30%以上。在工作环境允许的情况下,工作温度可达1200摄氏度,完全可取代以金属为发热体的电热管。

2、无瞬间电流冲击

燃点不需要镇流器,起动时无脉冲电流冲击,使点灯电源、保护电路简单化,电源及相关电器使用寿命延长。

3、热辐射指向高,可提高设计定向热辐射。

4、环保

a) 无光污染,不刺激眼睛和灼伤皮肤;

b) 无紫外线辐射和有害气体

c) 无高频辐射(只有远红外辐射),无微波、电磁波,同时还具有

吸收有害光波的性能。

5、光辐射集中在1.5-15μm之间的红外波段。

碳纤维电热管与金属发热体的红外线等相比:

有机物吸收波长、红外辐射强度分别提高30%以上。用碳纤维电热管照射加工食品,因红外辐射渗透性强,调理时间短,食品食感能保持原汁原味。用碳纤维电热管加热制成的取暖器,因红外辐射强度高,具有促进人体血液循环的功能,有益人体健康,被誉为保健型取暖器。

6、远红外辐射效果佳,保健功能显著

远红外线碳纤维电热管是一种以辐射远红外线为主的发热体,电热辐射转换率达70%以上。它所发射出的远红外线的波长在1.5-15μm之间,这段波长的远红外线谱被称为“生命之光”,占整体波长的80%。同时它能够被空气中的水分子吸收产生共振摩擦热效应,实现了快速提高采暖环境温度的作用。特别是能有效的活化人体组织细胞、促进血液循环、加速新陈代谢、增强免疫能力,同时还具有防臭除湿抗菌等效果。

远红外碳纤维电热管释放的热量绝大部分是远红外辐射能量,与金属发

热体不同,它完全避免了电磁场的产生,而且没有浪涌电流。同时由于碳素物体本身辐射的远红外线80%与人体红外线重合,因此在安全、节能、健康、舒适性等方面占有很大的优势,是目前性能最好的电热元件。

用碳纤维红外线石英电热管照射加工食品,因红外辐射渗透性强,调理时间短,食品食感能保持原汁原味。用碳纤维红外线石英电热管烤漆,能够有效地提高油漆表面质量,增加漆膜附着力度、强度更高,亮度更亮、韧性更好。加热制成的取暖器,因红外辐射强度高,具有促进人体血液循环的功能,有益人体健康,被誉为保健型取暖器。

7、耐酸性、耐腐蚀性强

石英玻璃是良好的耐酸材料(氢氟酸除外),相当耐酸陶瓷的 30倍,相当于不锈钢(镍铬合金)的 100多倍。是酸体加热的最佳选择。

8、使用寿命长达6000小时以上.

碳纤维石英电热管,其寿命(连续点烧)≥6000小时以上(6000--

-15000),在频繁启动、关闭和长期连续工作中,发热体无氧化和击穿现象,发热光色均匀、管壁内外清洁。

碳纤维电热管在频繁启动、关闭和长期连续工作中,发热体无氧化和击穿现象,发热光色均匀。其寿命≥6000小时以上。

9、耐冷热骤变性强

10、美观大方,安装方便。

外管为透明的石英玻璃管,发热体通电后呈现柔和的桔黄色,两端配白色的瓷帽和引线,这种搭配外观上简洁大方,安装上更是简单方便。

四、电热技术参数

1、技术参数

电压(v) 100,110,115,120,220,230,235,240

功率(w) 200-2000 功率误差(%) +5~-10

长度(mm) 200-1500 长度误差(mm) ±1

管径(mm) ф10,12,14 管径误差(mm) ±0.05

电-热转换效率(%) ≥95% 最高工作温度(℃) ≤800℃ 电-热辐射转换效率 ≥65% 最高发热温度(℃) ≤800℃ 法向全发射率(%) ≥88% 红外线波长(μm) 1.5-15色温(k) 1000~1400 使用寿命(h) 6000

节能率(%)(比同种功率的发热体) ≥30% 功率(W)

≤1500W

远红外发射率(%) ≥86% 电气绝缘强度:1500V/1min 无异常

泄漏电流:≤0.05mA 耐冷热骤变 1.2倍电压下,强制或室温冷却21个循环无异常。 泄漏电流(mA) 1.36倍电压下≤0.5mA

2.碳纤维电热管与金属发热体电热管光通量比较(见表4) 

序号检验项目单位检验结果

功率

总光通量碳纤维金属

(w)

1400Lm 3.5068.2

2600 3.70228.0

380012.6712.9

4100085.52302.5

4.产品用途

本产品广泛应用于取暖器、暖风机、浴霸、消毒柜、远红外理疗、美容仪器等各类取暖及远红外保健领域。

本产品广泛应用于食品烘干机械、茶叶、烟叶烘干机械、假发烘干等烘干和干燥及各类远红外烘干(干燥)烤箱领域。

本产品广泛应用于烤漆、喷塑、塑料设备等及各种烘干通道。 本产品广泛应用于蔬菜大棚保温种植、泵房干燥、除潮等领域本产品广泛应用于消毒柜、光波炉、面包机、多士炉、食品烤箱等。

根据客户需求制作碳纤维电热管的电压、总长、功率。

产品种类:●直型电热管●U型电热管●Ω型电热管●梨型电热管 产品品种:●碳纤维毡管●碳纤维螺旋管●碳纤维编织管●单头出线管

质量宗旨:顾客满意是我们的职责,超越满意是我们不断的追求。 经营宗旨:质量第一、用户至上、信守合同、交货及时、价格合理

碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下:

(一)轻质、高强度、高模量

碳纤维的密度是1.6~2.15g/cm3,碳纤维拉伸强度在2.2GPa以上,模量在230GPa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。

(二)热膨胀系数小

绝大多数碳纤维本身的热膨胀系数,室温为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料?..更多详细内容,请登陆后查看!

