搜档网
当前位置:搜档网 › 高中数学求轨迹方程的六种常用技法知识讲解

高中数学求轨迹方程的六种常用技法知识讲解

高中数学求轨迹方程的六种常用技法知识讲解
高中数学求轨迹方程的六种常用技法知识讲解

求轨迹方程的六种常用技法

轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法

根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是

4

9

,求点M 的轨迹方程。 解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM y k x x =

≠-+,直线BM 的斜率(3)3

AM y k x x =≠- 由已知有4

(3)339

y y x x x ?=≠±+- 化简,整理得点M 的轨迹方程为22

1(3)94

x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。

2.设动直线l 垂直于x 轴,且与椭圆2

2

24x y +=交于A 、B 两点,P 是l 上满足1PA PB ?=u u u r u u u r

的点,求点

P 的轨迹方程。

3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法

通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

例2.若(8,0),(8,0)B C -为ABC ?的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ?的重心轨迹方程是_______________。

解:设ABC ?的重心为(,)G x y ,则由AC 和AB 两边上的中线长之和是30可得

2

30203

BG CG +=?=,而点(8,0),(8,0)B C -为定点,所以点G 的轨迹为以,B C 为焦点的椭圆。 所

以由220,8a c ==可得10,6a b ==

=

故ABC ?的重心轨迹方程是

22

1(0)10036

x y y +=≠ 练习:4

.方程|2|x y =++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线

3.点差法

圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,

122y y y =+且直线AB 的斜率为

21

21

y y x x --,由此可求得弦AB 中点的轨迹方程。

例3.椭圆22

142

x y +=中,过(1,1)P 的弦恰被P 点平分,则该弦所在直线方程为_________________。 解:设过点(1,1)P 的直线交椭圆于11(,)A x y 、22(,)B x y ,则有

2211142x y += ① 22

22142

x y += ② ①-②可得12121212()()()()

042

x x x x y y y y -+-++=

而(1,1)P 为线段AB 的中点,故有12122,2x x y y +=+=

所以

12121212()2()210422x x y y y y x x -?-?-+=?=--,即1

2

AB k =-

所以所求直线方程为1

1(1)2

y x -=-

-化简可得230x y +-= 练习:5.已知以(2,2)P 为圆心的圆与椭圆2

2

2x y m +=交于A 、B 两点,求弦AB 的中点M 的轨迹方程。

6.已知双曲线2

2

12

y x -=,过点(1,1)P 能否作一条直线l 与双曲线交于,A B 两点,使P 为线段AB 的中点?

4.转移法

转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。 当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化; ③在变化过程中P 和M 满足一定的规律。

例4. 已知P 是以12,F F 为焦点的双曲线

22

1169

x y -=上的动点,求12F F P ?的重心G 的轨迹方程。

解:设 重心(,)G x y ,点 00(,)P x y ,因为12(4,0),(4,0)F F - 则有???

????++=++-=30003044y y x x , 故???==y y x x 3030代入

19

2

01620=-y x 得所求轨迹方程 2

291(0)16

x y y -=≠ 例5.抛物线2

4x y =的焦点为F ,过点(0,1)-作直线l 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形AFBR ,试求动点R 的轨迹方程。

解法一:(转移法)设(,)R x y ,∵(0,1)F ,∴平行四边形AFBR 的中心为1

(,)22

x y P +,

将1y kx =-,代入抛物线方程,得2

440x kx -+=, 设1122(,),(,)A x y B x y ,则

21212121216160||1444

4k k x x k

x x k x x x x ??=->>?????

+=?+=????==???? ① ∴22

22121212

12()24244

x x x x x x y y k ++-+===-, ∵P 为AB 的中点.∴???????-=+=+=+=1222122

22212

1k y y y k x x x ????-==3442

k y k x ,消去k 得 24(3)x y =+,由①得,||4x >,故动点R 的轨迹方程为24(3)(||4)x y x =+>。

解法二:(点差法)设(,)R x y ,∵(0,1)F ,∴平行四边形AFBR 的中心为1

(,)22

x y P +,

设1122(,),(,)A x y B x y ,则有

2114x y = ① 2224x y = ②

由①-②得12121212()()4()4l x x x x y y x x k -+=-?+= ③

而P 为AB 的中点且直线l 过点(0,1)-,所以121

1

3

22,22

l y x y x x x k x x ++++=?===

代入③可得34y x x

+=?,化简可得22

124124x x y y -=+?=④

由点1(,

)22x y P +在抛物线口内,可得221

()48(1)22

x y x y +

将④式代入⑤可得22

212

8(1)16||44

x x x x -<+?>?> 故动点R 的轨迹方程为2

4(3)(||4)x y x =+>。

练习:7.已知(1,0),(1,4)A B -,在平面上动点Q 满足4QA QB ?=u u u r u u u r

,点P 是点Q 关于直线2(4)y x =-的

对称点,求动点P 的轨迹方程。

5.参数法

求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻求变量间的关系。在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。

