搜档网
当前位置:搜档网 › π的计算方法有哪些

π的计算方法有哪些

π的计算方法有哪些
π的计算方法有哪些

圆周率π的计算方法

圆周率π的计算方法,是一个饶有趣味,值得探讨的问题。最直观的计算方法自然是从几何上着手,历史上也正是如此,这便是割圆法。设一半径为1的圆,作这个圆的内接正n边形,用此正n边形的周长去近似圆的周长。显然当n→∞时,正n边形的周长就无限趋近于圆周长,求得正n边形周长后除以直径便求出了圆周率。

I.

从几何上观察,可知:正n边形周长随n递增而递增,但始终是个有限值。割法如图1:

向左转|向右转

图1 割圆法

设圆半径为1,令半弦长AB=2a,AC=2c,OG和OD分别是等腰△OAB和△OAC 的中线。则我们要做的只是求出c关于a的表达式c=c(a).令GC=b,根据勾股定理有:

向左转|向右转

(1)

进而有

向左转|向右转

(2)

得到此式后,编写计算机程序就很容易了,C语言程序如下:

#include

#include

main()

{double a,b,c,d,pi;double sqrt(double);int i,j,n;a=0.5;b=0;c=0;d=0.5;scanf("%d",&n);

for(i=1;i<=n;i++)

{b=sqrt(1-a*a);c=(1-b)*0.5;d=sqrt(c);a=d;}

j=pow(2,n)*3;pi=2*d*j;printf("%d\n",j);printf("%f\n",pi)}

这里有一个问题就是a的初值如何选择?显然越简单直观越好,而已知对于圆内接正六边形的每一条边长等于圆的半径。所以取a=0.5,程序中参数n是对正六边形分割的次数,d的作用是当输入n=0(正六边形)的时候,得到π=3,此所谓的“径圆一三”。将这个文件保存为文本,在linux下用“gcc -lm”命令编译后,打开编译后得到的文件就能执行。

在古代可没有电子计算机,而祖冲之利用割圆法算得圆周率介于3.1415926和

3.1415927之间,可见古人之伟大!

II.

上面的方法简单直观,但是缺点也很明显。计算机在底层只能做“加减乘除四则整数运算”,显然开根号运算还是要通过转化为整数运算(级数展开等)才最后到硬件级计算。那么我们能否直接用整数的四则运算得到π的值?有!而且方法是多样的,其中一种叫作“Wallis公式”,有几种表达方式。如下:

向左转|向右转

(3)

向左转|向右转

(4)

(5)

下面证明这个公式:

向左转|向右转

(6)

利用分部积分法

于是有关系式

向左转|向右转

(7)

从上式可知I0=1,I1=π/4.根据这两个初值条件有向左转|向右转

(8)

或者

向左转|向右转

(9)

其中m=0,1,2,...而由(7)式也可知

向左转|向右转

(10)

将(10)式代入(9)式

向左转|向右转

向左转|向右转

(11)

其中

由式(11)可知Wm>0且有上限,而

说明Wm随着m的增大递增,所以如下极限存在,且由夹逼准则得其值

Wallis公式得证。

实际上Wallis公式的发现在微积分建立之前,其探寻过程限于篇幅不在这里给出,这也反映出同一个问题可以有不同的论证方法,也令我们不得不佩服古人的智慧。

III.

虽然Wallis公式比割圆法要易于计算得多,但是Wallis公式在形势上仍显复杂,且全部乘除算法也难以提高计算机计算效率,最好是有乘除项之和,如:

反观(6)式,实际上令x=cosθ,则有dx=-sinθdθ.式(6)变为

如果令x=sinθ,则只变换形式不影响结果。那我们设想利用其它的三角函数能否得到同样的结果?令

向左转|向右转

(12)

注意这里的积分上限改成了π/4,因为π/2>θ>π/4的时候tanθ>1,将导致积分发散。

对(12)式做一个小变换

于是有关系式

向左转|向右转

(13)

而初值T0=π/4,观察规律有

...

总结规律得

向左转|向右转

(14)

其中m=1,2,3,...而从式(12)中可知

结合(14)式,得到

向左转|向右转

(15)

或者

向左转|向右转

(16)

显然这种方法形式上比前两种方法要简单得多,计算机执行的时候也能更高效。

而在我前面的文章中讲过幂级数的应用,arctanθ展开为幂级数(泰勒级数)后表达式为

向左转|向右转

(17)

该级数的收敛域为[-1,1],将x=1代入,则得到式(15),这又是一个殊途同归的例子!

