搜档网
当前位置:搜档网 › 8隐函数高阶导数

8隐函数高阶导数

高阶、隐函数的导数和微分练习题

高阶导数 1. 填空题. (1)x y 10=,则()()=0n y . (2)y x =sin2,则()()y x n = .. 2. 选择题. (1)设f x ()在()-∞+∞,内为奇函数且在()0,+∞内有'>f x ()0,''>f x ()0,则f x ()在()-∞,0内是( ) A. 'f x ()0; C.'>f x ()0且''f x ()0 且''>f x ()0. (2)设函数()y f x =的导数'f x ()与二阶导数''f x ()存在且均不为零,其反函数为()x y =?,则()''=?y ( ) A .()1''f x ; B. ()()[] -'''f x f x 2;C. ()[]()'''f x f x 2; D. ()()[].3x f x f '''- 3. 求下列函数的n 阶导数. (1) .)1(αx y += (2) .5x y = 4.计算下列各题. (1)() y x x =-11,求()().24y (2)()y e x x =-21,求().20y (3)y x x =-+132 2,求()y n . (4)x y 2sin =,求().n y (5),2sin 2x x y = 求()..50y 5. 设x x f 2cos )(cos '=,求).(''x f 6. 已知)(''x f 存在,)(ln x f y =,求'.'y

隐函数及由参数方程所确定的函数的导数 1. 设y e y x x sin 22=-,求.dx dy 2. 设063sin 33=+-+y x y x ,求.0 =x dx dy 3.求曲线??? ????+=+=222 1313t t y t t x 在2=t 处的切线方程和法线方程. 4.利用对数求导法求导数. (1).1sin x e x x y -= (2)().sin ln x x y =

反函数和复合函数的求导法则

二、反函数的导数法则 定理1:设)(x f y =为)(y x ?=的反函数,若)(y ?在0y 的某邻域内连续,严格单调,且0)(0≠'y ?,则)(x f 在0x (即)(0y f 点有导数),且) (1 )(00y x f ?'= '。 证明:0 0000)()(1 lim )()(lim )()(lim 000 y y y y y y y y x x x f x f y y y y x x --=--=--→→→???? )(1 )()(lim 100 00y y y y y y y ???'=--= → 所以 ) (1 )(00y x f ?'='。 注1:00 y y x x →? →,因为)(y ?在0y 点附近连续,严格单调; 2:若视0x 为任意,并用x 代替,使得)(1)(y x f ?'= '或)(1 dy dx dx dy =,其中dy dx dx dy , 均为整体记号,各代表不同的意义; 3:)(x f '和)(y ?'的“′”均表示求导,但意义不同; 4:定理1即说:反函数的导数等于直接函数导数的倒数; 5:注意区别反函数的导数与商的导数公式。 【例1】 求x y arcsin =的导数, 解:由于]1,1[,arcsin -∈=x x y ,是]2 ,2[,sin π π- ∈=y y x 的反函数,由定理1 得: 2211 sin 11cos 1)(sin 1)(arcsin x y y y x -= -=='='。 注1:同理可证:2 22 11 )tan (,11)(arctan ,11)(arccos x x arcc x x x x +-='+= '-- =';

指数对数函数求导

一、自然常数e 1、求导x a dx d 令x a y = 已知导数差商公式定义式: x x f x x f x f x ?-?+=→?) ()()(lim 0 ' 由导数差商定义式得: x a a x a a x x f x x f x f x x x x x x x x ?-?=?-=?-?+=?→??+→?→?1 )()()(lim lim lim 000'(因子x a 与x ?无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即 x a a f x x ?-?=?→?1)0(lim 00 ' 因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且 x a f x f ?=)0()('' 上述等式说明了任何指数函数的变化率是和指数函数本身成正比的. 令x a a f a M x x ?-?==?→?1 )0()(lim 00 ' 0,因为x a 已知,要求)('x f 必须 求得)(0a M ,从x a a M x x ?-=?→?1 )(l i m 0 0的定义式可以猜测)(0a M 可能 是一个无线不循环的数值,只能无限取小x ?值求得)(0a M 的估算值,