例6.过点(2,0)M -作直线l 交双曲线2

2

1x y -=于A 、B 两点,已知OP OA OB =+u u u r u u u r u u u r

(1)求点P 的轨迹方程,并说明轨迹是什么曲线;

(2)是否存在这样的直线l ,使OAPB 矩形?若存在,求出l 的方程;若不存在,说明理由。 解:当直线l 的斜率存在时,设l 的方程为(2)(0)y k x k =+≠,代入方程2

2

1x y -=, 得2

2

2

2

(1)4410k x k x k ----=

因为直线l 与双曲线有两个交点,所以2

10k -≠,设1122(,),(,)A x y B x y ,则

2212122

2441

,11

k k x x x x k k ++==-- ① 212121222

44(2)(2)()4411k k k

y y k x k x k x x k k k k ?+=+++=++=+=--

设(,)P x y ,由OP OA OB =+u u u r u u u r u u u r 得2121222

44(,)(,)(,)11k k

x y x x y y k

k

=++=-- ∴2224141k x k k y k ?=?-?

??=?-? 所以x k y =,代入2

41k y k =-可得241()x y y x y =-,化简得 2240x y x -+=即22(2)4x y +-= ②

当直线l 的斜率不存在时,易求得(4,0)P -满足方程②,故所求轨迹方程为2

2

(2)4(0)x y y +-=≠,其轨迹为双曲线。(也可考虑用点差法求解曲线方程)

(2)平行四边OPAB 为矩形的充要条件是0OA OB ?=u u u r u u u r

即12120x x y y += ③

当k 不存在时,A 、B

坐标分别为(-

、(2,-,不满足③式

当k 存在时,222

121212121212(2)(2)(1)2()4x x y y x x k x k x k x x k x x k +=+++=++++

2222222(1)(14)244011k k k k k k k ++?=-+=--化简得22101

k k +=-,

此方程无实数解,故不存在直线l 使OPAB 为矩形。

练习:8.设椭圆方程为14

2

2

=+y x ,过点(0,1)M 的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21+=

,点N 的坐标为)2

1

,21(,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最小值与最大值。

9.设点A 和B 为抛物线2

4(0)y px p =>上原点O 以外的两个动点,且OA OB ⊥,过O 作OM AB ⊥于

M ,求点M 的轨迹方程。

6.交轨法:若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。

例7.已知MN 是椭圆12222=+b

y a x 中垂直于长轴的动弦,A 、B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程。

解1:(利用点的坐标作参数)令11(,)M x y ,则11(,)N x y -

而(,0),(,0)A a B a -.设AM 与NB 的交点为(,)P x y 因为,,A M P 共线,所以

a x y a x y +=+11 因为,,N B P 共线,所以a

x y a x y

--=-11

两式相乘得22121222

a x y a x y --

=-①, 而1221221=+b y a x 即2)212(221a x a b y -=代入① 得22222

a b a x x =-, 即交点P 的轨迹方程为 122

22=-b

y a x 解2: (利用角作参数)设(cos ,sin )M a b θθ,则(cos ,sin )N a b θθ-

所以

a a

b a x y +=+θθcos sin , a

a b a x y --

=-θθ

cos sin 两式相乘消去θ 即可得所求的P 点的轨迹方程为 122

22=-b

y a x 。 练习:10.两条直线01=++y ax 和)1(01±≠=--a ay x 的交点的轨迹方程是___ ______。

总结归纳

1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明,x y 的取值范围。

2.“轨迹”与“轨迹方程”既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,然后再说明方程的轨迹图形,最后“补漏”和“去掉增多”的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性。