关于圆周率的计算

关于圆周率的计算 祖冲之在数学方面的突出贡献是关于圆周率的计算,确定了相当精确的圆周率值。中国古代最初采用的圆周率是“周三径一”,也就是说,π=3。这个数值与当时文化发达的其他国家所用的圆周率相同。但这个数值非常粗疏,用它计算会造成很大的误差。随着生产和科学的发展,π=3 就越来越不能满足精确计算的要求。因此,中外数学家都开始探索圆周率的算法和推求比较精确的圆周率值。在中国,据公元一世纪初制造的新莽嘉量斛(亦称律嘉量斛,王莽铜斛,是一种圆柱形标准量器,现存)推算,它所取的圆周率是3.1547 。二世纪初,东汉天文学家张衡在《灵宪》中取用π=≈3.1466,又在球体积计算中取用π≈3.1622。三国时东吴天文学家王蕃在浑仪论说中取用π≈3.1556。以上这些圆周率近似值,比起古率“周三径一”,精确度有所提高,其中π= 10还是世界上最早的记录。但这些数值大多是经验结果,并没有可靠的理论依据。 在这方面最先取得突破性进展的是魏晋之际的数学家刘徽,他在《九章算术注》中创立了“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法。他所得到的圆周率值π=3.14 与π==3.1416,都很精确,在当时世界上是很先进的,至今仍在经常使用。继刘徽之后,祖冲之则将圆周率推算到更加精确的程度。据《隋书·律历志》记载,祖冲之确定了π的不足近似值 3.1415926 和过剩近似值 3.1415927,π的真值在这两个近似值之间,即 3.1415926<π<3.1415927 精确到小数 7 位。这是当时世界上最先进的数学成果,直到约一千年后,才为 15 世纪中亚数学家阿尔·卡西(Al—? kash1)和16世纪法国数学家韦达(F.Vièta,1540—1603)所超过。 关于他得到这两个数值的方法,史无明载,一般认为是基于刘徽割圆术。通过现代计算验证,如果按照割圆术计算,要得到小数 7 位准确的圆周率值,必须求出圆内接正12288 边形的边长和 24576边形的面积,这样,就要对9位数进行上百次加减乘除和开方运算,还要选择适当的有效数字,保证准确的误差范围。对于用算筹计算的古代数学家来说,这绝不是一件轻而易举的事情,只有掌握纯熟的理论和技巧,并具备踏踏实实和一丝不苟的研究精神,才能取得这样的杰出成就。祖冲之的这项记录在中国也保持了一千多年。 中国古代数学家和天文学家还往往用分数表示常量的近似值。为此,祖冲之确定了π的两个分数形式的近似值:约率π=22/7≈3.14 ,密率π=355/113 ≈3.1415929。这两个数值都是π的渐近分数。刘宋天文学家何承天及古希腊阿基米德等都已用到过。密率355/113 是π的分母小于10000的最佳近似分数,则为祖冲之首创。关于密率355/113是如何得到的,今人有“调日法”术,连分数法,解同余式或不定方程,割圆术等种种推测,迄今尚无定论。在欧洲,π= 355/113 是16世纪由德国数学家奥托(V.Otto,1550(?)—1605)和荷兰工程师安托尼兹(A.Anthonisz,1527—1607)分别得到,后通称“安托尼兹率”,但这已是祖冲之以后一千多年的事情了。自从我国古代灿烂的科学文化逐渐得到世界公认以来,一些学者就建议把π= 355 称为“祖率”,以纪念祖冲之的杰出贡献。 关于球的体积公式及其证明: 祖冲之的另一项重要数学成就是关于球的体积公式及其证明。各种几何体的体积计算是古代几何学中的基本内容。《九章算术》商功章已经正确地解决了

常用数学公式

常用数学公式大全 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5三角形s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

圆周率计算公式

圆周率计算公式Revised on November 25, 2020

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

892 π= 902 π=25434 912 π= 922 π= 932 π= 942 π= 952 π= 962 π= 972 π= 982 π= 992 π= 1002 π=31400 12~1002 12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=625 262=676 272=729 282=784 292=841 302=900 312=961 322=1024 332=1089 342=1156 352=1225 362=1296 372=1396 382=1444 392=1521 402=1600 412=1681 422=1764 432=1849 442=1936 452=2025

速算24点的技巧

速算24点的技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

速算24点的技巧 “巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动. “巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等. “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.这里向大家介绍几种常用的、便于学习掌握的方法: 1.利用3×8=24、4×6=24求解. 把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法. 2.利用0、11的运算特性求解. 如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等. 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d 表示牌面上的四个数) ①(a—b)×(c+d) 如(10—4)×(2+2)=24等. ②(a+b)÷c×d 如(10+2)÷2×4=24等. ③(a-b÷c)×d 如(3—2÷2)×12=24等. ④(a+b-c)×d