这种估算的过程相当繁琐且得不到)(0a M 的准确数值. h h h 1 2- h h 1 3- 0.1 0.7177 1.1612 0.01 0.6956 1.1047 0.001 0.6934 1.0992 0.0001 0.6932 1.0987 在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且 当2=a ,69.012)0(lim 0 ' ≈?-=?→?x f x x 当3=a ,10.11 3)0(lim 0' ≈?-=?→?x f x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下: 693147.0)2(0≈=x x dx d 098612.1)3(0 ≈=x x dx d 因此,由等式①,我们有 x x dx d 2)69.0()2(?≈ x x dx d 3)10.1()3(?≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分 公式最为简单,即x e y =,x e y =',并且有11 )(lim 00=?-=?→?x e e M x x ,

反函数定义

反函数定义 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y 把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A 中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 反函数性质 (1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数。)。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数;

(6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的且具有唯一性 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F’(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]'=1\[F’(Y)]'。 反函数说明 ⑴在函数x=f’(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f’(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。

2-10高阶导数的概念及常见高阶导数公式

2-10高阶导数的概念及常见高阶导数公式

模块基本信息 一级模块名称 微分学 二级模块名称 基础模块 三级模块名称 高阶导数的概念及常见高阶导数 公式 模块编号 2-10 先行知识 导数的概念 模块编号 2-2 知识内容 教学要求 掌握程度 1、高阶导数的概念 1、理解高阶导的概念 一般掌握 2、常见初等函数的高阶导数 2、熟记常见初等函数的高阶导 3、莱布尼兹公式 3、掌握隐函数高阶导的求解(一般 是二阶) 4、隐函数的高阶导数 4、掌握参数方程高阶导的求解(一 般是二阶) 5、参数方程的高阶导数 5、熟记正弦、余弦等常见函数的n 阶导数公式 能力目标 1、提高学生的观察分析能力 2、培养学生的逻辑思维、类比推导能力 时间分配 45分钟 编撰 黄小枚 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点: 思路:本文先借助速度和加速度的概念引出高阶导数的定义,

然后分别介绍常见的初等函数的高阶导数、莱布尼兹公式、隐函数的高阶导数、参数方程的高阶导数。 特点:通过实际问题引出高阶导数的概念,在求解高阶导数时分类进行讲解,层层递进,有助于学生理解和掌握。 二、授课部分 1.引例 (1) 变速直线运动的速度)(t v 是位置函数)(t s 对时间t 的导数,即 )()('t s t v = 或dt ds t v = )( (2) 速度函数)(t v 对时间t 的变化率就是加速度)(t a ,即)(t a 是)(t v 对t 的导数: []' ')(')()(t s t v t a ==或)()(dt ds dt d t a = (3)加速度)(t a 就是位置函数)(t s 对时间t 的导数的导数,称 为)(t s 对t 的二阶导数,记为)(' 't s 或22dt s d 2.高阶导数的定义 设y=f(x)在某区间上可导,即有 ()x f ' 存在,如果()x f '也可导,则称()x f ' 的导数为函数 f(x) 的二阶导数。记 y '', 或 )(x f '', 22dx y d , dx x f d ) (2 根据导数的定义可知:''0()() ()lim x f x x f x f x x →+-''=V V V 类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作 y ''', y (4), ? ? ? , y (n ) 或33dx y d , 44dx y d , ? ? ? , n n dx y d .

导数--对数函数与指数函数的导数练习题

高三第三章导数--对数函数与指数函数的导数练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列求导数运算正确的是 A.(x +x 1)′=1+21x B.(log 2x )′=2ln 1x C.(3x )′=3x log 3e D.(x 2cos x )′=-2x sin x 2.函数y =ln(3-2x -x 2)的导数为 A.32+x B.2231x x -- C.32222-++x x x D.3 2222-+-x x x 3.函数y =lncos2x 的导数为 A.-tan2x B.-2tan2x C.2tan x D.2tan2x 4.函数y =x x a 22-(a >0且a ≠1),那么y ′为 A.x x a 22-ln a B.2(ln a ) x x a 22- C.2(x -1) x x a 22-·ln a D.(x -1) x x a 22-ln a 5.函数y =x ln 的导数为 A.2x x ln B.x x ln 2 C.x x ln 1 D.x x ln 21 6.函数y =sin32x 的导数为 A.2(cos32x )·32x ·ln3 B.(ln3)·32x ·cos32x C.cos32x D.32x ·cos32x 二、填空题(本大题共5小题,每小题3分,共15分) 7.设y =x x e e 2 )12(+,则y ′=___________. 8.在曲线y =5 9++x x 的切线中,经过原点的切线为 9.函数y =x 22的导数为y ′=___________. 10.函数y =log 3cos x 的导数为___________. 11.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________. 三、解答题(本大题共3小题,每小题9分,共27分) 12.求函数y =ln(21x +-x )的导数.

