搜档网
当前位置:搜档网 › 催化加氢

催化加氢

催化加氢
催化加氢

第6章催化加氢

知识目标:

●了解催化加氢生产过程的作用和地位、发展趋势;

●熟悉催化加氢生产原料来源及组成、主要反应原理及特点、催化剂的组成及性质、工艺

流程及操作影响因素分析;

●初步掌握催化加氢生产原理和方法。

能力目标:

●能根据原料的来源和组成、催化剂的组成和结构、工艺过程、操作条件对加氢产品的组

成和特点进行分析判断;

●能对影响加氢生产过程的因素进行分析和判断,进而能对实际生产过程进行操作和控制。

6.1 概述

石油炼制工业发展目标是提高轻质油收率和提高产品质量,一般的石油加工过程产品收率和质量往往是矛盾的,而催化加氢过程却能几乎同时满足这两个要求。

催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称,催化加氢技术包括加氢处理和加氢裂化两类。

加氢处理是指在加氢反应过程中,只有≤10%的原料油分子变小的加氢技术,包括对原料处理和产品精制,如催化重整、催化裂化、渣油加氢等原料的加氢处理;石脑油、汽油、喷气燃料、柴油、润滑油、石蜡和凡士林加氢精制等。

加氢处理的目的在于脱除油品中的硫、氮、氧及金属等杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善原料的品质和产品的使用性能。加氢处理具有原料油的范围宽,产品灵活性大,液体产品收率高,产品质量高,对环境友好,劳动强度小等优点,因此广泛用于原料预处理和产品精制。

加氢裂化是指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。包括高压加氢裂化和中压加氢裂化技术。依照其所加工的原料油不同,可分为馏分油加氢裂化、渣油加氢裂化。

加氢裂化的目的在于将大分子裂化为小分子以提高轻质油收率,同时还除去一些杂质。其特点是轻质油收率高,产品饱和度高,杂质含量少。

一、催化加氢在炼油工业中的地位和作用

石油加工过程实际上就是碳和氢的重新分配过程,早期的炼油技术主要通过脱碳过程提

高产品氢含量,如催化裂化、焦化过程。如今随着产品收率和质量要求提高,需要加氢技术提高产品氢含量,并同时脱去对大气污染的硫、氮和芳烃等杂质。

在现代炼油工业中,催化加氢技术的工业应用较晚,但其工业应用的速度和规模都很快超过热加工、催化裂化、铂重整等炼油工艺,无论从时间上,还是空间上催化加氢工艺已经成为炼油工业重要组成部分。

加氢技术快速增长的主要原因有:

1.随着世界范围内原油变重、品质变差,原油中硫、氮、氧、钒、镍、铁等杂质含量呈上升趋势,炼厂加工含硫原油和重质原油的比例逐年增大,从目前及发展来看,采用加氢技术是改善原料性质、提高产品品质,实现这类原油加工最有效的方法之一。

2.世界经济的快速发展,对轻质油品的需求持续增长,特别是中间馏分油如喷气燃料和柴油,因此需对原油进行深度加工,加氢技术是炼油厂深度加工的有效手段。

3.环境保护的要求。对生产者要求在生产过程中要尽量做到物质资源的回收利用,减少排放,并对其产品在使用过程中能对环境造成危害的物质含量严格限制。目前催化加氢是能够做到这两点的石油炼制工艺过程之一,如生产各种清洁燃料,高品质润滑油都离不开催化加氢。

二、加氢技术发展的趋势

1.加氢处理技术

开发直馏馏分油和重原料油深度加氢处理催化剂的新金属组分配方,量身定制催化剂载体;重原料油加氢脱金属催化剂;废催化剂金属回收技术;多床层加氢反应器,以提高加氢脱硫、脱氮、脱金属等不同需求活性和选择性,使催化剂的表面积和孔分布更好地适应不同原料油的需要,延长催化剂的运转周期和使用寿命,降低生产催化剂所用金属组分的成本,优化工艺进程。

2.芳烃深度加氢技术

开发新金属组分配方特别是非贵金属、新催化剂载体和新工艺,目的是提高较低操作压力下芳烃的饱和活性,降低催化剂成本,提高柴油的收率和十六烷值,控制动力学和热力学。

3.加氢裂化技术

开发新的双功能金属一酸性组分的配方,以提高中馏分油的收率、提高柴油的十六烷值、提高抗结焦失活的能力、降低操作压力和氢气消耗。

6.2 催化加氢反应

催化加氢反应主要涉及两个类型反应过程,一是除去氧、硫、氮及金属等少量杂质的加氢处理过程反应,二是涉及烃类加氢反应。这两类反应在加氢处理和加氢裂化过程中都存在,只是侧重点不同。

一、加氢处理反应

1.加氢脱硫反应(HDS)

石油馏分中的硫化物主要有硫醇、硫醚、二硫化合物及杂环硫化物,在加氢条件下发生氢解反应,生成烃和H2S,主要反应如:

RSH +H2RH+H2S

R S R+2H2+H2S

(RS)2+3H22RH+2H2S

S +4H2R C4H9+H2S

R

S +2H

2+H2S

各种硫化物在加氢条件下反应活性因分子大小和结构不同存在差异,其活性大小的顺序为:硫醇>二硫化物>硫醚≈四氢噻吩>噻吩。

噻吩类的杂环硫化物活性最低。并且随着其分子中的环烷环和芳香环的数目增加,加氢反应活性下降。

2.加氢脱氮反应(HDN)

石油馏分中的氮化物主要是杂环氮化物和少量的脂肪胺或芳香胺。在加氢条件下,反应生成烃和NH3主要反应如下:

R CH2NH2+H2R CH3+NH3

N

+5H2C5H12+NH3

N +7H 2C 3H 7+NH 3

N H +4H 2C 4H 10+NH 3

加氢脱氮反应包括两种不同类型的反应,即C=N 的加氢和C -N 键断裂反应,因此,加氢脱氮反应较脱硫困难。加氢脱氮反应中存在受热力学平衡影响的情况。

馏分越重,加氢脱氮越困难。主要因为馏分越重,氮含量越高;另外重馏分氮化物结构也越复杂,空间位阻效应增强,且氮化物中芳香杂环氮化物最多。

3.加氢脱氧反应(HDO )

石油馏分中的含氧化合物主要是环烷酸及少量的酚、脂肪酸、醛、醚及酮。含氧化合物在加氢条件下通过氢解生成烃和H 2O 。主要反应如: OH +H

2

+H 2O COOH +3H 2CH 3+2H 2O

含氧化合物反应活性顺序为:

呋喃环类>酚类>酮类>醛类>烷基醚类

含氧化合物在加氢反应条件下分解很快,对杂环氧化物,当有较多的取代基时,反应活性较低。

4.加氢脱金属(HDM )

石油馏分中的金属主要有镍、钒、铁、钙等,主要存在于重质馏分,尤其是渣油中。这些金属对石油炼制过程,尤其对各种催化剂参与的反应影响较大,必须除去。渣油中的金属可分为卟啉化合物(如镍和钒的络合物)和非卟啉化合物(如环烷酸铁、钙、镍)。以非卟啉化合物存在的金属反应活性高,很容易在H 2/H 2S 存在条件下,转化为金属硫化物沉积在催化剂表面上。而以卟啉型存在的金属化合物先可逆地生成中间产物,然后中间产物进一步氢解,生成的硫化态镍以固体形式沉积在催化剂上。加氢脱金属反应如:

22,''H H S R M R MS RH R H --???→++

由上可知,加氢处理脱除氧、氮、硫及金属杂质进行不同类型的反应,这些反应一般是

在同一催化剂床层进行,此时要考虑各反应之间的相互影响。如含氮化合物的吸附会使催化剂表面中毒,氮化物的存在会导致活化氢从催化剂表面活性中心脱除,而使HDO反应速度下降。也可以在不同的反应器中采用不同的催化剂分别进行反应,以减小反应之间的相互影响和优化反应过程。

二、烃类加氢反应

烃类加氢反应主要涉及两类反应,一是有氢气直接参与的化学反应,如加氢裂化和不饱和键的加氢饱和反应,此过程表现为耗氢;二是在临氢条件下的化学反应,如异构化反应,此过程表现为,虽然有氢气存在,但过程不消耗氢气,实际过程中的临氢降凝是其应用之一。

1.烷烃加氢反应

烷烃在加氢条件下进行的反应主要有加氢裂化和异构化反应。其中加氢裂化反应包括C -C的断裂反应和生成的不饱和分子碎片的加氢饱和反应。异构化反应则包括原料中烷烃分子的异构化和加氢裂化反应生成的烷烃的异构化反应。而加氢和异构化属于两类不同反应,需要两种不同的催化剂活性中心提供加速各自反应进行的功能。即要求催化剂具备双活性,并且两种活性要有效的配合(参见重整催化剂双功能)。烷烃进行反应描述如下:

R1-R2+ H2→R1H + R2H

nC n H2n+2→iC n H2n+2

烷烃在催化加氢条件下进行的反应遵循正碳离子反应机理,生成的正碳离子在β位上发生断键,因此,气体产品中富含C3和C4。由于既有裂化又有异构化,加氢过程可起到降凝作用。

2.环烷烃加氢反应

环烷烃在加氢裂化催化剂上的反应主要是脱烷基、异构和开环反应。环烷正碳离子与烷烃正碳离子最大的不同在于前者裂化困难,只有在苛刻的条件下,环烷正碳离子才发β位断裂。带长侧链的单环环烷烃主要是发生断链反应。六元环烷相对比较稳定,一般是先通过异构化反应转化为五元环烷烃后再断环成为相应的烷烃。双六元环烷烃在加氢裂化条件下往往是其中的一个六元环先异构化为五元环后再断环,然后才是第二个六元环的异构化和断环。这两个环中,第一个环的断环是比较容易的,而第二个环则较难断开。此反应途径描述如下:

CH3

C4H9

CH3

C4H9

i-C10H12

环烷烃异构化反应包括环的异构化和侧链烷基异构化。环烷烃加氢反应产物中异构烷烃与正构烷烃之比和五元环烷烃与六元环烷烃之比都比较大。

3.芳香烃加氢反应

苯在加氢条件下反应首先生成六元环烷,然后发生前述相同反应。

烷基苯加氢裂化反应主要有脱烷基、烷基转移、异构化、环化等反应,使得产品具有多样性。C1~C4侧链烷基苯的加氢裂化,主要以脱烷基反应为主,异构和烷基转移为次,分别生成苯、侧链为异构程度不同的烷基苯、二烷基苯。烷基苯侧链的裂化既可以是脱烷基生成苯和烷烃;也可以是侧链中的C-C键断裂生成烷烃和较小的烷基苯。对正烷基苯,后者比前者容易发生,对脱烷基反应,则α-C上的支链越多,越容易进行,以正丁苯为例,脱烷基速率有以下顺序:

叔丁苯>仲丁苯>异丁苯>正丁苯

短烷基侧链比较稳定,甲基、乙基难以从苯环上脱除。C4或C4以上侧链从环上脱除很快。对于侧链较长的烷基苯,除脱烷基、断侧链等反应外,还可能发生侧链环化反应生成双环化合物。苯环上烷基侧链的存在会使芳烃加氢变得困难,烷基侧链的数目对加氢的影响比侧链长度的影响大。

对于芳烃的加氢饱和及裂化反应,无论是降低产品的芳烃含量(生产清洁燃料),还是降低催化裂化和加氢裂化原料的生焦量都有重要意义。在加氢裂化条件下,多环芳烃的反应非常复杂,它只有在芳香环加氢饱和反应之后才能开环,并进一步发生随后的裂化反应。稠环芳烃每个环的加氢和脱氢都处于平衡状态,其加氢过程是逐环进行,并且加氢难度逐环增加。

4.烯烃加氢反应

烯烃在加氢条件下主要发生加氢饱和及异构化反应。烯烃饱和是将烯烃通过加氢转化为相应的烷烃;烯烃异构化包括双键位置的变动和烯烃链的空间形态发生变动。这两类反应都有利于提高产品的质量。其反应描述如下:

R-CH=CH2+ H2→ R-CH2-CH3

R-CH=CH-CH=CH2+ 2H2→ R-CH2-CH2-CH2-CH3

nC n H2N→iC N H2N

iC N H2N+ H2→iC N H2N+2

焦化汽油、焦化柴油和催化裂化柴油在加氢精制的操作条件下,其中的烯烃加氢反应是

完全的。因此,在油品加氢精制过程中,烯烃加氢反应不是关键的反应。

值得注意的是,烯烃加氢饱和反应是放热效应,且热效应较大。因此对不饱和烃含量高油品加氢时,要注意控制反应温度,避免反应床层超温。

5.烃类加氢反应的热力学和动力学特点

1).热力学特征

烃类裂解和烯烃加氢饱和等反应化学平衡常数值较大,不受热力学平衡常数的限制。芳烃加氢反应,随着反应温度升高和芳烃环数增加,芳烃加氢平衡常数值下降。在加氢裂化过程中,形成的正碳离子异构化的平衡转化率随碳数的增加而增加,因此,产物中异构烷烃与正构烷烃的比值较高。