圆周率的计算方法

圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。 ?Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。 关于FFT算法的具体实现和源程序,请参考Xavier Gourdon的主页 ?Ramanujan公式 1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

24点计算要领技巧

24点计算的奥密及计算要领 巧算24点 “算24点”是一种数学游戏,正如象棋、围棋一样是一种人们喜闻乐见的娱乐活动。 它始于何年何月已无从考究,但它以自己独具的数学魅力和丰富的内涵正逐渐被越来越多的人们所接受。这种游戏方式简单易学,能健脑益智,是一项极为有益的活动。 “算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或(9—8÷8)×3等。 “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题,不能瞎碰乱凑。这里向大家介绍几种常用的、便于学习掌握的方法: 1.利用3×8=24、4×6=24求解。 把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。如3、3、6、10可组成(10—6÷3)×3=24等。又如2、3、3、7可组成(7+3—2)×3=24等。实践证明,这种方法是利用率最大、命中率最高的一种方法。 2.利用0、11的运算特性求解。 如3、4、4、8可组成3×8+4—4=24等。又如4、5、J、K可组成11×(5—4)+13=24等。 3.最为广泛的是以下七种解法(我们用a、b、c、d表示牌面上的四个数) ①(a—b)×(c+d)如(10—4)×(2+2)=24等。 ②(a+b)÷c×d 如(10+2)÷2×4=24等。 ③(a-b÷c)×d 如(3—2÷2)×12=24等。 ④(a+b-c)×d 如(9+5—2)×2=24等。 ⑤a×b+c—d 如11×3+l—10=24等。 ⑥(a-b)×c+d 如(4—l)×6+6=24等。 ⑦(a×b)÷(c+d)如(6×8)÷(1+1)=24等。 需要说明的是:一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5。 “巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助,还能帮助提高数学成绩。 你也来试试“巧算24点”吧,相信你会很快喜欢上它的! 例题参考: 1118 (1+1+1)*8=24 1126 (1+1+2)*6=24 1127 (1+2)*(1+7)=24 1128 (1*1+2)*8=24 1129: (1+2)*(9-1)=24 11210: (1+1)*(2+10)=24 1134: (1+1)*3*4=24 1135: (1+3)*(1+5)=24 1136: (1*1+3)*6=24 1137: (1*1+7)*3=24 1138: (1-1+3)*8=24 1139: (1+1)*(3+9)=24

四年级下册四则运算-含有中括号的计算题

四年级数学下册四则运算练习——递等式计算(脱式计算),要求在练习本上写出带名称的计算过程。 540÷﹙30×15÷50﹚6×58-﹙174+89﹚﹙75+49﹚÷﹙75-44﹚25×﹙22+576÷32﹚180÷[36÷﹙12+6﹚] 75×12+280÷35 48×﹙32-17﹚÷30 ﹙564-18×24﹚÷12 490÷[210÷﹙750÷25﹚] 576÷﹙33+15﹚﹙736÷16+27﹚×18 902-17×45 ﹙87+16﹚×﹙85-69﹚680+21×15-360 [175-﹙49+26﹚] ×23 972÷18+35×19 ﹙29+544÷34﹚×102 26×﹙304-286﹚÷39 756÷[4×﹙56-35﹚] ﹙132+68﹚×﹙97-57﹚848-800÷16×12 36+300÷12 972÷﹙720-21×33﹚450÷[﹙15+10﹚×3] ﹙45+38-16﹚×24 500-﹙240+38×6﹚[64-﹙87-42﹚] ×15 ﹙7100-137-263﹚÷100 84÷[﹙8+6﹚×2] 42×[169-﹙78+35﹚] 72÷[960÷﹙245-165﹚] 540÷[﹙3+6﹚×2] [492-﹙238+192﹚] ×26 840÷40+40×40 2400÷[1200÷﹙600÷15﹚] 960-720÷8×9 ’.