反函数的导数

反函数的导数 首先证明反函数的求导公式: 定理:设)(x f y =为)(y x ?=的反函数,若)y (?在点y 0的某邻域内连续,严格单 调且()0' 0≠y ?,则()x f 在点()()00y x x ?=可导,且()() 00'1 'y x f ?= 证:设()()00y y y x ??-?+=?,()()00x f x x f y -?+=?因为?在0y 的某邻域内连续且 严格单调,故1-=?f 在0x 的某邻域内连续且严格单调,从而当且仅当0=?y 时0=?x , 并 且 当 且仅当 →?y 时 0→?x ,由()0'0≠y ?,可得 ()()00000'1 lim 1lim lim 'y y x x y x y x f y y x ?= ??=??=??=→?→?→?。 例6 证明: (i )(a a a x x ln )'(=其中) 1.0(≠>a a 特别地()x x e e =' . (ii) )arcsin ' (x = x 2 -11; ()x arccos '=— x 2 -11 (iii) () x arctan ' = x 2 11 +;() x arc cot ' =— x 2 11 + 证 (i )由于R x y a x ∈= .为对数函数 ,y x a log = .),0(+∞∈y 的反函数,故由公 式(6)得到 ()a x '=) (log ' 1 y a = e y a log = a a x ln . (ii )由于)1,1(,arcsin -∈=x x y 是) 2.2(,sin π π-∈=y y x 的反函数,故由公式(6)得到 ()x arcsin ' = () y sin ' 1 = y cos 1 = y sin 2 -11= )1,1(.-112 -∈x x 同理可 证:()x arccos ' =—)1,1(.-11 2 -∈x x

对数函数与指数函数的导数(1)

课 题: 3.5对数函数与指数函数的导数(1) 教学目的: 1.理解掌握对数函数的导数的两个求导公式. 2.在学习了函数四则运算的求导法则与复合函数求导法则的基础上,应用对数函数的求导公式,能求简单的初等函数的导数 教学重点:应用对数函数的求导公式求简单的初等函数的导数. 教学难点:对数函数的导数的记忆,对数函数求导公式的灵活运用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= 2.法则1 )()()]()([' ''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u ) 在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代. 二、讲解新课: ⒈对数函数的导数(1): x x )'(ln = 证明:∵ x x f y ln )(==

-隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F 由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得

.y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??- ??+???? ??-??=22 . 23 2 222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导 数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此由 定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、 当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22 dx y d =,1)(332222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函数,那末一个三元方程 F (z y x ,,)=0 (3) 就有可能确定一个二元隐函数。

反三角函数求导公式证明

§2.3 反函数的导数,复合函数的求导法则 一、反函数的导数 设)(y x ?=是直接函数,)(x f y =是它的反函数,假定)(y x ?=在I y 内单调、可导,而且0)(≠'y ?,则反函数)(x f y =在间 },)(|{y x I y y x x I ∈==?内也是单调、可导的,而且 )(1 )(y x f ?'=' (1) 证明: ?∈x I x ,给x 以增量x ?),0(x I x x x ∈?+≠? 由 )(x f y = 在 I x 上的单调性可知 0)()(≠-?+=?x f x x f y 于是 y x x y ??=??1 因直接函数)(y x ?=在I y 上单调、可导,故它是连续的,且反函数)(x f y =在I x 上也是连续的,当0→?x 时,必有0→?y )(11lim lim 00y y x x y y x ?'=??=??→?→?即:)(1)(y x f ?'=' 【例1】试证明下列基本导数公式 ().(arcsin )().()().(lo g )ln 11121131 2 2x x a rctg x x a x a x '= -'= +'= 证1、设y x sin =为直接函数,x y arcsin =是它的反函数 函数 y x sin =在 )2,2(ππ-=y I 上单调、可导,且 '=≠x y cos 0 因此,在 )1,1(-=x I 上, 有 y x cos 1)arcsin (= ' 注意到,当)2,2(π π-∈y 时,0cos >y ,2 21sin 1cos x y y -=-= 因此, 211 )arcsin (x x -=' 证2 设 x tgy =,)2,2(ππ-=y I 则y arctgx =,I x =-∞+∞(,) tgy x = 在 I y 上单调、可导且 0cos 12>='y x 故 22211 11 cos )(1)(x y tg y tgy arctgx +=+=='=' 证3 a x a a a a y y x ln 1ln 1)(1 )log (=='='