练习参考答案

1.22(2)11648x y --= 2.解:设P 点的坐标为(,)x y ,则由方程22

24x y +=,得242

x y -=± 由于直线l 与椭圆交于两点A 、B ,故22x -<<

即A 、B 两点的坐标分别为22

44(,),(,)22x x A x B x ---

∴22

44(0,),(0,)22

x x PA y PB y --=-=--u u u r u u u r

由题知1PA PB ?=u u u r u u u r 即22

44(0,)(0,)122

x x y y ---?--=

∴22

412x y --= 即22

26x y += 所以点P 的轨迹方程为221(22)63

x y x +=-<< 3.D 【解析】在长方体1111ABCD A B C D -中建立如图所示的空间直角坐标系,易知直线AD 与11D C 是异 面垂直的两条直线,过直线AD 与11D C 平行的平面是面ABCD ,设在平面ABCD 内动点(,)M x y 满足到 直线AD 与11D C 的距离相等,作1MM MP =于1M ,MN CD ⊥于N ,11NP D C ⊥于P ,连结MP ,

易知MN ⊥平面111,CDD C MP D C ⊥,则有1MM MP =,222

||y x a =+(其中a 是异面直线AD 与11D C

间的距离),即有222

y x a -=,因此动点M 的轨迹是双曲线,选D. 4.A 5.解 设(,)M x y ,1122(,),(,)A x y B x y

则12122,2x x x y y y +=+=,由m y x =+21221

,m y x =+22

222 两式相减并同除以12()x x -得

121212121122y y x x x

x x y y y -+=-=--+ , 而1212

AB y y k x x -=-

2

2

PM y k x -=-, 又因为PM AB ⊥所以1AB PM k k ?=- 12

122

x y y x --

?=-- 化简得点M 的轨迹方程240xy x y +-= 6.先用点差法求出210x y --=,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,

注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。

7.解:设(,)Q x y ,则(1,),(1,4)QA x y QB x y =---=--u u u r u u u r

由4(1,)(1,4)4(1)(1)()(4)4QA QB x y x y x x y y ?=?---?--=?---+--=u u u r u u u r

即2

2

2

(2)3x y +-= 所以点Q 的轨迹是以(0,2)C 为圆心,以3为半径的圆。 ∵点P 是点Q 关于直线2(4)y x =-的对称点。

. M O .P

B

A y

x

∴动点P 的轨迹是一个以000(,)C x y 为圆心,半径为3的圆,其中000(,)C x y 是点(0,2)C 关于直线

2(4)y x =-的对称点,即直线2(4)y x =-过0CC 的中点,且与0CC 垂直,于是有

00002

210202422

y x y x -??=-?-??

?++=?-??即000000240821802y x x y x y +-==???????-+==-???

?故动点轨迹方程为22

(8)(2)9x y -++=。 8.解:(1)解法一:直线l 过点(0,1)M ,设其斜率为k ,则l 的方程为1y kx =+ 记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x 是方程组 ??

???=+

+=141

2

2y x kx y 的解 将①代入②并化简得,032)4(2

2=-++kx x k , 所以???????+=++-=+.48,42221221k y y k k x x 于是 ).44,4()2,2()(21222121k k k y y x x ++-=++=+= 设点P 的坐标为),,(y x 则???

????

+=+-=.

44,422k y k k x 消去参数k

得0422=-+y y x ③ 当k 不存在时, A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为22

40x y y +-= 解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以

,14212

1

=+y x ④.142

222=+y x ⑤ ④—⑤得0)(412

2212221=-+-y y x x ,所以

.0))((41

))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(412

121

2121=--?+++x x y y y y x x ⑥ 并且???

?

?

?

?

??--=-+=+=.

1,2,2212121

2

1x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得 .0422=-+y y x ⑧ 当21x x =时,点A 、B 的坐标为(0,2),(0,2)-,这时点P 的坐标为(0,0)

也满足⑧,所以点P 的轨迹方程为2

2

1

()2111164y x -+= (2)解:由点P 的轨迹方程知2

116x ≤,即1144

x -≤≤所以

① ②

12

7

)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x NP

故当41

=x ,||取得最小值,最小值为61;41-=x 当时,||取得最大值,

9.解法1 :(常规设参)设(,)M x y ,1122(,),(,)A x y B x y ,则

?????-=+-=??????????

??-=?---=?==x py y y p y y x

y x x y y x y x y px

y px

y 42

12162112121

1221124221421 (※) 由,,A M B 共线得)421(2141p y x y y p y y -+=- 则2

121214y y y y x y y p

y +++=

把(※)代入上式得y

px y x y 42+-=化简得M 的轨迹方程为22

40(0)x y px x +-=≠) 解法2: (变换方向) 设OA 的方程为(0)y kx k =≠,则OB 的方程为1y x k

=-

由???==px y kx y 22 得222(,)p p A k k , 由??

???