加氢裂化反应中加氢反应是强放热反应,而裂解反应则是吸热反应。但裂解反应的吸热效应远低于加氢反应的放热效应,总的结果表现为放热效应。单体烃的加氢反应的反应热与分子结构有关,芳烃加氢的反应热低于烯烃和二烯烃的反应热,而含硫化合物的氢解反应热与芳烃加氢反应热大致相等。整个过程的反应热与断开的一个键(并进行碎片加氢和异构化)的反应热和断键的数目成正比。

2).动力学特征

烃类加氢裂化是一个复杂的反应体系,在进行加氢裂化的同时,还进行加氢脱硫、脱氮、脱氧及脱金属等反应,它们之间相互影响,使得动力学问题变得相当复杂,下面以催化裂化循环油在10.3MPa下的加氢裂化反应为例,见图7—1。简单地说明一下各种烃类反应之间的相对反应速率。

多环芳烃很快加氢生成多环环烷芳烃,其中的环烷环较易开环,继而发生异构化、断侧链(或脱烷基)等反应。分子中含有两个芳环以上的多环芳烃,其加氢饱和及开环断侧链的反应都较容易进行(相对速率常数为1~2);含单芳环的多环化合物,苯环加氢较慢(相对速率只有0.1),但其饱和环的开环和断侧链的反应仍然较快(相对速率大于1);但单环环烷较难开环(相对速率为O.2)。因此,多环芳烃加氢裂化,其最终产物可能主要是苯类和较小分子烷烃的混合物。

6.3 催化加氢催化剂

加氢裂化装置所用的催化剂包括:保护剂、加氢精制剂、加氢裂化剂。

加氢裂化装置可能上述3种催化剂都用,此时每l种(或每1类)催化剂的作用如上所述;也可能只用加氢精制剂和加氢裂化剂,此时加氢精制剂将起如上所述的保护剂和加氢精制剂的作用;加氢裂化装置也可只用加氢裂化剂,此时的加氢裂化剂将集所有功能于一剂。

1.保护剂

保护剂是一个广义上的名词,包括一般意义上的保护剂、脱金属剂,目的是改善被保护催化剂的进料条件,抑制杂质对被保护催化剂孔道堵塞与活性中心被覆盖,即脱除机械杂质、胶质、沥青质及金属化合物,保护被保护催化剂的活性和稳定性,延长催化剂的运转周期。

保护剂一般由惰性物质、具有微量或少量加氢活性的催化剂组成,采用分级技术装填于反应器顶部 .

保护剂的形状有球形、圆柱形、三叶草形、车轮形、拉西环形、蜂窝形

2.反应器第一层保护剂起什么作用,装填有何特点?

保护剂的作用在于改善加氢进料质量,抑制杂质对主催化剂孔道的堵塞与活性中心被覆盖,保护主催化剂活性和稳定性,延长催化剂运行周期。

在加氢裂化装置第一精制反应器催化剂床层顶部,装填不同粒度、形状、不同空隙率和反应活性低的催化剂,实行分级装填,对克服顶部催化剂床层结焦和使沉积金属较均匀地分布在整个脱金属催化剂床层十分有效。目前,国内大型加氢裂化装置一般都放置具有较大空隙率和较低活性的大颗粒催化剂。

2. 加氢精制剂

加氢精制剂分前加氢精制剂和后加氢精制剂。前加氢精制剂的作用是脱除硫、氮、氧等杂原子化合物、残余的金属有机化合物、饱和多环芳烃,降低加氢裂化催化剂的反应温度、减缓加氢裂化催化剂的失活,从而延长加氢裂化催化剂的运转周期。后加氢精制剂的作用是饱和烯烃、脱除硫醇、提高产品的质量。

加氢精制剂一般由金属组分、载体和助剂3部分组成。

金属组分主要提供加氢活性及能够加速C-N键氢解的弱酸性,由Vl B族或Ⅷ族的金属。

(1)金属组分

金属组分主要提供加氢活性及能够加速C-N键氢解的弱酸性,由Vl B族或Ⅷ族的金属。

(2)载体

载体的作用是提供适宜反应与扩散所需的孔结构,担载分散金属均匀的有效表面积和一定的酸性,同时改善催化剂的压碎、耐磨强度与热稳定性;加氢精制剂的载体主要为Al2O3。

(3)助剂

助剂的作用是调节载体性质及金属组分结构和性质、催化剂的活性、选择性、氢耗和寿

命的目的。

常用的助剂是P2O5。

3. 加氢裂化剂

加氢裂化剂属双功能催化剂,主要由提供加氢/脱氢功能的金属组分和提供裂化功能的酸性组分组成,其作用是将进料转化成希望的目的产品,并尽量提高目的产品的收率和质量。

3.1 加氢裂化催化剂的分类

按金属分类:贵金属Pt、Pd;非贵金属Mo-Ni、W-Ni、Mo-Co、W-Mo-Ni、Mo-Ni-Co等按酸性载体分类:无定型、无定型硅铝、无定型硅镁、改性氧化铝等

按工艺过程分类:单段催化剂、两段催化剂

按压力分类:高压(10MPa以上)、中压(5-10MPa)

按目的产品分类:轻油型、中油型、中高油型、重油型

3.2催化剂性能

催化加氢催化剂的性能取决与其组成和结构,根据加氢反应侧重点不同,加氢催化剂还可分为加氢饱和(烯烃、炔烃和芳烃中不饱和键加氢)、加氢脱硫、加氢脱氮、加氢脱金属及加氢裂化催化剂。

加氢催化剂主要由三部分组成,主催化剂提供反应的活性和选择性;助催化剂主要改善主催化剂的活性、稳定性和选择性;载体主要提供合适的比表面积和机械强度,有时也提供某些反应活性,如加氢裂化中的裂化及异构化所需的酸性活性。

1).加氢处理催化剂

加氢处理催化剂中常用的加氢活性组分有铂、钯、镍等金属和钨、钼、镍、钴的混合硫化物,它们对各类反应的活性顺序为:

加氢饱和 Pt,Pb> Ni>W-Ni> Mo-Ni> Mo-Co> W-Co

加氢脱硫 Mo-Co> Mo-Ni> W-Ni> W-Co

加氢脱氮 W-Ni> Mo-Ni> Mo-Co> W-Co

为了保证金属组分以硫化物的形式存在,在反应气氛中需要一个最低的H2S 和H2分压之比值,低于这个比值,催化剂活性会降低和逐渐丧失。

加氢活性主要取决于金属的种类、含量、化合物状态及在载体表面的分散度等。

活性氧化铝是加氢处理催化剂常用的载体,这主要是因为活性氧化铝是一种多孔性物料,

它具有很高的表面积和理想的孔结构(孔体积和孔径分布),可以提高金属组分和助剂的分散度。制成一定形状颗粒的氧化铝还具有优良的机械强度和物理化学稳定性,适宜于工业过程的应用。

载体性能主要取决于载体的比表面积、孔体积、孔径分布、表面特性、机械强度及杂质含量等。

2).加氢裂化催化剂

加氢裂化催化剂属于双功能催化剂,即催化剂由具有加(脱)氢功能的金属组分和具有裂化功能的酸性载体两部分组成。根据不同的原料和产品要求,对这两种组分的功能进行适当的选择和匹配。

在加氢裂化催化剂中加氢组分的作用是使原料油中的芳烃,尤其是多环芳烃加氢饱和;使烯烃,主要是反应生成的烯烃迅速加氢饱和,防止不饱和分子吸附在催化剂表面上,生成焦状缩合物而降低催化活性。因此,加氢裂化催化剂可以维持长期运转,不象催化裂化催化剂那样需要经常烧焦再生。

常用的加氢组分按其加氢活性强弱次序为:

Pt,Pd>W-Ni>Mo-Ni>Mo-Co>W-Co

铂和钯虽然具有最高的加氢活性,但由于对硫的敏感性很强,仅能在两段加氢裂化过程中,无硫、无氨气氛的第二段反应器中使用。在这种条件下,酸功能也得到最大限度的发挥,因此产品都是以汽油为主。

在以中间馏分油为主要产品的一段法加氢裂化催化剂中,普遍采用Mo-Ni或Mo-Co组合。在以润滑油为主要产品时,则都采用W-Ni组合,有利于脱除润滑油中最不希望存在的多环芳烃组分。

加氢裂化催化剂中裂化组分的作用是促进碳一碳链的断裂和异构化反应。常用的裂化组分是无定形硅酸铝和沸石,通称为固体酸载体。其结构和作用机理与催化裂化催化剂相同。不论是进料中存在的氮化合物,以及反应生成的氨,对加氢裂化催化剂都具有毒性。因为氮化合物,尤其是碱性氮化合物和氨会强烈地吸附在催化剂表面上,使酸性中心被中和,导致催化剂活性损失。因此,加工氮含量高的原料油时,对无定形硅铝载体的加氢裂化催化剂需要将原料预加氢脱氮,并分离出NH3以后再进行加氢裂化反应。但对于含沸石的加氢裂化催化剂,则允许预先加氢脱氮过的原料带着未分离的氨直接与之接触。这是因为沸石虽然对氨也

是敏感的,但由于它具有较多的酸性中心,即使有氨存在下仍能保持较高的活性。

考察加氢裂化催化剂性能时要综合考虑催化剂的加氢活性,裂化活性,对目的产品的选择性,对硫化物、氮化物及水蒸气的敏感性,运转稳定性和再生性能等因素。

3).催化剂的预硫化

加氢催化剂的钨、钼、镍、钴等金属组分,使用前都是以氧化物的状态分散在载体表面。而起加氢活性却是硫化态,在加氢运转过程中,虽由于原料油中含有硫化物,可通过反应而转变成硫化态,但往往由于在反应条件下,原料油含硫量过低,硫化不完全而导致一部分金属还原,使催化剂活性达不到正常水平。故目前这类加氢催化剂,多采用预硫化方法,将金属氧化物在进油反应前转化为硫化态。

加氢催化剂的预硫化,有气相预硫化与液相预硫化两种方法:气相预硫化(亦称干法预硫化),即在循环氢气存在下,注入硫化剂进行硫化;液相预硫化(亦称湿法预硫化),即在循环氢气存在下,以低氮煤油或轻柴油为硫化油,携带硫化剂注入反应系统进行硫化。

影响预硫化效果的主要因素为预硫化温度和硫化氢浓度。

注硫温度主要取决于硫化剂的分解温度。例如,采用CS2为硫化剂,CS2与氢开始反应生成H2S的温度为175℃,因此,注入CS2的温度应在175℃以下,使CS2先在催化剂表面吸附,然后在升温过程中分解。

当反应器催化剂床层被H2S穿透前,应严格控制床层温度不能超过230℃,否则一部分氧化态金属组分会被氢气还原成低价金属氧化物或金属元素,致使硫化不完全。再则还原反应与硫化反应将使催化剂颗粒产生内应力,导致催化剂的机械强度降低。

同时,还原金属对油具有强烈的吸附作用,在正常生产期间会加速裂解反应,造成催化剂大量积炭,活性迅速下降。

因此,必须严格控制整个预硫化过程各个阶段的温度和升温速度。硫化最终温度一般为360~370℃。

循环氢中硫化氢浓度增高,硫化反应速度加快,当硫化氢浓度增加到一定程度之后,硫化反应速度就不再增加。但是在实际硫化过程中,受反应系统材质抗硫化氢腐蚀性能的限制,不可能采用过高的硫化氢浓度。一般预硫化期间,循环氢中硫化氢浓度限制在<1.0v%。

预硫化过程一般分为催化剂干燥、硫化剂吸附和硫化三个主要步骤。

4).催化剂再生

加氢催化剂在使用过程中由于结焦和中毒,使催化剂的活性及选择性下降,不能达到预期的加氢目的,必须停工再生或更换新催化剂。

国内加氢装置一般采用催化剂器内再生方式,有蒸汽-空气烧焦法和氮气-空气烧焦法两种。对于γ-Al2O3为载体的Mo、W系加氢催化剂,其烧焦介质可以为蒸汽或氮气,但对于以沸石为载体的催化剂,如再生时水蒸气分压过高,可能破坏沸石晶体结构,而失去部分活性,因此必须用氮气-空气烧焦法再生。

再生过程包括以下两个阶段:

①再生前的预处理

在反应器烧焦之前,需先进行催化剂脱油与加热炉清焦。催化剂脱油主要采取轻油置换和热氢吹脱的方法。对于采用加热炉加热原料油的装置,在再生前,加热炉管必须清焦,以免影响再生操作和增加空气耗量。炉管清焦一般用水蒸气-空气烧焦法,烧焦时应将加热炉出、入口从反应部分切出,蒸汽压力为0.2~0.5 MPa,炉管温度约为550~620℃。可以通过固定蒸汽流量变动空气注入量,或固定空气注入量变动蒸汽流量的办法来调节炉管温度。

②烧焦再生

通过逐步提高烧焦温度和降低氧浓度而控制烧焦过程分三个阶段完成。

3.3问答题

1、加氢裂化催化剂组成上有何特点?