目前,碳纤维主要是制成碳纤维增强塑料这种复合材料来应用碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。上前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为

A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。

B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。

C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极

好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。

【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型。通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。强度大于4000MPa的又称为超高强型;模量大于

450GPa的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈基碳纤维。碳纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。碳纤维由聚丙烯腈纤维、沥青纤维或粘胶维等经氧化、炭化等过程制得的含碳量为90%以上的纤维。

碳纤维电热管介绍

碳纤维加热管介绍 连云港弘扬石英制品有限公司专业生产碳纤维加热管、发热管。碳纤维发热材料是一种纯黑体材料,因此具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快等特点。 作为本世纪最具有竞争力的高科技材料,许多经济发达国家纷纷研制生产和使用碳纤维发热材料,以取代传统的金属、PTC等的发热材料。 碳纤维发热体碳纤维远红外电热管是一种取代金属丝、卤素等传统电热管的高科技产品,具有使用寿命长、电热转换效率高、远红外线辐射、健康环保等优异性能。 燃点不需要镇流器,起动时无脉冲电流冲击,使点灯电源、保护电路简单化,电源及相关电器使用寿命延长。工作过程中光通量远远小于金属发热体的电热管,电热转换效率高达95%以上(也就是说你用1000W的普通电热管,用碳纤维电热管的时候只需要700W)。主要优势有。 1、节能 碳纤维是一种纯黑体的发热材料,在电-热转换过程中几乎不存在可见光,具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快等特点。在电热转换过程,可见光很小,电热转换效率达95%以上。工作过程中光通量远远小于金属发热体的电热管,比同功率的钨钼材料的金属发热体热效率提高30%以上,升温的时间节省30%以上。在工作环境允许的情况下,工作

温度可达800摄氏度,完全可取代以金属为发热体的电热管。比电阻丝、卤素管等材料作为发热体的加热器,可节能30%。它所发出的远红外线,被人体、衣物、水等直接吸收性特强,在热传递过程中热量损失小,节能性强。 2、电气性能稳定 碳纤维远红外线石英电热管在通电以后,在频繁启动、关闭和长期连续工作中,功率稳定在一定公差范围之内,不会产生任何的瞬间功率冲击。 3、远红外和实用性集于一身 远红外线辐射加热灯管的红外线辐射波长为2.3~14μm。碳纤维石英电热管在通电以后,会辐射出可以加热物料的红外线能量。能量发射的方式是以远红外辐射为主,它所发射的远红外波长在8μm -14 μm之间,这段波长的远红外线谱被称为“生命之光”,占整体波长的80%以上。同时它能够被空气中的水分子吸收产生共振摩擦热效应,实现了快速提高采暖环境温度的作用。特别是能有效的活化人体组织细胞、促进血液循环、加速新代谢、增强免疫能力,同时还具有防臭除湿抗菌等效果,当碳纤维石英电热管加热时能够产生 765.9W/M 的红外线辐射,相当于一部频谱理疗仪。如果长期被关节炎或其他风湿类疾病困扰的人们在经常使用后能得到明显的减轻和缓解效果。 同时它能够被空气中的水分子吸收产生共振摩擦热效应,实现了快速提高采暖环境温度的作用。特别是能有效的活化人体组织细

远红外功能性材料

一、什么是远红外线 红外线是国外著名科学家赫歇尔在一次科学实验中发现的,他发现在太阳的可见光线以外存在着一种神奇的光线,人的肉眼无法看见这种光线,但它的物理特性与可见光线极为相似,有着明显的热辐射。由于它位于可见光中红光的外侧,故而称之为红外线,红外线的波长范围很宽,介于0.75——1000微米之间,在红外线中,波长较短的为近红外线,而远红外线是红外线中波长最长的一段红外线。根据使用者要求的不同,划分的标准不尽相同,在实际应用中,通常将波长在2.5微米以上的红外线称为远红外线。 二、红外线的划分 根据使用的要求不同,红外线的划分很不相同。 把能通过大气的三个波段划分为:近红外波段1~3微米 中红外波段3~5微米 远红外波段8~14微米 根据红外光谱划分为:近红外波段 1~3微米 中红外波段 3~40微米 远红外波段 40~1000微米 医学领域中常常如此划分:近红外区 0.76~3微米 中红外区 3~30微米 远红外区 3~30微米 医用红外线可分为两类:近红外线与远红外线。近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。 三、远红外线的特性 远红外线是电磁波的一种;它是不可见光,但却具备可见光所具有的一切特性,远红外线的主要物理特性如下: 1发射性: 因为远红外是属于光线范围的电磁波,所以它与光线一样不需要任何媒介便可直接传导,这就是远红外的发射性。 2渗透性(渗透力): 虽然远红外是属于光线的电磁波,但在渗透力上与其它可见光不同。远红外具有独特的穿透力,其能量可作用到皮下组织一定深度,再通过血液循环,将能量达到深层组织及器官中。这就是远红外线的渗透性。 3吸收、共振性: 根据基尔霍夫辐射定律:任何良好的辐射体,必然是良好的吸收体。在同一温度下,辐射体本领越大,其吸收本领越强,两者成正比关系,所有含远红外的物体,既可以辐射远红外线,也可以吸收远红外线,辐射与吸收对等。而人体每时每刻也都在发射远红外线,据测定:人体发射的远红线波长在9.6微米左右,所以,本单位经销的红外电热画系列产品中所产生的远红外线的波长在8----14微米,和人体表面峰值正相匹配,形成最佳吸收并可转化为人体的内能,极为密切影响到人类生命的起源、发生和发展,所以我们又称这一波长范围的远红外线