=-=px

y x k y 221 得2

(2,2)B pk pk -

所以直线AB 的方程为 2

(2)1k

y x p k

=

--① 因为OM AB ⊥,所以直线OM 的方程为2

1k y x k

-=- ② ①×②即得M 的轨迹方程: 2

2

40(0)x y px x +-=≠

解法3: (转换观点) 视点M 为定点,令00(,)M x y ,由OM AB ⊥可得直线AB 的方程为

0000()x y y x x y -=-

-, 与抛物线24y px =联立消去y 得222

00000

44()0py p y y x y x x +-+=,设1122(,),(,)A x y B x y ,则22

12000

4()p y y x y x =-

+ 又因为OA OB ⊥,所以21621p y y -= 故22

2000

4()16p x y p x -

+=-即220

0040x y px +-= 所以M 点的轨迹方程为2240(0)x y px x +-=≠ 10.)0,0(02

2

≠≠=+-+y x y x y x

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

高中数学顺口溜

学生必备:一道顺口溜涵盖学会高中三年数学知识点一.数学思想方法总论 中学数学一线牵,代数几何两珠连; 三个基本记心间,四种能力非等闲。 常规五法天天练,策略六项时时变, 精研数学七思想,诱思导学乐无边。 一线:函数一条主线(贯穿教材始终) 二珠:代数、几何珠联璧合(注重知识交汇) 三基:方法(熟) 知识(牢) 技能(巧) 四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活) 五法:换元法、配方法、待定系数法、分析法、归纳法。 六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。 七思想:函数方程最重要,分类整合常用到, 数形结合千般好,化归转化离不了; 有限自将无限描,或然终被必然表, 特殊一般多辨证,知识交汇步步高。 二.数学知识方法分论 集合与逻辑 集合逻辑互表里,子交并补归全集。 对错难知开语句,是非分明即命题; 纵横交错原否逆,充分必要四关系。 真非假时假非真,或真且假运算奇。 函数与数列 数列函数子母胎,等差等比自成排。 数列求和几多法?通项递推思路开; 变量分离无好坏,函数复合有内外。 同增异减定单调,区间挖隐最值来。 三角函数 三角定义比值生,弧度互化实数融; 同角三类善诱导,和差倍半巧变通。 解前若能三平衡,解后便有一脉承; 角值计算大化小,弦切相逢异化同。 方程与不等式 函数方程不等根,常使参数范围生; 一正二定三相等,均值定理最值成。

参数不定比大小,两式不同三法证; 等与不等无绝对,变量分离方有恒。 解析几何 联立方程解交点,设而不求巧判别; 韦达定理表弦长,斜率转化过中点。 选参建模求轨迹,曲线对称找距离; 动点相关归定义,动中求静助解析。 立体几何 多点共线两面交,多线共面一法巧; 空间三垂优弦大,球面两点劣弧小。 线线关系线面找,面面成角线线表; 等积转化连射影,能割善补架通桥。 排列与组合 分步则乘分类加,欲邻需捆欲隔插; 有序则排无序组,正难则反排除它。 元素重复连乘法,特元特位你先拿; 平均分组阶乘除,多元少位我当家。 二项式定理 二项乘方知多少,万里源头通项找; 展开三定项指系,组合系数杨辉角。 整除证明底变妙,二项求和特值巧; 两端对称谁最大?主峰一览众山小。 概率与统计 概率统计同根生,随机发生等可能; 互斥事件一枝秀,相互独立同时争。 样本总体抽样审,独立重复二项分; 随机变量分布列,期望方差论伪真。 以上的这些顺口溜记熟了,对于学习数学是很有帮助的。

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

高考数学难点之轨迹方程的求法

高考数学难点之轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.

高中数学知识口诀大全

高中数学知识口诀大全【转】 一、《集合》 集合概念不定义,属性相同来相聚, 内含子交并补集,高中数学的基础。 集合元素三特征,互异无序确定性。集合元素尽相同,两个集合才相等。 书写采用符号化,表示列举描述法。 元素集合多属于,集合之间谈包含。 0 和空集不相同,正确区分才成功。 运算如果有难处,文氏图儿来相助。 二、《常用逻辑用语》 真假能判是命题,条件结论很清楚。命题形式有四种,分成两双同真假。 若p则q真命题,p是q充分条件, q是p必要条件,原逆皆真称充要。 逻辑联词或且非,或命题一真就真, 且命题全真才真,非命题真假交换。 量词一般有两个,全称量词所有的, 存在量词有一个,若要否定变形式。 三、《函数》 基本函数有三个,指数对数