加氢裂化催化剂是双功能催化剂,是具有加氢活性和裂解活性的双功能催化剂,加氢活性由活性组分提供,裂解活性则由载体提供。加氢活性组分主要包括ⅥB族和Ⅷ族的几种金属如Mo、W、Ni、Co、Fe、Cr等的硫化物,或贵金属Pt、Pd元素等。裂解功能一般由无定形硅铝、分子筛等酸性载体提供。具有大面积的无定型或晶型硅铝称为载体。通常,人们以无定型硅铝载体或晶型硅铝载体作为划分加氢裂化催化剂类别的基础。

2、加氢裂化催化剂的作用是什么?

加氢裂化是在氢压下把低质量大分子的原料油转化为洁净的小分子产品。大分子的原料油较之小分子的产品有较高的能位,为了使转化反应过程顺利进行,必须克服能障,即所谓活化能(Ea)。催化剂的作用是可以减少或降低能障,加快反应速度。但催化剂不能改变反应和原料油与产品之间的平衡。

3、催化剂载体的作用?

单独存在的高度分散的催化剂活性组分,受降低表面自由能的热力学趋势的推动,存在着强烈的聚集倾向,很容易因温度的升高而产生烧结,使活性迅速降低。如果将活性组分载到载体上,由于载体本身具有好的热稳定性,而且对高度分散的活性组分颗粒的移动和彼此接近起到阻隔作用,会提高活性组分产生烧结的温度,从而提高了催化剂的热稳定性。不同的载体因表面性质不同,会不同程度地提高活性组分的烧结温度。此外,活性组分分散到载体上后,增加了催化剂的体积和散热面积,从而改善了催化剂的散热性能,同时载体又增加了催化剂的热容,这些都能减小因反应放热所引起的催化剂床层的温度提高,特别是在强放热反应中,良好的导热性能有利于避免因反应热的积蓄使催化剂床层超温而引起催化剂活性组分烧结。

4、助剂的作用

①有利于金属分散,(加入Si、B),使之更好的转化为Ni-Mo-S(Co-Mo-S)活性相。

②加入P、Ti抑制尖晶石的生成。

③加入F、Si提高酸性。

5、中压加氢裂化与高压加氢裂化的催化剂有无不同?

中压加氢裂化装置与高压加氢裂化装置操作条件相比,其系统操作压力较低,因此氢分压偏低,对催化剂的产品转化率要求低一些,但对催化剂的耐氮、耐氧、容炭、芳烃饱和性能要求更高一些。

6、高中油型加氢裂化催化剂有何特点?

高中油型加氢裂化催化剂是以最大量生产中间馏分油产品为目的的,这就要求高中油型催化剂有尽可能多的加氢活性和适中的酸性。为了开发出活性稳定的、中间馏分油选择性好的高中油型催化剂,在设计上应从下面几方面考虑:①合适的载体和催化剂孔结构,减少反应物、生成物的扩散阻力,提高反应速度,并尽可能避免过度裂解;②合适的催化剂表面强酸中心密度,改善催化剂活性,并减少二次裂解的概率;③足够高的加氢金属浓度及加氢金属与载体的相互作用程度,改善加氢金属的分散,提高催化剂加氢活性。

7、催化剂初期和末期相比较有什么变化,为什么?

催化剂在使用过程中,会产生催化剂表面生焦积炭、催化剂上金属和灰分沉积、金属聚集及晶体大小和形态的变化等现象,因生焦积炭等因素其活性、选择性会逐步下降,为了达

到预期的精制要求和裂解转化深度,必须通过逐步提高相应的操作温度来补偿其活性、选择性的下降。

8、催化剂表征包括哪些内容?

①孔结构,由于反应是在催化剂固体表面上进行的,而且主要是内表面,所以孔结构是十分重要的因素。②表面积,因为催化反应是在催化剂表面上进行,表面积对分散催化剂活性组分起重要作用,它与催化剂活性密切相关。③孔径,用来表示催化剂平均孔径的大小。

④孔体积,是单位质量催化剂所有细孔体积的总和。⑤孔体积对孔径的分布,即不同孔径的孔体积占催化剂总孔体积的比例。⑥酸性,酸性是加氢裂化催化剂的重要性质,它关系到催化剂的裂解活性,是决定催化剂反应温度的关键因素,还影响产品分布。⑦金属分散和活性相结构,要使较少的金属发挥更高的活性,使催化剂上的金属组分尽量分散得好,促使多生成加氢活性相。⑧其它表征,对加氢裂化催化剂还要测定其它化学组成和杂质的含量,通常采用化学分析、X光衍射、X光荧光、原子吸收光谱等。

9、贵金属催化剂的适用范围是什么?

由于贵金属催化剂容易被有机硫和硫化氢中毒而失活,只能适用于不含硫的原料中。在两段加氢裂化工艺中,由于第二段进料经过脱硫和脱氨,也可使用贵金属催化剂。

10、催化剂的外形有哪些,为什么选择异形催化剂?

催化剂外形有球形、圆柱形、三叶草形、碟形等多种形状的催化剂。制造异形催化剂的目的主要是为了增大空隙率,降低床层压降,延长装置的运行周期。同时,异形催化剂对于加工重质原料更利于扩散的进行,加快了反应速度。

11、对于催化剂应要求具备哪几种稳定性?

①化学稳定性——保持稳定的化学组成和化合状态。

②热稳定性——能在反应条件下,不因受热而破坏其物理—化学状态,同时,在一定的温度变化范围能保持良好的稳定性。

③机械稳定性——具有足够的机械强度,保证反应器处于适宜的流体力学条件。

④对于毒物有足够的抵抗力。

12、催化剂中毒分为几类?