碳纤维加热管

碳纤维加热管 石英加热管是以石英管为外壁管,内部配置导电加热体,通电以后可以迅速升温的经济环保型加热器,根据内置发热体的不同可分为,碳纤维加热管,铁铬铝加热管,根据石英管种类的不同可以分为:普通石英加热管,远红外石英加热管。 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。碳纤维取暖器依靠导热性能良好的碳纤维作为两端发热器的散热导体,能够起到迅速加热的效果,而且由于碳的绝缘特性,该取暖器还能在浴室使用。 远红外碳纤维石英电加热管技术参数 额定电压:380V、220V、110V、(根据用户需要确定)元件长度:300-2500mm (根据用户需要制作 元件匹配:200-5000W 元件外径:Ф10-30mm(根据用户需要制作) 热响应速度:3-5分钟 表面温度:低温度为380~460℃中温度为500~580℃可根据用户要求提高至700~750℃,或降低到100~300℃ 光谱范围:2.5-6微米(有较高辐射强度)光谱发射系数:0.92(波长为48Um)

碳纤维石英加热元件 (1)、电气性能稳定 碳纤维石英电热管在通电以后,会辐射出可以加热物料的红外线能量。远红外线辐射加热灯管的红外线辐射波长为4~16μm(中波)。主要用于高红外加热技术,以高密度,高能量,高强辐射方式对工件加热。适合现代生产工艺高产量。高品质的要求。在频繁启动、关闭和长期连续工作中,功率稳定在一定公差范围之内,不会产生任何的瞬间功率冲击。 (2)、热效率高,比一般金属发热体节能30%以上,升温速度极快 碳纤维发热体是一种纯黑体材料,因此具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快等特点。工作过程中光通量远远小于金属发热体的电热管,电热转换效率高达98%以上(也就是说你用1000W的普通电热管,用碳纤维电热管的时候只需要700W),打开电源后升温速度奇快,在1~2秒时机体已经感到烫手,5秒钟表面温度可达300-700度。 (3)、远红外和实用性集于一身 碳纤维石英电热管的能量发射方式是以远红外辐射为主,其中远红外辐射效率达到了80%以上,达到了目前为止其他的远红外电热管所望尘莫及的地步。特别是针对了工业远红外设备的应用,优越的性能,超凡的品质在您的设备卖点上又步了了一个新的阶段。 (4)、使用寿命长

碳纤维技术简介_简版

1炭素纤维技术介绍 1.1炭素纤维生态草处理技术简介 炭素纤维生态草是用于净化受污染水域,修复水环境生态的优良选择,其实现了对环境的零负荷与完全的生物安全。 炭素纤维生态草具有极高的吸附性与生物亲和性,太阳光照射,炭素纤维生态草发出超音波,吸引微生物菌群。这些菌群在其表面形成粘着性活性生物膜。这些微生物以有机污染物为食,通过自身的新陈代谢作用分解水体中的有机污染物。同时很重要的是,以微生物为食的小鱼等其他小生物会聚集在炭素纤维生态草的周围,炭素纤维生态草成为鱼类及其他高级水生动物的优良卵床与养育空间。水体中的生物链,食物链修复回健康状态。水体恢复生命。利用炭素纤维治理水,构建水下森林,给水生生物搭建栖息地,以微生物、小虾小鱼、大鱼为基础的循环生态链逐步建立。 在日本,利用炭纤维技术,成功的修复了受污染的榛名湖,挽救了面临灭绝的当地独有的公鱼以及当地的传统旅游业。在其他240个案例与实验中,炭纤维的这些特性,是都得到证明的。在中国海南三亚市、江苏省苏州市景观河湖水质改善及生态修复项目上得到应用。项目水质指标均达到设计要求,水体生物多样性得到有效改善。 1.2炭素纤维生态草技术特征 a) 高生物附着比表面积 炭素纤维生态草比表面积1000m2/g.利用此特性,其能高效吸收、吸附、截留水中溶解态和悬浮态的污染物,提高水体的透明度,并为各类微生物、藻类和微型动物的生长、繁殖提供良好的着生、附着或穴居条件,最终在炭素纤维上形成薄层的具有很强净化活性功能的“生物膜”。 炭素纤维生态草与其它载体生物附着比表面积的比较