520+22×﹙15+45﹚250+240÷8×5 900÷[2×﹙320-290﹚] 160+740÷20-37 972-﹙270+31×9﹚600-﹙165+35×3﹚[196+﹙84-12﹚] ×5 7100-137-263+300 72÷36+29×3 320-50×4÷25 12×﹙34+46﹚÷32 ﹙53+47﹚×﹙86-24﹚720+34×18-340 ﹙120-54﹚×﹙42+98﹚[203-﹙25+75﹚] ×16 380÷[240÷﹙36÷3﹚] 120÷24-20÷4 900÷﹙120-20×3﹚768÷[8×﹙76-68﹚] 130×[﹙600-235﹚÷73 115-15+20×3 115-﹙15+20﹚×3 ﹙440-280﹚×﹙300-260﹚14×[﹙860-260﹚÷15] 32×18-540÷45 ﹙900-16×35﹚÷34 840÷[15×﹙32-28﹚] 909-[36×﹙350÷14﹚] ﹙300+180÷5﹚×12 600÷﹙30-10﹚+5 490÷[210÷﹙360÷12﹚] 72÷[2×﹙105-87﹚] 240÷15×﹙351-347﹚480÷﹙60+10×2﹚640÷[140÷﹙630÷9﹚] [368-﹙132+129﹚] ×34 675-600÷15×12 720÷[﹙187+18﹚÷41] 14×[﹙845-245﹚÷12] [668-﹙132+245﹚] ÷97 ’.

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

24点计算方法和技巧

24= 2x12 24=48^ 2 笫一类:利用乘除常见算式进行凑数’=3x8 =72^3 =4x 6 =96+4 水“这几个乘除算式记得越懿悉,凑数的时候对数字就越敏感! 【例】利用虹感乘庞(可以任意添加括号).用乙7.头10四个数字计算出24,每个数字必须都使用一次且仅使用一次(下同)。 【解析】第一步;2.人9、10中岀现了数字2,考虑是否可以利用技12 = 24进行凑数。笫二规既然想利用2x12 = 24进行凑数,那么己知4个数中的2就要甫勝在外,即需用人乂10凑岀1人显然9-7+10 = 12,故最后结果为:2刈今-? + 10)二24 【例】灵3. 4. 9 【解析11第一步,给定4个数字中有3,可以考虑是否可以利用3x1 24逬行凑数。 第二步;既然想利用衣,茁进行凑数,那么己知4个数中的一个3就要排除在外, 即需用氛罷9凑出鴿己知有个数字9比8多1,那么用剩下的氣斗凑出 一个1 即可◎显然4-3=1,故最后结果为:3x(9-(4-3)) = 3x(9+3^4)=24【解析2】第一歩*给定4个数字中有4,可以考虑是否可以刑用4x424进行凑数。 第二步:既然想利用仆2加逬行湊数,那么己知4个数中的4就要排除在外,即需用3> 3. 9凑岀6.显然3+3=6,这样多出来个9、如何将多岀的9消耗掉呢? 因为9是3的平方〔详见后面的技巧3),即9-3=3,故最后结果为: 4x(2 3 + ?) 二24 【例】4. 4, 10, 10 【解析】第一步’给定4个数字中有二很想利用4x6 = 24进行凑数,但用4、10, 10很难凑岀么故只能另想办法。显然,不可能利用3x8=24或"12 “4进行凑数, 于是不妨 考虑采用除法进行凑数。 第二扒己知数中有丄考虑能否利用96-4 = 2^1逬行湊数 笫三歩:既然想利用96^4=24进行凑数’那么己知4个数中的一个4就要桦除在外, 即需用4. 10. 10凑出96.显然10x10-4 = 96 T故最后结果为; (10*10-4)+4 = 24 【例】6, 10. lh 12 【解析】第一步:出现了数字6,考虑是否可以利用4x6二24进行凑数,即需用16 11. 12 凑出斗,显然不可能。 第二步:因为基本乘法算式中有2xl2 = 24,且有现成的数字口可以考虑能否用2x12 = 24进行凑数。 第三步’既然想利用2x12 = 24进行凑数,那么需用& 10. 11凑出2.显悠 10^(11-6>2,故最后结果为’ 10^(11-6)x12-24

含有中括号的三步计算教案

含有中括号的三步计算 教学内容: p74——75页例3、“练一练”和“你知道吗”,练习十二第1、2题。 教学目标: 1.使学生认识中括号,了解和掌握含有中括号的三步混合运算的运算顺序,能按顺序正确地进行运算。 2.使学生能根据含有中括号的三步计算算式,说出运算顺序,感受中括号的作用;进一步形成混合运算的技能,发展运算能力;培养比较、判断和推理等思维能力。 3.使学生具有按规则运算的意识和认真、严谨的学习习惯,培养遵循规则的良好品质。 教学重难点: 含有中括号的混合运算的运算顺序。 教学准备: 相关课件 教学过程: 一、复习引入 1.温故知新。 说出下面各题的运算顺序。(课件出示习题) 100-96÷12×8 96×5+(32-17)29×(12+45÷15) 学生先说说每题的运算顺序,再指名上黑板写。其他同学在自己的草稿纸上写。 提问:能说说已经学过的整数四则混合运算的运算顺序吗? 课件出示:(算式里有括号,先算括号里面的。括号里面也要先算乘除、后算加减) 2.引人新课。 谈话:我们已经学过了一些整数四则混合运算的顺序,今天继续学习三步计