反函数求导法则

反函数求导法则 刘云 (天水师范学院数学与统计学院数学与应用数学11级六班 甘肃天水 741000) 摘 要:主要叙述了反函数求导定理,基本初等函数的导数和微分公式,求导定理的推广以及在实际例题中的应用。 关键词:反函数;基本初等函数;求导 引 言 除了少数几个最简单的函数之外,可以直接用定义较方便地求出导数的函数实在是微乎其微,因而就有必要对一般的函数导出一系列的求导运算法则,故本节主要讨论反函数的求导法则以及应用。 1. 反函数求导定理 若函数)(x f y =在()b a ,上连续、严格单调、可导并且0)(≠'x f ,记α))(),(min(-+=b f a f ,))(),(max(-+=b f a f β,则它的反函数)(y f x '=在()b a ,上可导,且有 [])(1)(1x f y f '='-. 证明: 因为函数)(x f y =在()b a ,上连续且严格单调,由反函数连续定理,它的反函数)(1y f x -=在),(βα上存在、连续、且严格单调,这时0)()(≠-?+=?x f x x f y 等价于0)()(11≠-?+=?--y f y y f x ,并且当0→?y 时有0→?x 。 因此

[]y y f y y f y f y ?-?+='--→?-)()(lim )(1101 )()(lim 0x f x x f x x -?+?=→? )(1)()(lim 10x f x x f x x f x '=?-?+=→?. 2.基本初等函数的导数和微分公式: 0)(='C 0*0)(==dx C d 1)(-='a a ax x dx ax x d a a 1)(-= x x cos )(sin =' xdx x d cos )(sin = x x sin )(cos -=' xdx x d sin )(cos -= x x 2sec )(tan =' xdx x d 2sec )(tan = x x 2csc )(cot -=' xdx x d 2csc )(cot -= x x x sec tan )(sec =' xdx x x d sec tan )(sec = x x x csc cot )(csc -=' xdx x x d csc cot )(csc -= 3.求导定理的推广 (1)多个函数线性组合的导函数 ∑∑=='='?? ????n i i i n i i i x f c x f c 11)()(, 其中),,3,2,1(n i c i =为常数。 (2)多个函数乘积的导函数 ∑∏∏=≠==?? ????????'='??????n j n j i i i j n i i x f x f x f 111)()()(.

高阶导数和高阶微分 泰勒公式

§2-9 高阶导数和高阶微分·泰勒公式 1.高阶导数和高阶微分 在§2-3中,我们讲了函数的二阶导数和二阶微分。一般地,函数 )(x y y =的n 阶导数就是 h x y h x y x y x y n n h n n ) ()(lim ])([)()1()1(0) 1() (--→--+='= (0)()()y x y x =???? 而n 阶微分就是 n n n n n n n n x x y x x x y x x y y y d )(d ]d )([]d )(d[]d[d d )(1)(1)1(1-====--- (x 是自变量;x d 被看成与x 无关的有限量) 因此,按照莱布尼茨的记法,函数)(x y y =的n 阶导数)()(x y n 也可记成 n n x x y d )(d 或简记成 n n x y d d (注意..n 的位置...) 这样,导数与微分之间的那种“乘或除”的转换关系被保留到n 阶导数与n 阶微分的关系中. 例33 因为指数函数e x 的导数(e )e x x '=,所以(e )(e )e x x x '''==. 依次类推,则有 ()()(e )e ,d (e )(e )d e d (1,2,)x n x n x x n n x n x x n ==== 例34 对于函数x y sin =,则 cos sin , sin sin 2,22 2y x x y x x '??πππ?? ???? '''==+=+=?+ ? ? ????? ?????? 一般地, ()sin 2n n y x π??=+ ???; ()d d sin d 2n n n n n y y x x x π??==+ ??? ),2,1( =n . 同理,对于函数cos y x =,有 ()cos 2n n y x π??=+ ???; ()d d cos d 2n n n n n y y x x x π?? ==+ ??? ),2,1( =n . 例35 对于函数ln(1)y x =+,则 2 23 112,,(1),1(1)(1)y y y x x x ''''''= =-=-+++ 一般地, (n 阶导数)() 1 (1)! (1)(1,2,)(1)n n n n y n x --=-=+ (n 阶微分)()1(1)!d d (1)d (1,2,)(1) n n n n n n n y y x x n x --==-=+ 例36 设函数1()e (0),(0)0x f x x f - =≠=.证明:),2,1(0)0()( ==n f n . 证 一方面,函数)(x f 在点0是连续的,因为