幂函数。 函数表示有三种,表格图象解析式; 性质奇偶与增减,观察图象最明显, 若要详细证明它,还须将那定义抓。 遇到指数与对数,两者互为反函数。 底数非 1 的正数,1 两边增减变故。 若求函数定义域:分母不能等于0, 偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同; 图象互为轴对称,y=x 是对称轴; 求解非常有规律,反解换元定义域; 反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数; 函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数; 图象第一象限内,函数增减看正负。

两曲线的交点数,就是方程的解数。 函数值两端异号,区间中间有零点。 二分法基本思想,一个区间分成两, 确定符号定区间,重复进行求出解。 四、《三角函数》 三角函数是函数,象限符号坐标注。 函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。 正六边形顶点处,从上到下弦切割;中心记上数字 1,连结顶点三角形; 向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。 诱导公式就是好,负化正后大化小, 一直化到是锐角,化简证明少不了。 二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。 两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。

(完整版)高中数学公式口诀大全

高中数学公式口诀大全 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp; 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。 五、《复数》 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减 函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. *二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+- 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数 分数指数幂 (1)m n a =0,,a m n N *>∈,且1n >). (2)1m n m n a a - = = (0,,a m n N * >∈,且1n >). 根式的性质 (1)当n a =;

高中数学公式速记口诀大全

高中数学公式速记口诀大全 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

高中数学轨迹求法

一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时 1.三角形ABC 中, ,且,则三角形ABC 面积最大值为__________. 2、 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2| || |=PB PA ),求动点P 的轨迹方程? 3、一动点到y 轴距离比到点()2,0的距离小2,则此动点的轨迹方程为 .1. 4.已知()1,0A -, ()2,0B ,动点(),M x y 满足 1 2 MA MB = .设动点M 的轨迹为C . (1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值; 5、已知曲线C 是动点M 到两个定点()0,0O 、()3,0A 距离之比为1 2 的点的轨迹. (1)求曲线C 的方程; (2)求过点()1,3N 且与曲线C 相切的直线方程. 6.一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上且 4AM MB =u u u u r u u u r ,则点M 的轨迹方程是( ) A .221664x y += B .22 1664x y += C .22168x y += D .22 168x y += B 7.已知坐标平面上一点M (x ,y )与两个定点M 1(26,1),M 2(2,1),且 =5. (Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形; (Ⅱ)记(Ⅰ)中的轨迹为C ,过点M (﹣2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程. 1、【解析】建立如图所示的平面直角坐标系,则: ,设点A 的坐标为 ,由题意有: , 整理可得: ,结合三角形 的性质可得点C 的轨迹方程为以 为圆 心, 为半径的圆出去其与x 轴的交点,据此可得三角形ABC 面积的最大值为

最新最全高一数学重要知识点汇总(精华)

高一数学重要知识点汇总

————————————————————————————————————————————————————————————————作者:日期: 2

必修 数学知识总结 必修一 一、集合 一、集合有关概念 1. 2. 集合的含义 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由 HAPPY 的字母组成的集合 {H,A,P,Y} (3) 元素的无序性 : 如:{a,b,c} 和{a,c,b} 是表示同一个集合 3. 集合的表示: { } 如: { 我校的篮球队员 } ,{ 太平洋 , 大西洋 , 印度洋 , 北冰洋 } (1) 用拉丁字母表示集合: A={我校的篮球队员 },B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集) 记作: N 正整数集 N* 或 N+ 整数集 Z 有理数集 Q 实数集 R 1)列举法: {a,b,c } 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内 表示集合的方法。 {x R| x-3>2} ,{x| x-3>2} 3)语言描述法:例: { 不是直角三角形的三角形 } 4)Venn 图: 4、集合的分类: (1) 有限集 (2) 无限集 (3) 空集 含有有限个元素的集合 含有无限个元素的集合 不含任何元素的集合 2 例:{x|x =-5} 二、集合间的基本关系 1. “包含”关系—子集 注意: A B 有两种可能( 1) A 是 B 的一部分,;(2)A 与 B 是同一集合。 集合 A 不包含于集反之 : B, 或集合 B 不包含集合 A, 记作 AB 或 BA 2.“相等”关系: A=B (5 ≥ 5,且 5≤5,则 5=5) 2 实例: 设 A={x|x -1=0} B={-1,1} 等” “元素相同则两集合相 即:① 任何一个集合是它本身的子集。 A A ②真子集 : 如果 A B, 且 A B 那就说集合 A 是集合 B 的真子 集, 记作 A B( 或 B ③如果 A B, B A) C , 那么 A C ④ 如果 A B 同时 B A 那么 A=B Φ 3. 不含任何元素的集合叫做空集,记为 规定 : 集。 空集是任何集合的子集, 空集是任何非空集合的真子 n n-1 有 n 个元素的集合,含有 2 个子集, 2 个真子集 二、函数 1、函数定义域、值域求法综合 2. 、函数奇偶性与单调性问题的解题策略