b) 生物膜结构 在炭素纤维表面形成的生物膜一个断面上,由外及里形成了好氧、兼性厌氧和厌氧三种反应区。在好氧区,好氧菌将氨氮转化为硝基氮,并把小分子有机物转化为二氧化炭和水(把可溶的无机磷转化为细胞体内的ATP),在厌氧区,厌氧菌将硝基氮转化为氮气和氧气(把难分解的大分子有机物分解为可降解的小分子有机物)。最终污染基团就被分解转化成逸出水体的N2、CO2和H2O。附着在炭素纤维上的大量微生物群,微生物群难以脱落,其上黏附的污染物难以溶出及扩散,抑制了环境的恶化。在水流的影响下,产生收缩运动,从而促进了污染物质的分解。 c) 专利编织技术,平铺、垂立安装设计 炭纤维人工草场的专利编织组合方式,可以促进海藻及生物类的着床同时形成水体珊瑚礁功能,更有利于孵化、养鱼幼鱼及其他水生动物,躲避大鱼的袭击。平铺形式的西阵带织物状,可以有效的消减底泥污染,抑制底泥内源污染物的释放。悬挂水中放置形式,解决了水体中间层微生物的载体问题。(水表面好氧菌活跃层、底层厌氧菌在底泥内部活跃,水体中间因缺乏微生物载体而微生物活动性不强)。安装设置容易结合景观文化设计,可利用生物浮岛等配合进行景观的绿化与文化内涵的结合。 d) 基于声波效应特性与材料特性基础上的生物亲和性 炭素纤维生态草,经太阳光等射线照射后,发出声波,其波段与微生物感知波段吻合,形成呼应,促使微生物迅速聚集在炭纤维周围。其发出的声波一方面激活微生物,提高微生物膜的活性,提高污染物分解速度;另一方面,通过声波吸引鱼虾贝类,聚集在其周围,形成具有生产者、消费者、分解者的完整生态链。同时炭素纤维柔软且表面形成黏着性的生物膜,是鱼、虾、贝类等水生生物优良的产卵、生息的繁殖场所,经过科学实验观察,其生物卵床功能甚至优于真实水

碳纤维发热体的特点

碳纤维发热体的特点: 碳纤维发热材料是本世纪最具有竞争力的高科技材料,许多经济发达国家纷纷研制生产和使用碳纤维发热材料,以取代传统的金属、PTC等的发热材料。 该产品的发热基材是由聚丙稀腈和粘胶基碳纤维经特殊工艺复合而成的,其含碳量高达99.99%以上。具有功率余量大、耐高温、高热能力强等优点。电极选用耐高温的钼材料经特殊工艺加工而成,耐高温、寿命长。有效的保证了“远红外碳纤维电热管”的使用寿命。 其优点如下: 1、升温迅速、比一般传统的金属电热材料节能达30%以上。 碳纤维是一种纯黑体的发热材料,在电-热转换过程中几乎不存在可见光,具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快等特点。工作过程中光通量远远小于金属发热体的电热管,电-热转换效率高达95%以上,比同功率的钨钼材料的金属发热体热效率提高30%以上,升温的时间节省30%以上。在工作环境允许的情况下,工作温度可达1200摄氏度,完全可取代以金属为发热体的电热管。 2、远红外辐射效果佳,保健功能显著 远红外线碳纤维电热管是一种以辐射远红外线为主的发热体,电热辐射转换率达70%以上。它所发射出的远红外线的波长在3-14μm之间,这段波长的远红外线谱被称为“生命之光”,占整体波长的80%。同时它能够被空气中的水分子吸收产生共振摩擦热效应,实现了快速提高采暖环境温度的作用。特别是能有效的活化人体组织细胞、促进血液循环、加速新陈代谢、增强免疫能力,同时还具有防臭除湿抗菌等效果 远红外碳纤维电热管释放的热量绝大部分是远红外辐射能量,与金属发热体不同,它完全避免了电磁场的产生,而且没有浪涌电流。同时由于碳素物体本身辐射的远红外线80%与人体红外线重合,因此在安全、节能、健康、舒适性等方面占有很大的优势,是目前性能最好的电热元件。 3、热效率高,比一般金属发热体节能30%以上,升温速度极快 碳纤维发热体是一种纯黑体材料,因此具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快等特点。工作过程中光通量远远小于金属发热体的电热管,电热转换效率高达95%以上(也就是说你用1000W的普通电热管,用碳纤维电热管的时候只需要700W)。 4、使用寿命长 碳纤维石英电热管,其寿命(连续点烧)≥6000小时以上(6000——-15000),在频繁启动、关闭和长期连续工作中,发热体无氧化和击穿现象,发热光色均匀、管壁内外清洁。 5、耐冷热骤变性强 本产品封装材料采用高纯度脱羟基石英玻璃管,热膨胀系数极小,有极高的热稳定性,能承受剧烈的温度变化而不炸裂(石英管加热到1500℃,急速投入20℃水中也不炸裂)。 6、酸性、耐腐蚀性强。 石英玻璃是良好的耐酸材料(氢氟酸除外),相当于耐酸陶瓷的30倍,不锈钢(镍铬合金)的150倍。是酸体加热的最佳选择。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域??体育休闲领域以及汽车制造、