指数对数的导数复习(附答案)

求指数、对数函数的导数 例 求下列函数的导数: 1.1ln 2+=x y ;2.)132(log 22++=x x y ; 3.)sin(b ax e y +=; 4.).12cos(3+=x a y x 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成. .1 11 2)1(2 111 )2(2 11222212221 +=+?+=?+?+=??='?'?'='--x x x x x x x x x v u v u y y x v u x 解法二:[])1(111ln 222'++= '+='x x x y .12112111)1()1(2 111 22222122+=?+?+= '+?+?+=-x x x x x x x x 解法三:)1ln(2 11ln 22+=+=x x y , [] .1122)1(1121)1ln(2122222+=+='+?+?='+='x x x x x x x y 2.解法一:设132,log 2 2++==x x u u y ,则 )34(log 12+??='?'='x e u u y y x u x

.1 32log )34()34(132log 2222++?+=+++?=x x e x x x x e 解法二:[] )132(1 32log )132(log 22222'++?++='++='x x x x e x x y .132log )34()34(132log 2222+++=+?++=x x e x x x x e 3.解法一:设b ax v v u e y u +===,sin ,,则 )sin()cos( cos b ax u x v u x e b ax a a v e u u y y +?+=??='?'?'=' 解法二:[][]'+?='='++)sin()sin()sin(b ax e e y b ax b ax )sin()sin()cos()()cos(b ax b ax e b ax a b ax b ax e ++?+=' +?+?= 4.])12cos([3'+='x a y x )].12s i n (2)12c o s (ln 3[) 12sin(2)12cos(ln 3)12)](12sin([)12cos()3(ln ])12[cos()12cos()(3333333+-+?=+?-+?=' ++-++'??=' +?++'=x x a a x a x a a x x a x x a a x a x a x x x x x x x 说明:深刻理解,掌握指数函数和对数函数的求导公式的结构规律,是解决问题的关键,解答本题所使用的知识,方法都是最基本的,但解法的构思是灵魂,有了它才能运用知识为解题服务,在求导过程中,学生易犯漏掉符合或混淆系数的错误,使解题走入困境. 解题时,能认真观察函数的结构特征,积极地进行联想化归,才能抓住问题的本质,把解题思路放开. 变形函数解析式求导 例 求下列函数的导数: (1)12223+-++=x x x x y ; (2)x x y +-=11ln ;

第十二讲高阶导数习题

第十二讲 高阶导数习题 一、选择题 1. 设x e x f 2)(=,则(0)f '''=【 】 A. 8 B. 2 C. 0 D. 1 2. 设x x x f cos )(=,则()f x ''=【 】 A. x x sin cos + B. x x x sin cos - C. x x x sin 2cos -- D. x x x sin 2cos + 3. 设y=sinx ,则y (10)|x=0=【 】 A. 1 B. -1 C. 0 D. 2n 4. 已知ln ,=y x x 则()6y =【 】 A. 5 1x - B. 51x C. 54!x D. 54!x - 二、填空题 1. 设函数)(x f 有任意阶导数且)()('2 x f x f =,则()f x '''= 。 2. 已知函数2x y e =,则y '''=_____________. 3. 设函数)(x f 在2=x 的某邻域内可导,且)()(x f e x f =',1)2(=f ,则=''')2(f _____________. 4. 设函数)(y f x =的反函数)(1x f y -=及)]([1x f f -'、)]([1x f f -''均存在,且 0)]([1≠'-x f f ,则=-212dx )x (f d _____________. 5. 设x x x f +-=11)(,则=)x (f )n (_____________. 6. 设x x y 44cos sin -=,则=) n (y ____________. 7. 184、设x x x y cos sin sin 3+=,则=) n (y ____________.