求轨迹方程的常用方法例题及变式

求轨迹方程的常用方法: 题型一直接法 此法是求轨迹方程最基本的方法, 根据所满足的几何条件, 将几何条件{M | P(M )}直接翻 译成x, y 的形式f(x, y) 0 ,然后进行等价变换,化简 f (x,y) 0,要注意轨迹方程的纯 粹性和完备性,即曲线上没有坐标不满足方程的点, 也就是说曲线上所有的点适合这个条件 而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性) 。 例1过点A(2,3)任作互相垂直的两直线 AM 和AN ,分别交x,y 轴于点M , N ,求线段 MN 中点P 的轨迹方程。 解:设P 点坐标为P(x, y),由中点坐标公式及M,N 在轴上得M (0,2y), AM AN k AM k AN 所以中点P 的轨迹方程为4x 6y 13 0。 变式1 已知动点M (x, y)到直线l : x 4的距离是它到点 (1) 求动点M 的轨迹C 的方程; (2) 过点P(0,3)的直线m 与轨迹C 交于A, B 两点。若A 是PB 的中点,求直线 m 的斜 率。 题型二定义法 圆锥曲线定义所包含的几何意义十分重要, 应特别重视利用圆锥曲线的定义解题, 包括用定 义法求轨迹方程。 2 2 例2 动圆M 过定点P( 4,0),且与圆C :x y 8x 0相切,求动圆圆心 M 的轨迹 方程。 解:根据题意|| MC | |MP || 4,说明点M 到定点C 、P 的距离之差的绝对值为定值, N(2x,0)(x,y R) 0 3 2y 2x 2 0 2 3 1 (x 1),化简得 4x 6y 13 0 (x 1) 当x 1时,M(0,3),N(2,0),此时MN 的中点 P(1,|)它也满足方程4x 6y 13 0, N (1,0)的距离的2倍。

记忆方法:高中数学知识点公式定理记忆口诀

本文集资料共4个分类:学习方法、记忆方法、快速阅读、潜能开发。每个分类都有多个资料,可在百度文库、新浪爱问共享、豆丁文库中直接搜索:“学习方法:”“记忆方法:”“快速阅读:”“潜能开发:”,即可找到更多资料。高中数学知识点公式定理记忆口诀(转) 《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 优秀经验分享:太多的人总是抱怨学不进去,记不住,思维转得慢,大脑不好使,吸取知识的能力太差,学习效率太低。读书的学习不好,经商的赚钱不多!作者本人以前也和读者有着同样的困惑,在我考上公务员,然后后来又转行经商,然后再读MBA,后来再考托福,一路的高压力考试中,从开始就学习了很多的学习方法,记忆方法,包括各种潜能开发培训班都上过一些,还有吃补脑的药也有一些,不过感觉上懂了理论,没有太多的实践,效果不太明显,吃的就更不想说了,相信太多的人都吃过,没有作用。06年的时候,无意间在百度搜索到一个叫做“精英特快速阅读记忆训练软件”的产品,当时要考公务员,花了几百块钱买了来练,开始一两个星期没有太明显的效果,但是一个月的训练之后,效果非常理想,阅读速度和记忆能力在短时间内提高很多,思维这些都比以前更敏捷,那个时候一两个小时可以看完一本书,而且非常容易记住书中的内容。这个能力在后来的公务员考试、MBA、托福以及生活中都很大程度上成就了我,这也是我今天要推荐给诸位的最有分享价值的好东西(想学的朋友可以到这里下载,我做了超链接,按住键盘左下角Ctrl键,然后鼠标左键点击本行文字即可连接。)基本上30个小时就够用了。非常极力的推荐给正在高压学习的朋友们,希望你们也能够快速高效的学习,成就自己的人生。最后,经常学习的同学,我再推荐一个学习商城“爱贝街”,上面的产品非常全,有一个分类是潜能开发,里面卖的产品比市场上便宜很多哦~(按住键盘左下角Ctrl键,然后鼠标左键点击本行文字即可连接。) 《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

相关主题