碳纤维远红外烤漆灯装置的优点

碳纤维远红外烤漆灯装置的优点: 1.电气性能稳定 碳纤维远红外线石英电热管在通电以后,在频繁启动、关闭和长期连续工作中,功率稳定在一定公差范围之内,不会产生任何的瞬间功率冲击。 2.升温迅速,电热转换效率高 碳纤维发热体是一种纯黑体材料,具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快等特点。 3.碳纤维远红外烤灯常规规格是220v600mm1000w、(有双管、三管规格、每支灯管1000w)。在5秒内加热管达到正常工作温度、单支加热管表面温度在550 -600度之间、升温速度是一般以钨钼、镍铬等金属发热体的电热管的3-4倍。工作过程中光通量远远小于金属发热体的石英电热管,电热转换效率高达95%以上 4.红外线辐射效果显着 碳纤维远红外线石英电热管的能量发射方式是以远红外辐射为主,其中远红外辐射效率达到了80%以上。远红外线辐射加热灯管的红外线辐射波长为1.5-14μm。主要用于高红外加热技术,以高密度,高能量,高强辐射方式对工件加热,适合现代生产工艺高产量、高品质的要求。有机物吸收波长、红外辐射强度量比金属发热体的电热管分别提高30%。用其照射加工的食品,因红外辐射渗透性强,调理时间缩短,食品食感能保持原汁原味。用其作加热体制成的取暖器,因红外辐射强度高,具有促进人体血液循环的功能,有益于人体健康,被誉为保健型取暖器。 因红外辐射渗透性强,烘烤过程中就会让油漆里的水分和溶剂最先蒸发掉,不会由于里面的水分和溶剂的蒸发而使外表已经干固油漆层产生气泡和小孔,所以烤出来的效果就更好,能有效地提高油漆表面质量,增加漆膜而强度更高,韧性更好。 5.使用寿命长 碳纤维石英电热管,其寿命≥8000小时以上,在频繁启动、关闭和长期连续工作中,发热体无氧化和击穿现象,发热光色均匀、管壁内外清洁。 6.环保,无污染。无光源、废气、噪音、材料等污染,对人及动物身体无损

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

分析:家电主要用电热元件行业纵览.

分析:家电主要用电热元件行业纵览 导读:电热元件是家电产品上的重要零配件之一,几乎任何一种家电产品中,都有电热元件发挥着重要作用。而随着中国家电行业的蓬勃发展,近年来,家电用电热元件的发展速度也在不断加快。 电热管为主导 新兴材料蓬勃发展 据了解,目 电热元件是家电产品上的重要零配件之一,几乎任何一种家电产品中,都有电热元件发挥着重要作用。而随着中国家电行业的蓬勃发展,近年来,家电用电热元件的发展速度也在不断加快。 电热管为主导 新兴材料蓬勃发展 据了解,目前家电用电热元件的种类主要有电热管(棒)、电热线、电热带PTC元件、电热膜等。业内专家指出,目前,家电用电热元件仍然以技术成熟的以电阻丝为发热体,外面包裹绝缘材料的电热管、电热线、电热带等为主导,这类产品可以占到整个家电用电热元件的80%左右。其中管状电热元件较为普遍,它是一种在金属管中放入电阻丝,并在空隙部分紧密填充有良好耐热性、导热性和绝缘性的结晶氧化镁粉,再经其他工艺处理而成的电热元件。它具有结构简单、机械强度高、热效率高、安全可靠、安装简便、使用寿命长等优点。在家电领域主要应用于电热杯、电熨斗、电水壶、烤炉、烤箱、饮水机、电热水器、咖啡壶、洗碗机、空调、冰箱、洗衣机、微波炉等产品。 随着新的整机配套要求或新的环境要求,电热元件在家电整机发展的带动下,也不再局限于传统的电热水器、电热水壶、电暖器、电熨斗等“发热”家电产品,逐渐扩展到一些家电产品的“附加功能”,比如可以用于冬季制热的空调,可以自动融霜的冰箱,具有加热功能的洗衣机以及户式中央空调专用的辅助加热等。同时,提高电热元件发热效率、追求最大节能性,是电热元件技术发展的又一主导方向。 由此,以新兴材料为代表的新型电热元件也开始在家电领域崭露头角。新的发热材料或发热体的出现,带动新的电热元件的技术发展,例如PTC 元件、电热膜、以高分子为基材的带状自限温加热电缆的出现。 PTC电热材料是一类具有正温度系数的半导体功能陶瓷。PTC在转变温度之前,电阻随温度的升高而下降;从转变温度到设计最高温度之前,电阻随温度的升高而显著增长,这就是PTC效应。利用PTC效应,根据不同的温度系数,可以制造不同用途的PTC元件。PTC元件具有可靠性高、使用方便、安全、省电等优点。 苏州兴业电子有限公司技术部的一位负责人告诉《电器》记者:“相对于电热管行业,涉足PTC元件的企业并不是很多,尽管PTC的制造原理并不难,但是制造工艺却比较难掌握,比如在PTC元件烧结的过程中,如何提高产品合格率成为关键。”据了解,PTC元件可用于卷发器、直发器、暖风机、电饭煲、烘鞋器、电热毯、美容器等小家电产品,还可以用于空调产品。 目前,用于烫发器、直发器等产品的PTC元件用量少,但在暖风机、空调产品中采用的PTC元件,用量增长很快。“应用于空调中的PTC元件,对质量的要求比较严格,一般要求耐压450V以上,而普通暖风机采购的PTC元件