2-10高阶导数的概念及常见高阶导数公式

模块基本信息 一级模块名称 微分学 二级模块名称 基础模块 三级模块名称 高阶导数的概念及常见高阶导数公式 模块编号 2-10 先行知识 导数的概念 模块编号 2-2 知识内容 教学要求 掌握程度 1、高阶导数的概念 1、理解高阶导的概念 一般掌握 2、常见初等函数的高阶导数 2、熟记常见初等函数的高阶导 3、莱布尼兹公式 3、掌握隐函数高阶导的求解(一般是二阶) 4、隐函数的高阶导数 4、掌握参数方程高阶导的求解(一般是二阶) 5、参数方程的高阶导数 5、熟记正弦、余弦等常见函数的n 阶导数公式 能力目标 1、提高学生的观察分析能力 2、培养学生的逻辑思维、类比推导能力 时间分配 45分钟 编撰 黄小枚 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点: 思路:本文先借助速度和加速度的概念引出高阶导数的定义, 然后分别介绍常见的初等函数的高阶导数、莱布尼兹公式、隐函数的高阶导数、参数方程的高阶导数。 特点:通过实际问题引出高阶导数的概念,在求解高阶导数时分类进行讲解,层层递进,有助于学生理解和掌握。 二、授课部分 1.引例 (1) 变速直线运动的速度)(t v 是位置函数)(t s 对时间t 的导数,即 )()('t s t v = 或dt ds t v =)( (2) 速度函数)(t v 对时间t 的变化率就是加速度)(t a ,即)(t a 是)(t v 对t 的导数: []'')(')()(t s t v t a ==或)()(dt ds dt d t a =

(3)加速度)(t a 就是位置函数)(t s 对时间t 的导数的导数,称 为)(t s 对t 的二阶导数,记为)(' 't s 或22dt s d 2.高阶导数的定义 设y=f(x)在某区间上可导,即有 ()x f ' 存在,如果()x f '也可导,则称()x f ' 的导数为函数 f(x) 的二阶导数。记 y '', 或 )(x f '', 22dx y d , dx x f d )(2 根据导数的定义可知:''0()()()lim x f x x f x f x x →+-''= 类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作 y ''', y (4), ? ? ? , y (n ) 或33dx y d , 44dx y d , ? ? ? , n n dx y d . 函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 注:(1)如果函数f(x)在点x 处具有n 阶导数, 那么函数f(x)在点x 的某一邻域内必定具有一切低于n 阶的导数. (2)二阶及二阶以上的导数y '' y ''' y (4) ?? y (n )统称高阶导数. 3.常见初等函数的高阶导数 例1 已知3y x = 求()n y (一级) 解: ()()423;6;6;0;,0.n y x y x y y y ''''''===== 课堂练习:已知y =e x 求它的n 阶导数. 例2 已知sin y x =求它的n 阶导数. (一级) 解:)2 sin(cos π+=='x x y , )2 2sin()2 2 sin()2 cos(ππππ?+=++=+=''x x x y ,

(完整版)高阶、隐函数的导数和微分练习题

高阶导数 1. 填空题. (1)x y 10=,则()()=0n y . (2)y x =sin 2,则()()y x n = .. 2. 选择题. (1)设 f x ()在()-∞+∞,内为奇函数且在()0,+∞内有'>f x ()0,''>f x ()0,则f x ()在()-∞,0内是( ) A. 'f x ()0; C.'>f x ()0且''f x ()0 且''>f x ()0. (2)设函数()y f x =的导数'f x ()与二阶导数''f x ()存在且均不为零,其反函数为()x y =?,则()''=?y ( ) A .()1''f x ; B. ()()[] -'''f x f x 2;C. ()[]()'''f x f x 2; D. ()()[].3x f x f '''- 3. 求下列函数的n 阶导数. (1) .)1(αx y += (2) .5x y = 4.计算下列各题. (1)() y x x =-11,求()().24y (2)()y e x x =-21,求().20y (3)y x x =-+132 2,求()y n . (4)x y 2sin =,求().n y (5),2sin 2x x y = 求()..50y 5. 设x x f 2cos )(cos '=,求).(''x f 6. 已知)(''x f 存在,)(ln x f y =,求'.'y