算的混合运算。(板书课题:三步计算) 二、学习新知 1.感知内容。 课件出示例3,让学生观察算式。 提问:今天的混合运算算式和以前学过的有什么不同? 说明:今天的混合运算和以前的比,增加了一个符号,这个符号“[]”叫作中括号,(在课题前板书“含有中括号的”,并说明中括号的写法)2.学会计算。 引导:有中括号的混合运算按怎样的顺序算呢? 课件出示:在一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 和同桌说说这题先算什么。 学生打开课本第74页自由计算、交流,教师巡视。 交流:有中括号的算式怎样算?先算小括号里的得多少?(板书算式)再算中括号里的得多少?(板书完成计算) 3.小结顺序。 追问:今天学习的混合运算有什么特点?含有中括号的算式要按怎样的顺序计算?(板书:有中括号的,先算小括号里的,再算中括号里的)说明:中括号和小括号一样,也能改变运算顺序。计算含有中括号的混合运算,要从小括号算到中括号,再算括号外面的。 4.阅读“你知道吗”。(课件出示相关内容) 根据运算顺序,我们可以看出要改变运算顺序时,就可以利用括号。要了解括号的更多知识,可以进一步阅读“你知道吗”。请大家自己读一读,看看能读懂哪些内容。 学生阅读后,再交流知道了些什么,知道: (1)括号能改变运算顺序; (2)括号有三种:小括号、中括号、大括号,又称为圆括号、方括号、花括号; (3)先算小括号里面的,再算中括号里面的,然后算大括号里面的。

24点游戏规则和解题方法

24点游戏规则和解题方法 “巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,其中J、Q、K、A 分别相当于10、11、12、13(如果初练也可只用1~10这40张牌),任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等。 “算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。这里向大家介绍几种常用的、便于学习掌握的方法: 1.利用3×8=24、4×6=24求解。 把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。如3、3、6、10可组成(10—6÷3)×3=24等。又如2、3、3、7可组成(7+3—2)×3=24等。实践证明,这种方法是利用率最大、命中率最高的一种方法。 2.利用0、11的运算特性求解。 如3、4、4、8可组成3×8+4—4=24等。又如4、5、J、K可组成11×(5—4)+13=24等。 3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d 表示牌面上的四个数) ①(a—b)×(c+d)如(10—4)×(2+2)=24等。 ②(a+b)÷c×d如(10+2)÷2×4=24等。 ③(a-b÷c)×d如(3—2÷2)×12=24等。 ④(a+b-c)×d如(9+5—2)×2=24等。 ⑤a×b+c—d 如11×3+l—10=24等。 ⑥(a-b)×c+d 如(4—l)×6+6=24等。

游戏时,同学们不妨按照上述方法试一试。 需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5。 (1)一般情况下,先要看4张牌中是否有2,3,4,6,8,Q, 如果有,考虑用乘法,将剩余的3个数凑成对应数。如果有两个相同的6,8,Q,比如已有两个6,剩下的只要能凑成3,4,5都能算出24,已有两个8,剩下的只要能凑成2,3,4,已有两个Q,剩下的只要能凑成1,2,3都能算出24,比如(9,J,Q,Q)。如果没有2,3,4,6,8,Q,看是否能先把两个数凑成其中之一。总之,乘法是很重要的,24是30以下公因数最多的整数。 (2)将4张牌加加减减,或者将其中两数相乘再加上某数,相对容易。 (3)先相乘再减去某数,有时不易想到。例如(4,10,10,J) (6,10,10,K) (4)必须用到乘法,且在计算过程中有分数出现。有一个规律,设4个数为a,b,c,d。必有ab+c=24或ab-c=24d=a或b。若d=a 有a(b+c/a)=24 或 a(b-c/a)=24 如最常见的(1,5,5,5), (2,5,5,10)因为约分的原因也归入此列。(5,7,7,J) (4,4,7,7)(3,3,7,7)等等。(3,7,9,K)是个例外,可惜还有另一种常规方法,降低了难度。只能用此法的只有10个。 (5)必须用到除法,且在计算过程中有分数出现。这种比较难,比如(1,4,5,6),(3,3,8,8)(1,8,Q,Q)等等。 只能用此法的更少,只有7种。 (6)必须用到除法,且在计算过程中有较大数出现,不过有时可以利用平方差公式或提公因数等方法不必算出这个较大数具体等于几。比如(3,5,7,K),(1,6,J,K)等等。只能用此法的只有16种。 (7)最特殊的是(6,9,9,10),9*10/6+9=24,9是3的倍数,10是2的倍数,两数相乘的积才能整除6,再也找不出第二个类似的只能用此法解决的题目了。试一试,你也是算24的专家了。 (1,3,4,6)(1,4,5,6)(1,5,5,5)(1,5,J,J)