碳纤维远红外线电热管

碳纤维远红外线电热管 产品简介: 碳纤维电热管又名碳纤维远红外电热管、碳纤维远红外石英电热管。是一种继金属管、石英管、卤素管、陶瓷管等传统发热管之后,近两年来刚兴起的一种高科技产品加热元件,其优异的性能愈来愈受国内外广大客户的欢迎。其发热体——碳纤维,具有功率余量大、耐高温、高热能力强、使用寿命长、且功率可随意调节等优点,被誉为是“本世纪最具竞争力的高科技材料”。它的出现在电热领域掀起了一场新的革命,碳纤维发热体替代金属发热体将成为一种必然的趋势。 它是一种区别于金属丝、卤素等传统电热管的高科技产品,具有使用寿命长、电热转换效率高、远红外线辐射、健康环保等优异性能。碳纤维发热材料是本世纪最具有竞争力的高科技材料,许多经济发达国家纷纷研制生产和使用碳纤维发热材料,以取代传统的金属、PTC等的发热材料。 特点: 该产品的发热基材是由聚丙稀腈和粘胶基碳纤维经特殊工艺复合而成的,其含碳量高达99.99%以上。具有功率余量大、耐高温、高热能力强等优点。电极选用耐高温的钼材料经特殊工艺加工而成,耐高温、寿命长。有效的保证了“远红外碳纤维电热管”的使用寿命。 符合GB/T2423.3-1993电子电工产品基本环境实验规规程,试验Ca:恒定湿热实验方法及GB4706.1-1998家用和类似电器的安全通用要求。 优点如下: 1、电热转换效率高,节能效果显著 a) 碳纤维是纯黑体材料,在电-热转换过程中几乎不存在可见光,只 要处理得当,在高温状态下使用不氧化,其单位面积电流的负荷也不会发生改变。在电热转换过程中不存在弥散性的局部击穿问题,也就不会存在电热功率衰减,因此具有升温迅速、热滞后小、发热均匀、热辐射传递距离远、热交换速度快、抗拉强度高等特点。工作过程中光通量远远小于金属发热体的电热管,电热转换效率高达95%以上(也就是说你用1000W的普通电热管,用碳纤维电热管的时候只需要700W)。在电-热转换过程,可见光很小。 b) 烧水节能15.5%。 c) 在相同功率下,比镍铬金属电热管辐射温度高30℃,比钨钼丝石 英电热管高15℃。

【精选】碳纤维电热管地培训

碳纤维电热管的培训材料 碳纤维是一种新型的高性能纤维增强材料,它具有高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、抗蠕变、导电、导热和远红外 辐射等诸多优异性能。它可以依复合材料形式减轻构件重量,从而提高构件的技术性能。现已广泛应用于航天航空、新型纺织机械、石油 化工、医药器械、汽车、机械制造、建筑行业、文体用品、电信、电 加热等高新技术领域。它的广泛应用将会极大的改变我们的生活方式 和提高我们的生活质量。 用碳纤维复合的工程材料优于金属材料,其抗拉强度高于钢材于3~4倍;刚度高于2~3倍;耐疲劳性高于2倍;重量比钢材轻3~4倍;热膨胀小4~5倍。它的出现使纤维复合材料具有更广阔的发展 和应用前景。 随着各种纤维材料增强技术逐渐变的与结构设计同样重要,碳纤维材料的发展过程先后引起了诸多发达国家和发展中国家的关注, 才有了碳纤维材料今天大力发展的形势。在碳纤维材料的研究和开发过程中,科技工作者已经认识到,碳纤维材料是进入二十一世纪的最具诱惑的纤维增强材料。 一、碳纤维的分类及技术背景 碳纤维是以聚丙烯腈纤维、粘胶纤维或沥青纤维为原丝,通过加热除去碳以外的其它一切元素制得得一种高强度、高模量纤维,它有很高的化学稳定性和耐高温性能,是高性能增强复合材料中的优良结构材料。 根据炭化温度的不同,碳纤维分为三种类型: ⒈普通型(A型)碳纤维是指在900~1200℃下炭化得到的碳纤维。这种碳纤维强度和弹性模量都较低,一般强度小于 107.7cN/tex,模量小于13462cN/tex。

⒉高强度型(Ⅱ型或C型)碳纤维是指在1300~1700℃下炭化得到的碳纤维。这种纤维强度很高,可达138.4~166.1cN/tex,模量约为13842~16610cN/tex。 ⒊高模量型(Ⅰ型或B型)碳纤维又称石墨纤维,它是指在炭 化后再经2500℃以上高温石墨化处理得到的碳纤维。这类碳纤维具 有较高的强度,约为97.8~122.2cN/tex,模量很高,一般可达 17107cN/tex以上,有的甚至高达31786cN/tex。 根据制作原料不同可分为4类: 1、聚丙烯腈(PAN)基碳纤维 作为高性能纤维的一种,碳纤维既有碳材料的固有本征,又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。 美国联合碳化物公司(UCC)于1959年开始最早生产粘胶基碳 纤维,五六十年代是粘胶基碳纤维的鼎盛时期,虽然目前已开始衰退,但是它作为耐烧蚀材料至今仍占有一席之地。1959年,日本研究人 员发明了用聚丙烯腈(PAN)原丝制造碳纤维的新方法。在此基础上,英国皇家航空研究院研制出了制造高性能PAN基碳纤维时技术流程,使其发展驶入了快车道,PAN基碳纤维成为当前碳纤维工业的主流。产量占世界总产量的90%左右。1974年,美国联合碳化物公司开始 了高性能中间相沥青基碳纤维Thornel-P55的研制,并取得成功。 目前Thornel-P系列高性能沥青碳纤维仍是最好的产品,这样就形 成了PAN基、沥青基和粘胶基碳纤维的三大原料体系。 我国从20世纪60年代后期开始研制碳纤维,至今已有三十多年 的历史。1976年在中科院山西煤炭化学研究所建成我国第一条PAN 基碳纤维扩大试验生产线,产品性能基本达到日本东丽公司的T200,国内也叫做高强Ⅰ型碳纤维。我国从“六五”开始研制高强Ⅱ型碳纤 维(相当于T300),但历经20年,产品性能指标仍未达到T300标准,