隐函数及由参数方程所确定的函数的导数 1. 设y e y x x sin 22=-,求.dx dy 2. 设063sin 33=+-+y x y x ,求 .0=x dx dy 3.求曲线??? ????+=+=222 1313t t y t t x 在2=t 处的切线方程和法线方程. 4.利用对数求导法求导数. (1).1sin x e x x y -= (2)().sin ln x x y =

求导法则(一)

§3.2 求导法则(一) 教学内容 1.函数的和、差、积、商的求导法则; 2.反函数的求导法则; 3.复合函数的求导法则. 教学重点与难点 导数的运算法则及导数基本公式. 简要复习上节内容 1.导数的定义; 2.导数的定义的几种形式; 3.可导的充要条件; 4.函数可导与连续的关系; 5.导数的几何意义、物理意义. 一、导数的四则运算法则 设),(x u u =)(x v v =都在x 处可导,则有 ①v u v u '±'='±)(; ②v u v u uv '+'=')(; u c cu '=')(; ③2 )(v v u u v v u '-'='. 我们现在只证明②. 证 设=)(x f )()(x v x u 则 h x f h x f x f h )()(lim )(0-+='→=h x v x u h x v h x u h ) ()()()(lim 0-++→ =h x v x u x v h x u x v h x u h x v h x u h )()()()()()()()(lim 0-+++-++→ =h x v h x v h x u h )()()(lim 0-++→+=-+→h x u h x u x v h ) ()() (lim 0=v u v u '+' 例1 2sin cos 4)(3π -+=x x x f ,求)(x f ',)2(π f '. 解 )(x f '=x x sin 432-, )2(πf '=443 2-π. 例2 求21 log 3tan sin a y x x x x =++的导数. 解 x x x a x x x x y a 2 22sin cos sec 3ln log 2-+++='.

指数对数的导数

求指数、对数函数的导数 例 求下列函数的导数: 1.1ln 2+=x y ;2.)132(log 22++=x x y ; 3.)sin(b ax e y +=; 4.).12cos(3+=x a y x 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成. .1 11 2)1(2 111 )2(2 11222212221 +=+?+=?+?+=??='?'?'='--x x x x x x x x x v u v u y y x v u x 解法二:[])1(11 1ln 222'++='+='x x x y .121121 11)1()1(2111 22222122+=?+? +='+?+?+= -x x x x x x x x 解法三:)1ln(2 11ln 22+=+=x x y , [] .1122)1(1121)1ln(2122222+=+='+?+?='+='x x x x x x x y 2.解法一:设132,log 2 2++==x x u u y ,则 )34(log 12+??='?'='x e u u y y x u x .1 32log )34()34(132log 2222++?+=+++?=x x e x x x x e 解法二:[] )132(1 32log )132(log 22222'++?++='++='x x x x e x x y .132log )34()34(132log 2222+++=+?++=x x e x x x x e 3.解法一:设b ax v v u e y u +===,sin ,,则

反函数的求导法则辨析

昨天的文章中提到过反函数的求导法则。反函数的求导法则是:反函数的导数是原函数导数的倒数。这话听起来很简单,不过很多人因此犯了迷糊: y=x3的导数是y'=3x2,其反函数是y=x1/3,其导数为y'=1/3x-2/3.这两个压根就不是互为倒数嘛! 出现这样的疑问,其实是对反函数的概念未能充分理解,反函数是说,将f(x)的自变量当成因变量,因变量当成自变量,得到的新函数x=f(y)就是原函数的反函数。所以y=x3的反函数严格来说应该是x=1/3y-2/3,只不过为了符合习惯,经常将x写成y,y写成x而已,这一点,因为在中学的时候没怎么强调,所以到了大学就有些不适应。因此: y=x1/3的导函数应该这样求y‘=1/(y3)'=1/(3y2) (因为y的反函数是x=y3), =1/(3x2/3)=1/3x-2/3.(将y=x1/3带入即可) 实际上反函数求导法则是根据下面的原则 所以反函数求导法则的意思是说,反函数的导数,等于x对y求导的倒数。我们再以反三角函数来作为例子,希望学到这点的朋友能够真正理解他。 例题:求y=arcsinx的导函数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy 因为x=siny,所以cosy=√1-x2;(那个啥,这个符号输入有点蛋疼,不过各位应该能看懂) 所以y‘=1/√1-x2。

同理大家可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。 相信大家对这一点应该有所明白的吧!大家可以试着求y=arctanx的导函数,然后与结果进行对照。

相关主题