数学实验:怎样计算圆周率

怎样计算 姓名: 学号 班级:数学与应用数学4班

实验报告 实验目的:自己尝试利用Mathematica软件计算的近似值,并学会计算的近似值的方法。 实验环境:Mathematica软件 实验基本理论和方法: 方法一:数值积分法(单位圆的面积是,只要计算出单位圆的面积也就计算出了的值) 其具体内容是:以单位圆的圆心为原点建立直角坐标系,则单位圆在第一象限内的部分G是一个扇形, 由曲线()及坐标轴围成,它的面积是,算出了S的近似值,它的4倍就是的近似值。而怎样计算扇形G的面积S的近似值呢?如图

图一 扇形G中,作平行于y轴的直线将x轴上的区间[0,1](也就是扇形在x轴上的半径)分成n等份(n=20),相应的将扇形G分成n个同样宽度1/n的部分()。每部分是一个曲边梯形:它的左方、右方的边界是相互平行的直线段,类似于梯形的两底;上方边界是一段曲线,因此称为曲边梯形。如果n很大,每个曲边梯形的上边界可以近似的看成直线段,从而将近似的看成一个梯形来计算它的面积;梯形的高(也就是它的宽度)h=1/n,两条底边的长分别是和,于是这个梯形面积可以作为曲边梯形面积的近似值。所有这些梯形面积的和T就可以作为扇形面积S的近似值: n越大,计算出来的梯形面积之和T就越接近扇形面积S,而4T就越接近的准确值。 方法二:泰勒级数法 其具体内容是:利用反正切函数的泰勒级数 计算。 方法三:蒙特卡罗法

其具体内容是:单位正方形的面积=1,只要能够求出扇形G 的面积S在正方形的面积中所占的比例,就能立即得到S,从而得到的值。而求扇形面积在正方形面积中所占的比例k的值,方法是在正方形中随机地投入很多点,使所投的每个点落在正方形中每一个位置的机会均等,看其中有多少个点落在扇形内。将落在扇形内的点的个数m与所投的点的总数n的比可以作为k的近似值。能够产生在区间[0,1]内均匀分布的随机数,在Mathematica中语句是 Random[ ] 产生两个这样的随机数x,y,则以(x,y)为坐标的点就是单位正方形内的一点P,它落在正方形内每一个位置的机会均等。P落在扇形内的充分必要条件是。这样利用随机数来解决数学问题的方法叫蒙特卡罗法。 实验内容、步骤及其结果分析: 问题1:在方法一中,取n=1000,通过计算图一中扇形面积计算的的近似值。 分析:图一中的扇形面积S实际上就是定积分。 与有关的定积分很多,比如的定积分

圆周率200位记忆口诀

圆周率的来源和2000位 “圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历 来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法一一“割圆术”。 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证, 从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,

做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072 边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。 以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率”22/7 ,另一个 是“密率” 355/113 ,其中355/113 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。 答应了大宝,教她点东西,才知道自己才疏学浅,不知道教她什么。偶尔看到巧计圆周率,就截图下来和她一起背,呵呵还真的有效,花三