碳纤维国内技术和生产现状简介

碳纤维国内技术和生产 现状简介 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维

远红外碳纤维发热电缆技术介绍

远红外碳纤维发热电缆技术介绍 豪赫蒂夫远红外地板采暖技术具有独特的技术,可确保圆形加热电缆系统之间的最佳热量分配,提供了非常大的热交换表面,并且发热电缆之间的铺设间距缩短且均匀,因此豪赫蒂夫远红外地板采暖可提供均匀,舒适的地板辐射供暖系统。 主要特征 100%德国制造 没有冷点 蓝色-终身保修,黑色-20年保修 易于安装 无需维护=节省 可安装在任何地板下 地板加热时间短至5至10分钟 由于具有IPX68防水等级,豪赫蒂夫远红外地板采暖系统可以安装在任何地方,即使是游泳池和SPA中,浴室的洗手池或洗手间或不规则的墙壁。 可由温控器恒温控制 豪赫蒂夫远红外地板采暖将防止您的家庭中的灰尘,细菌和过敏。请记住,采暖的地板要去除潮湿,这是细菌繁殖的主要原因。只需认为整个冬天干燥的地板可以阻止尘螨在房屋地板(包括地毯上)上的扩散。 生态技术=节能,因为所需的电力更少,因此您可以节省电力并显着

降低运行成本。 远红外发热电缆电地暖安装方式 干式安装-无需自流平化合物 适用于大多数层压板,实木和工程板地板地毯和乙烯基地板 豪赫蒂夫湿铺采暖系统适用于瓷砖,石材,板岩和大理石地板饰面非金属碳纤维长丝纱发热技术确保电气安全 低构建高度-最小的地板高度积聚 适用于潮湿区域 地板采暖电缆为您的厨房,浴室或温室提供地板采暖解决方案。电缆可以安装在健全且适当准备的现有木地板或混凝土地板上。 电缆非常适合较小的安装或不规则布局的房间。松散电缆系统的灵活性使得可以加热包括难以触及区域在内的最大地板面积。 主要特征: 小直径电缆 可作为单独的散装电缆或完整的解决方案包装在方便的包装中 可安装在许多地板下,包括瓷砖,天然石材和板岩。 三层极其坚硬,耐用的绝缘层,可最大程度降低安装过程中损坏的风险,并确保延长电缆寿命 符合IEC 60800,EMC安全 地板采暖电缆是由专业安装人员安装的豪赫蒂夫远红外碳纤维电缆在冬季,仓库装载区或入口走道,繁忙的公共建筑等上的工作平台上结冰会造成严重伤害。通过安装防冰系统可以轻松地将这种潜在危害

碳纤维资料总结

读《碳纤维及石墨纤维》总结 一、碳纤维和石墨纤维的发展概况 1.研究碳纤维的先驱: 1860年,英国人约琴夫?斯旺(J. Swan)用碳丝制作灯泡的灯丝,早于美国人爱迪生(T. A. Edsion)。斯旺未能解决灯泡的真空问题,爱迪生解决的真空问题。斯旺提出利用孔口挤压纤维素成纤维技术,为后来的合成纤维提供启示。 2.聚丙烯腈基碳纤维的发明者: 进藤昭男(日本大阪工业技术试验所)从事碳素的崩散现象和崩散素胶状粒子的研究以及反应堆所用碳材料中微量彭元素的去除。 进一步,他研究了民用腈纶在一些列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。研究结论是PAN纤维需要经氧化处理才能得到碳纤维,确定了制取PAN基碳纤维的基本工艺流程,即氧化和碳化。但未能制造性能好的碳纤维。 英国人瓦特(W. Watt)在预氧化的过程中施加张力牵引打通了制取高性能碳纤维的流程工艺,从此牵伸贯穿于氧化和碳化的始终,成为制造碳纤维最重要的工艺参数。 目前,牵张力已细化和量化,在不同热处理过程中施加适量的牵张力,以满足结构的转化。3.从东丽公司碳纤维发展历程看原丝的重要性: 日本东丽公司在碳纤维的质量和产量均位于世界之首。公司发展启示:原丝是制取高性能碳纤维的前提。 1962年,公司采用民用腈纶为原丝,但生产不出质量较好的碳纤维。 1967年,研究适合制造碳纤维的共聚原丝,把提高PAN(聚丙烯腈)原丝质量放在第一位。 目前主要经营T300(碳纤维,300为拉伸强度3Gpa),M40(石墨纤维,拉伸模量40Gpa)。 1981年,波音公司提出高强度、大伸长的碳纤维需求,制造大型客机的一次结构材料。 1984年,东丽公司成功研制T800,满足波音公司需求。 1986年,研制T1000;1992年,研制了M70J。 目前,T800H已经是制造大飞机(A380和B787)的主要增强纤维。T1000是碳纤维中拉伸强度最高、断裂伸长最大的碳纤维。M70J的拉伸模量最高达到690Gpa,是目前PAN基石墨纤维中最高的纤维。 碳纤维的单丝截面的SEM图从肾形(1976)变为圆形。圆形(2006)的碳纤维成为碳纤维质量的指标之一。 4.我国PAN基碳纤维的研究: 起始于20世纪60年代中期,中科院山西煤炭化学研究所于1976年建成我国第一条生产线。 整经加捻送丝机(100束)->1#预氧化炉170~220℃和牵伸5%->2#预氧化炉220~240℃和牵伸1%->3#预氧化炉240~270℃和牵伸0%->低碳炉400~700℃->高碳炉1250℃->浸胶槽->红外灯烘干->收丝机(100束)。加工后碳纤维的拉伸强度为2.8Gpa,拉伸模量为250Gpa,断裂伸长率为1.5%。 为了提高碳纤维的拉伸强度,当时采用补强处理。实验表明碳纤维的拉伸强度越低其补强效果越