具有高度活性的催化剂经过短时间工作后就丧失了催化剂能力,这种现象往往是由于在反应原料中存在着微量能使催化剂失掉活性的物质所引起的,这种物质称为催化毒物,这种

现象叫做催化剂的中毒。

催化剂中毒分为可逆中毒、不可逆中毒和选择性中毒。

可逆中毒是毒物在活性中心上吸附或化合时,生成的键强度相对较弱,可以采取适当的方法去除,使催化剂活性恢复,而不影响催化剂的性质。如注氨钝化,氨使裂化催化剂暂时中毒活性受到抑制,随着氨的脱附,催化剂的活性恢复。不可逆中毒是毒物与催化剂活性组分相互形成很强的化学键,难于用一般方法将毒物去除,催化剂活性降低。如碱性氮使裂化催化剂中毒就属于这一种。选择性中毒是一个催化剂中毒之后可能失去对某一反应的催化能力,但对别的反应仍具有催化活性。选择中毒有可以利用的一面,如在串联反应中,如果毒物仅使催化后继反应的活性中心中毒,可以使反应停留在中间产物上,获得所希望的高产率中间产物。

13、水对催化剂有何危害?

少量的水在反应系统中绝大部分为气态,浓度较低使对催化剂的活性、稳定性基本没影响,但液态水或高浓度水蒸气与催化剂接触时,会造成催化剂上的金属聚结、晶体变形及催化剂外形改变,从而破坏催化剂的机械强度及活性、稳定性。

14、导致催化剂失活的因素有哪些?

主要有:催化剂表面生焦积炭;催化剂上金属和灰分沉积;金属聚集及晶体大小和形态的变化。①在加氢过程中,原料油中烃类的裂解和不稳定化合物的缩合,都会在催化剂的表面生焦积炭,导致其金属活性中心被覆盖和微孔被堵塞封闭,是催化剂失活的重要原因。

②原料油中的金属特别是Fe、Ni、V、Ca等,以可溶性有机金属化合物的形式存在,它们在加氢过程中分解后会沉积在催化剂表面,堵塞催化剂微孔;As、Pb、Na等与催化剂活性中心反应,导致沸石结构破坏。另外,石墨、氧化铝、硫酸铝、硅凝胶等灰分物质,它们堵塞催化剂孔口,覆盖活性中心,并且当再生温度过高时与载体发生固相反应,这些属于永久失活。③非贵金属的加氢催化剂,在长期的运转过程中存在金属聚集、晶体长大、形态变化及沸石结构破坏等问题。

以上三种失活机理中,只有因生焦积炭引起的催化剂失活,才能通过含氧气体进行烧焦的方法来恢复其活性。

15、加氢催化剂为什么需要硫化,硫化前对催化剂的操作温度有何要求?

初始装入反应器内的加氢催化剂都以氧化态存在,不具有反应活性,只有以硫化物状态

存在时才具有加氢活性和稳定性、选择性。所以对新鲜的或再生后的加氢催化剂在使用前都应进行硫化。湿法硫化的起始温度通常控制在150~160℃;一般国内装置根据硫化剂确定干法硫化的起始温度:二硫化碳注硫温度为150℃,DMDS注硫温度为175℃。

16、催化剂注氨钝化的目的何在,对催化剂有何影响?

含分子筛的加氢裂化催化剂硫化后,具有很高的活性,所以在进原料油之前,须采取相应的措施对催化剂进行钝化,以抑制其过高的初活性,防止和避免进油过程中可能出现的温度飞升现象,确保催化剂、设备及人身安全。注氨可使裂化催化剂钝化。氨分子可以被吸附在催化剂的微孔中,并在一段时间内占据其中,使得油品暂时无法与部分催化剂接触而起反应。

6.4 加氢精制工艺流程

一、加氢处理工艺流程

加氢处理根据处理的原料可划分为两个主要工艺,一是馏分油产品的加氢处理,包括传统的石油产品加氢精制和原料的预处理;二是渣油的加氢处理。

1.馏分油加氢处理

1).汽油馏分加氢

2).煤油馏分加氢

3).柴油馏分加氢

2.渣油加氢处理

二、加氢裂化工艺流程

加氢裂化装置,根据反应压力的高低可分高压加氢裂化和中压加氢裂化。根据原料、目的产品及操作方式的不同,可分为一段加氢和两段加氢裂化。

1.一段加氢裂化

根据加氢裂化产物中的尾油是否循环回炼,采用三种操作方式。一段一次通过和一段串联全循环操作,也可采用部分循环操作。

1).一段一次通过流程

主要操作条件:

处理反应器入口压力,MPa :17.6;反应温度,℃:390~405;氢油比,Nm3/m3:1800:1;空速,(v) h-1:1.0~2.8;循环氢纯度,(v)%:91。产品及收率见7—10。

2).一段串联循环流程

一段串联循环流程是将尾油全部返回裂解段裂解成产品。根据目的产品不同,可分为中馏分油型(喷气燃料一柴油)和轻油型(重石脑油)。

例如,以胜利原油的减压馏分油与胜利渣油的焦化馏分油混合物为原料生产中间馏分油加氢裂化反应部分流程见图7—6。采用处理-裂化-处理模式。

主要操作条件:

进料量,t/h:原料油为100,循环油为60;

空速,(v)h-1:处理段为0.941,裂化段为1.14,后处理段为15.0;

补充新氢纯度,%:95.0;

氢油比,Nm3/m3:处理段入口为842.3,裂化段入口为985;

裂化反应器入口压力,MPa:17.5;

反应温度,℃:R101处理反应器和R102裂化反应器运转初期的入口、出口及平均温度分别为355.3、392.8、380.9和385.9、390.1、386.6。

2.二段加氢裂化

在二段加氢裂化的工艺流程中设置两个(组)反应器,但在单个或一组反应器之间,反应产物要经过气一液分离或分馏装置将气体及轻质产品进行分离,重质的反应产物和未转化反应物再进入第二个或第二组反应器,这是二段过程的重要特征。它适合处理高硫、高氮减压蜡油,催化裂化循环油,焦化蜡油,或这些油的混合油,亦即适合处理单段加氢裂化难处理或不能处理的原料。

与一段工艺相比,二段工艺具有气体产率低、干气少、目的产品收率高、液体总收率高;产品质量好,特别是产品中芳烃含量非常低;氢耗较低;产品方案灵活大;原料适应性强,可加工更重质、更劣质原料等优点。但二段工艺流程复杂,装置投资和操作费用高。