历史上一些圆周率计算方法

历史上一些圆周率计算方法 从古至今,计算圆周率一直挑战着人类的探索能力极限,人们为此提出了效率越来越高的计算方法。可是,你知道多少圆周率的另类计算法呢?今天我们就来和大家分享一下,历史上出现的几个最奇怪的圆周率计算法。 功亏一篑的人肉计算记录 电脑计算圆周率屡破记录,但新时代对机器的信任和依赖使得人们已经主动放弃了自己手动演算的能力。为了打破手算圆周率的记录,让人们重新拾回对自己演算能力的信心,澳大利亚一个 16 岁的小伙子决定人肉计算圆周率的前 100 位。他挑选了圆周率的一个广义连分数公式,准备了 2000 张草稿纸,并精心地规划了一番。从此开始,他总是把这厚厚的一叠草稿纸带在身边。不管是在家还是在学校,他都端坐在草稿纸面前,不停地挥动着手中的笔。他很快成为了学校的一道风景线——无视上下课铃声,雷打不动地做着枯燥的加法和除法。 2 年后的某堂历史课上,就在他书写最后一个除法竖式时,悲剧发生了:新来的代课老师发现他有小动作,点名叫他起来回答问题。当他无视老师继续埋头苦算时,不明真相的代课老师一怒之下抢过草稿纸,并撕成了无数碎片。 最辗转的计算方法 在一本统计学读物中,为了告诉读者在日常生活中数字无处不在,作者统计出了自家厕所的卷筒纸平均每多少天换一次,乘以平均每天的大便次数,乘以平均每次大便需要扯下来的卫生纸张数,乘以每一截卫生纸的长度,乘以把一长截卫生纸对折 10 次的厚度,除以 1024 ,除以自动切割机从卷筒纸最外层切到最里层(厚度为 R-r )的时间,除以切完整个卷筒纸(剩余的 R+r )还需要的时间,除以切割机移动的速度,得出了圆周率近似值。 作者顺便指出,若读者愿意,还可以在末尾乘以平均每个男人拥有的 jj 根数。 用生命换来的圆周率 这个多少有些标题党了,但实际情况就是如此——这个 3.14 真的是由无数人的鲜血换来的。 2003 年,美国纽约警方搜集了 30 年来发生在斑马线上的车祸,从里面抽取了所有身高在 5 英尺 6 英寸到 8 英寸之间(大概从 1.68 米到 1.73 米)的遇难行人,统计了他们的尸体与斑马线相交的概率,并应用Buffon 投针实验理论得到了圆周率的近似值。纽约警方还专门发表了文章,称由此他们得出,行人被撞事故是完全随机的,一切都是遵循大自然的规律的。文章末尾请求出行人看开一些,生命在规律面前弱不禁风,该发生的总会发生。 凶案现场也有圆周率

24点算法

24点游戏技巧:例如 3 3 7 7 [3+(3/7)]*7=24 一般来说,再算24点时,我们大脑的思维只会想到整数,却不想分数,但有时就是要用分式,我们一定要想到 (1、1、1、5)(1、1、1、10)(1、1、1、12)(1、1、1、13)(1、1、1、6) 解法一、按照4×6=24,4已经有了,只要将其余3个数凑成6, 8.1、1、1、8 四张牌中每每会涌现这种状况,概率最高。能老练的控制使用俩个数相连的计算规律,可大大加快演算速率。 “24点”的基本算法(5) 解法一、还是按照3×8=24,要将2个数凑成3,要将另2个数凑成8有 相连数的计算方法 3×5+3+6=24 还是操纵“乘法分配律”,24=2×9+6=2×9+6÷2×2=2×(9+6÷2)=24 5×6-3-3=24 解法一、按照72÷3=24,3已经有了,只要将其余3个数凑成72,有 (7×10+2)÷3=24。 如1、1、1、2有(3+3)×(2+2)=24,1、1、1、2有(9-3)×8+2=24。 ⑶两个数相同可以瞧作这个数的2倍。如1、1、1、7和1、1、1、6。 5.1、1、1、9 可以通过二个单数之间相加或相减酿成双数。 1.1、1、1、8 综合:咱们有基本算式8÷=24。被除数8已有,另外三个数3,3,8可以凑成吗? 4×(2+8÷2)=24。 1、1、1、3。(9÷9)×3×8=24,1、1、1、8。(4-9÷9)×8=24 比方:1、1、1、9(9-8+3)×6=24 从上面的例子可以晓得,四张牌中涌现三个相同数时,可以瞧作3个分歧的数。如涌现1、1、7时,可瞧作是6,7,8,当另外一个数是3或4时,应用此法便可解答。如涌现3个4时,可瞧作1、1、5,当另一个数是6或8时,也可解。其余依此类推。

圆锥体计算方法

圆锥体计算方法 圆锥体的体积=底面积×高×1/3(圆锥的体积是等底等高圆柱体的三分之一)=1/3πr2h 圆柱体的表面积=高×底面周长+底面积×2 即S圆柱体=(π×d×h)+(π×r2×2) 圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 根据圆柱体积公式V=Sh(V=πr2h),得出圆锥体积公式: V=1/3Sh(V=1/3SH) S是底面积,h是高,r是底面半径。 圆锥的表面积 一个圆锥表面的面积叫做这个圆锥的表面积. S=πl2×(n/360)+πr2或(α*l^2)/2+πr2(此α为角度制)或πr(l+r)(L表示圆锥的母线) 圆锥的计算公式 圆锥的侧面积=母线的平方×π×360百分之扇形的度数 圆锥的侧面积=1/2×母线长×底面周长 圆锥的侧面积=π×底面圆的半径×母线 圆锥的侧面积=高的平方*3.14*百分之扇形的度数 圆锥的表面积=底面积+侧面积S=πr2+πrl (注l=母线) 圆锥的体积=1/3底面积×高或1/3πr2h 圆锥的母线:圆锥的顶点到圆锥的底面圆周之间的距离。 圆锥的其它概念 圆锥的高: 圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高圆锥只有一条高。 圆锥的侧面积: 将圆锥的侧面积不成曲线的展开,是一个扇形 圆锥的母线: 圆锥的顶点到圆锥的底面圆周之间的距离。一般用字母L表示。 知识总结:一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。 要知道了锥度的计算公式,你的问题就都可以解决了. 公式是C=(D-d)/L C表示锥度比D 表示大端直径d表示小端直径L表示锥的长度①已知锥度比C,小头直径d,总长L,则