碳纤维加热管

碳纤维红外线石英电热管是一种区别于金属丝、卤素等传统电热管的高科技产品,具有使用寿命长、电热 转换效率高、红外线辐射、健康环保等优异性能。 一、产品简介 本产品发热体基材为进口碳纤维发热体,具有功率余量大、耐高温、高热能力强、使用寿命长、且功 率可随意调节等优点。碳纤维红外线石英电热管产品,符合GB/T2423.3-1993电子电工产品基本环境实验 规规程,试验Ca:恒定湿热实验方法及GB4706.1-1992家用和类似电器的安全通用要求。 1.电热转换效率高,节能效果显著 碳纤维发热体是纯黑体材料,在电-热转换过程,可见光很小,电热转换效率达95%以上,比镍铬、钨钼等材料作为发热体的加热器,可节能30%; 在相同功率下,比镍铬金属电热管辐射温度高30℃,比钨钼丝石英电热管高15℃。 发出的远红外线,被人体、衣物、水等直接吸收性特强,在热传递过程中热量损失小;对碳水化合物吸 收性更强,有良好碳原子谐振效应,产品效能大大提高。 2.无瞬间电流冲击 燃点不需要镇流器,起动时无脉冲电流冲击,使点灯电源、保护电路简单化,电源及相关电器使用寿命 延长。 3.热辐射指向高,可提高设计定向热辐射。 4.环保 无光污染,不刺激眼睛和灼伤皮肤;无紫外线辐射和有害气体及高频辐射。 5.红外线辐射效率高, 碳纤维红外线石英电热管红外波长范围在 1.5-15μm之间,电热辐射转换效率≥70%以上。 碳纤维红外线石英电热管与金属发热体的红外线等相比,有机物吸收波长、红外辐射强度分别提高30%以上。用碳纤维红外线石英电热管照射加工食品,因红外辐射渗透性强,调理时间短,食品食感能保持原 汁原味。用碳纤维红外线石英电热管烤漆,能够有效地提高油漆表面质量,增加漆膜附着力度、强度更高, 亮度更亮、韧性更好。加热制成的取暖器,因红外辐射强度高,具有促进人体血液循环的功能,有益人体 健康,被誉为保健型取暖器。 6.耐酸性、耐腐蚀性强 石英玻璃是良好的耐酸材料(氢氟酸除外),相当耐酸陶瓷的30 倍,相当于不锈钢(镍铬合金)的 100多倍。 7.使用寿命长达8000小时以上. 8.耐冷热骤变性强 石英玻璃管加热到1100度,迅速投入到冷水中,也无异常。

碳纤维施工工艺介绍

碳纤维加固混凝土结构施工工艺 碳纤维复合材料具有抗拉强度高、密度小、耐腐蚀性和耐久性好等优点,碳纤维片加固补强混凝土结构的应用研究始于 20 世纪 80 年代美国、日本等发达国家,进入 20 世纪 90 年代中后期我国的许多科研机构和企业也相继进行了这方面的试验研究。 目前,在我国的北京、上海、天津、江苏、福建等许多地区的桥梁和工民建工程中得到了广泛的应用。其中有些是由于意外事故而导致结构或构件的承载能力而需补强加 固的;有些是由于混凝土强度或配筋不足而需补强加固的;有些是由于结构或构件达到或接近使用年限而需加固的;还有部分建筑是未进行抗震设防的,满足不了《建筑抗震鉴定标准》 GB50023-95 要求,需进行抗震加固。中国革命历史博物馆(以下简称“革历博”)就是属于后两种情况,进行综合比较后选择了碳纤维粘贴抗震加固的方式。下面结合“革历博”具体工程实例谈一谈碳纤维加固混凝土结构的 施工工艺。 ?碳纤维片加固简介 ( 1 )特点 ①高抗拉强度、高弹性模量。 ②施工方便,无需任何夹具、模板,能适应各种结构外形的补强而不改变构件外形尺寸,可多层粘贴,并能有效地封闭混凝土的裂缝;

③耐腐蚀及耐久性能好。 ④不增加结构自重。 ( 2 )适用范围。适用于各种形式的钢筋混凝土结构或构 件的加固补强。 ( 3 )加固机理。利用专用环氧树脂将抗拉强度极高的碳 纤维片粘贴于混凝土结构表面,并与之形成整体,共同工作。 ?施工工艺 在碳纤维加固施工前,应尽可能地卸去部分荷载,使碳纤维粘贴施工时结构或构件承受的荷载作用减小到最小程度。其加固施 3.1 混凝土基底处理 ( 1 )裂缝处理。宽度小于 0.2mm 的裂缝,用环氧树脂进 行表面涂抹封闭;大于 0.2mm 的裂缝用环氧树脂灌缝。“革 历博”抗震加固的大梁大部分都有宽度不一的裂缝,最大裂 缝达到 1mm 以上,为此我们对所加固的主梁首先进行了压 力灌胶处理。 ( 2 )将混凝土构件表面的残缺、破损部分清除干净,达 到结构密实部位,使其表面平整。

碳纤维加热器优缺点

碳纤维加热器优缺点 1、碳纤维介绍:碳纤维主要是制成碳纤维增强塑料这种复合材料来应用碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。 目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

相关主题