反应系统的换热流程既有原料油、氢气混合与生成油换热方式。也有原料油、氢气分别与生成油换热的方式,后者的优点是:充分利用其低温位热,以利于最大限度降低生成油出换热器的温度;降低原料油和氢气在加热过程中的压力降,有利于降低系统压力降。

氢气与原料油有两种混合方式:即“炉前混油”与“炉后混油”。前者是原料油与氢气混合后一同进加热炉。而后者是原料油只经换热,加热炉单独加热氢气,随后再与原料油混合。“炉后混油”的好处是,加热炉只加热氢气,炉管中不存在气液两相,流体易于均匀分配,炉管压力降小,而且炉管不易结焦。

以上探讨均为高压加氢裂化工艺。除此之外,还有从轻质直馏减压馏分油生产喷气燃料、低凝柴油为主的中压加氢裂化;以及用直馏减压馏分油控制单程转化率的中压缓和加氢裂化,生产一定数量的燃料油品,尾油作为生产乙烯裂解原料。

三、影响加氢的因素

实际生产过程中影响催化加氢结果的因素主要有原料的组成和性质、催化剂的性能、工艺操作条件及设备结构等。

1.原料的组成和性质

2.催化剂性能

3.工艺条件

影响加氢过程主要工艺条件有反应温度、压力、空速及氢油比。

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

催化加氢技术及催化剂

一、意义 1.具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。 3.反应条件温和; 4.设备通用性 二、催化加氢的内容 1.加氢催化剂 Ni系催化剂 骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。

第五章催化加氢催化剂 1催化加氢过程包括哪几个过程 包括加氢

第五章催化加氢催化剂 1.催化加氢过程包括哪几个过程? 包括加氢处理过程和加氢裂化过程。 2.加氢处理过程中发生的主要化学反应有哪些? 加氢脱硫反应、加氢脱氮反应、加氢脱氧反应和加氢脱金属反应。 3.烃类加氢反应主要涉及哪两类反应? 主要涉及两类反应,一是有氢气直接参与的化学反应,如加氢裂化和不饱和键的加氢饱和反应,此过程表现为耗氢;二是在临氢条件下的化学反应,如异构化反应,此过程表现为,虽然有氢气存在,但过程不消耗氢气,实际过程中的临氢降凝是其应用之一。 4.加氢催化剂按加氢作用分为哪几类? 按其加氢的作用分为加氢精制(处理)催化剂和加氢裂化催化剂。 5.加氢精制催化剂常用的载体是什么? 常用的活性氧化铝和硅酸铝载体。 6.加氢精制催化剂的活性组分的主要作用是什么?常用的活性组分是什么? 催化加氢的活性主要来源于加氢金属组分,金属组分主要提供加氢活性及能够加速C-N键氢解的弱酸性,由VlB族或Ⅷ族的金属。即:非贵金属组分和贵金属组分。非贵金属组分有:W、Mo、Cr、Fe、Co、Ni、Zn、Ti、V、Mn等。 7.加氢精制催化剂的助剂的作用是什么?常用的助剂是什么? 改善加氢精制催化剂某一方面的性能,如活性,选择性、寿命、热稳定性或强度等,常常添加一些助剂。常用的助剂有P2O5、SiO2、B2O3、TiO2等。 8.选择加氢精制催化剂首先考虑哪些因素? 选择催化剂首先应考虑是选择活性高、选择性好、稳定性好、寿命长的催化剂。 9.柴油馏分加氢精制的目的是什么? 柴油加氢精制的目的是脱除柴油中的硫、氮等杂质,饱和烯烃和饱和芳烃,生产清洁的柴油燃料。 10.直馏煤油加氢精制的目的是什么?对直馏煤油加氢精制催化剂的要求是什么? 直馏煤油加氢精制,其目的是脱除煤油中的硫和氮,并饱和部分芳烃,改善其燃烧性能,提高油品的热稳定性,降低酸度,生产合格的喷气燃料或灯用煤油。要求催化剂具有优良加氢脱硫、脱氮活性同时具有优良的芳烃饱和性能。 11.加氢裂化的作用是什么?

催化加氢技术及催化剂讲解

催化加氢技术及催化剂 作者: buffaloli (站内联系TA) 发布: 2009-03-03 一、意义 1.具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。 3.反应条件温和; 4.设备通用性 二、催化加氢的内容 1.加氢催化剂 Ni系催化剂 骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱

的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。 其它镍系催化剂 从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开

硝基苯催化加氢制苯胺的安全技术分析(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 硝基苯催化加氢制苯胺的安全技 术分析(新版)

硝基苯催化加氢制苯胺的安全技术分析(新 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 苯胺是重要的有机化工中间体,广泛地应用于橡胶助剂、染料、感光化学品、医药、农药、炸药及聚氨酯等行业。由于市场需求较大,近几年改建、扩建及新建一批苯胺生产装置。但在苯胺及配套装置生产过程中使用大量易燃易爆、有毒有害的危险化学品,加之生产工艺条件苛刻,装置及控制技术要求严格,使其生产过程事故具有突发性、灾害性的特点。因此,有必要对苯胺的安全生产问题进行认真剖析并提出具体的对策。 1苯胺生产工艺流程简介 以目前国内先进的35000t/a硝基苯催化加氢制苯胺生产装置为例。苯胺生产中的原料氢与系统中的循环氢混合经氢压机增压至 0.2MPa后,与来自流化床顶的高温混合气在热交换器中进行热交换,被预热到约180oC进入硝基苯汽化器,硝基苯经预热后在汽化器中汽化,与过量的氢气合并过热至180oC~200oC,进入流化床反应器,与