大头直径D=C*L+d ②已知大头直径D,锥度比C,总长L,则小头直径d=D-C*L ③已知大头直径D,小头直径d,锥度比C,则总长L=(D-d)/C ④已知大头直径D,小头直径d,总长L,则锥度比C=(D-d)/L 各种管材理论重量计算公式、钢材理论重量计算公式1、角钢:每米重量=0.00785×(边宽+边宽—边厚)×边厚 2、管材:每米重量=0.02466×壁厚×(外径—壁厚) 3、圆钢:每m重量=0.00617×直径×直径(螺纹钢和圆钢相同) 4、方钢:每m重量=0.00786×边宽×边宽 5、六角钢:每m重量=0.0068×对边直径×对边直径 6、八角钢:每m重量=0.0065×直径×直径 7、等边角钢:每m重量=边宽×边厚×0.015 8、扁钢:每m重量=0.00785×厚度×宽度 9、无缝钢管:每m重量=0.02466×壁厚×(外径-壁厚) 10、电焊钢:每m重量=无缝钢管 11、钢板:每㎡重量=7.85×厚度 12、黄铜管:每米重量=0.02670×壁厚×(外径-壁厚) 13、紫铜管:每米重量=0.02796×壁厚×(外径-壁厚) 14、铝花纹板:每平方米重量=2.96×厚度 15、有色金属密度:紫铜板8.9 黄铜板8.5 锌板7.2 铅板11.37 16、有色金属板材的计算公式为:每平方米重量=密度×厚度 17、方管: 每米重量=(边长+边长)×2×厚×0.00785 18、不等边角钢:每米重量=0.00785×边厚(长边宽+短边宽--边厚) 19、工字钢:每米重量=0.00785×腰厚[高+f(腿宽-腰厚)] 20、槽钢:每米重量=0.00785×腰厚[高+e(腿宽-腰厚)]

含有中括号的三步计算

含有中括号的三步计算 教学内容:P74例3,、练一练,练习十二的1-3。 教学目标: 1.认识中括号,了解和掌握含有括号的三步混合运算的运算顺序,能按顺序正确地进行运算。 2.能根据含有中括号的三步计算算式,说出运算顺序,感受中括号的作用;进一步形成混合运算的技能,发展运算能力;培养比较、判断和推理等思维能力。 3.具有按规则运算的意识和认真、严谨的学习习惯,培养遵循规则的良好品质。教学重点:含有中括号的混合运算的运算顺序。 教学难点:含有中括号的混合运算的运算顺序。 教学过程: 一、复习引入: 1.出示:计算525÷(81-56)× 3 先说说运算顺序,再独立计算指名板演。 2.引入课题。 二、学习新知: 1.出示:525÷[(81-56)× 3], (1)这个算式和以前学习的算式有什么不同?教师红笔描出[ ],它是什么?有什么作用? (2)学生回答后出示:在一个算式里既有小括号又有中括号,要先算小括号里的,再算中括号里的。 (3)介绍指导书写[ ](横平竖直、追求符号美) (4)小组合作学习。 学生试着写一写。 在这个算式中有几种不同的运算? 互相说一说,这个算式的运算顺序。 独立计算,组内互评。 2.集体交流,明确运算顺序 (1)指名汇报:你是怎样算的? (2)规范解答的过程:按顺序一步一步地计算,不跳步,括号一层一层地脱掉。(白板演示脱式计算过程) (3)指导检查,养成检查习惯。 3.比较例题和复习题,中括号在这里起到了什么作用? 4.练一练 42×[ 169 -(78+35)] (1)独立计算,指名板演。 (2)反馈交流:先说运算顺序,再说计算过程。 5.小结:在一个算式里,既有小括号又有中括号,应按什么顺序计算? 三、灵活运用: 1.练一练:说说下面各题的运算顺序。(练习十二第1题) 2.题组练习,整理含有括号的运算顺序。(练习十二第2题的第二组) 为什么数字相同、运算符号也相同,得数却不一样? 3.根据要求添加合适的括号,进一步理解中括号的作用。

相关主题