催化加氢

第6章催化加氢 知识目标: ●了解催化加氢生产过程的作用和地位、发展趋势; ●熟悉催化加氢生产原料来源及组成、主要反应原理及特点、催化剂的组成及性质、工艺 流程及操作影响因素分析; ●初步掌握催化加氢生产原理和方法。 能力目标: ●能根据原料的来源和组成、催化剂的组成和结构、工艺过程、操作条件对加氢产品的组 成和特点进行分析判断; ●能对影响加氢生产过程的因素进行分析和判断,进而能对实际生产过程进行操作和控制。 6.1 概述 石油炼制工业发展目标是提高轻质油收率和提高产品质量,一般的石油加工过程产品收率和质量往往是矛盾的,而催化加氢过程却能几乎同时满足这两个要求。 催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称,催化加氢技术包括加氢处理和加氢裂化两类。 加氢处理是指在加氢反应过程中,只有≤10%的原料油分子变小的加氢技术,包括对原料处理和产品精制,如催化重整、催化裂化、渣油加氢等原料的加氢处理;石脑油、汽油、喷气燃料、柴油、润滑油、石蜡和凡士林加氢精制等。 加氢处理的目的在于脱除油品中的硫、氮、氧及金属等杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善原料的品质和产品的使用性能。加氢处理具有原料油的范围宽,产品灵活性大,液体产品收率高,产品质量高,对环境友好,劳动强度小等优点,因此广泛用于原料预处理和产品精制。 加氢裂化是指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。包括高压加氢裂化和中压加氢裂化技术。依照其所加工的原料油不同,可分为馏分油加氢裂化、渣油加氢裂化。 加氢裂化的目的在于将大分子裂化为小分子以提高轻质油收率,同时还除去一些杂质。其特点是轻质油收率高,产品饱和度高,杂质含量少。 一、催化加氢在炼油工业中的地位和作用 石油加工过程实际上就是碳和氢的重新分配过程,早期的炼油技术主要通过脱碳过程提

催化加氢还原芳香硝基化合物制备芳胺的技术进展

58 精细石油化工 SPECIALITYPETROCHEMICALS 第23卷第4期 2006年7月 催化加氢还原芳香硝基化合物 制备芳胺的技术进展 徐善利陈宏博李树德 (大连理工大学化工学院,辽宁大连116024) 摘要:综述了催化加氢还原芳香硝基化合物制备芳胺及其衍生物的近况,讨论了影响催化加氢反应的主要因 素和工艺条件,并展望了催化加氢法制备芳胺工艺的应用前景和发展方向。 关键词:催化加氢香硝基化合物芳胺 中图分类号:TQ246.3文献标识码:A 芳胺及其衍生物广泛应用于化工、医药、染 料、农药等领域,绝大多数的芳胺及其衍生物系列产物都是由相应的芳香硝基化合物还原而来的。芳香硝基化合物还原为芳胺的方法主要有经典化学还原法、电解还原法、CO/H:O体系还原法和催化加氢还原法。经典化学还原法主要包括铁粉法、甲醛法、硫化碱法、水合肼法等。这些方法工艺流程长,三废多,对环境污染大,代之以清洁生产工艺势在必行;电解还原法由于设备投资较大,能耗相对较高,工业生产还存在一定的技术难题;Co/H。o还原体系对催化剂要求较高,存在贵金属催化剂回收问题,且反应大多需高温高压,目前还多处在实验室研究阶段[1],但是该法具有设备通用性好、反应易控制、原料来源容易等优点,是催化加氢法的一个良好补充[21;催化加氢法具有产品质量好、三废少、后处理容易以及反应选择性可控制等优点使其在工业生产上具有较好的应用前景,是目前实验研究和技术开发的重要领域。 1催化加氢还原法 芳香硝基化合物催化加氢还原按反应物料的状态可分为气相催化加氢法和液相催化加氢法。气相催化加氢法是以气态反应物进行的催化加氢还原,实际上为气固反应,此法仅适用于沸点较低,容易气化或在蒸发温度下,仍能保持稳定状态的芳香硝基化合物的还原。硝基苯制苯胺是气相催化加氢的典型实例。液相催化加氢法是在液相介质中进行的加氢还原。一般采用固体催化剂,实质上为气一液一固三相反应。如果催化剂溶于反应体系相则为气、液两相反应,称之为均相催化,是目前研究的热点之一。由二硝基甲苯催化加氢制备二氨基甲苯是液相催化加氢的典型实例[3]。 以下针对催化加氢法还原芳香硝基化合物制备芳胺的主要影响因素(催化剂性能和反应条件)作进一步的论述。 1.1催化剂 在催化加氢还原反应中,催化剂的性能是影响反应的主要因素,其对反应的温度、压力、反应活性、反应的选择性、产物质量和收率有着显著的影响。 用于催化加氢反应的催化剂主要为过渡金属,可分为贵金属系和一般金属系。贵金属以铂、钯为主,此外还有铑、锇、钌等,其特点是催化活性高,反应条件温和,适用于中性或酸性反应,虽然铂的活性最好,但其价格相对较高,限制了它的应用。钯的活性介于铂和镍之间,其中以Pd/C催化剂较常用,价格较便宜。金属铑催化剂在氯代硝基芳烃的催化加氢过程中可使脱氯现象大为减少[4],但铑可使苯环加氢。近年来,铑以其良好的选择性而再次引起人们的关注。一般金属系以镍为主,其次是铜、钼、钴、铁等。 常用的催化剂可以是金属单质的粉末,如铂黑、钯黑等,可直接以金属氧化物还原制得;或者是骨架型,如Raney-Ni。为了使活性金属能和原料充 收稿日期:2006一03一09;修改稿收到日期:2006一06—19。 作者简介:徐善利(1980一),男,硕士,从事染料中闻体合成的研究。

催化加氢技术以及催化剂

催化加氢技术以及催化剂 一、意义 1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 二、催化加氢的内容 1、加氢催化剂 Ni系催化剂 l骨架Ni (1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。 (2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。 (3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3 >NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。 (4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。 (5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH 稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。 其它镍系催化剂 从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开始,这是最古老的镍催化剂,工业上几乎没有单独使用镍的,而广泛使用的却是加有各种单体或助催化剂的镍,一般的制法是把硅藻土加进硝酸镍水溶液中,一边搅拌一边加碳酸钠,使碱式碳酸镍(或氢氧化镍)沉淀在硅藻土上。充分地水洗过滤干燥。将制成的催化剂在使用之前,在350-4500C的氢气流中进行还原。鉴于还原的催化剂与空气接触会着火而失去活性,使用必须注意。 此外,还有把硝酸镍溶液和硅藻土的混合物蒸干,在400-5000C热分解为NiO-硅藻土后,用氢气还原的方法。通常,还把少量金属氧化物作为助催化剂加到NiO-硅藻土中,例如NiO-氧化钍-硅藻土[40],NiO-Cu-硅藻土等[41],均属于高活性的催化剂。 可用作载体的物质还有浮石、氧化铝、硅胶、酸性白土、氧化锌、CaSO4、MgSO4、木炭、石墨等。.

催化加氢试题和答案

一、概念题 1.催化加氢:催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称。 2.加氢处理:指在加氢反应过程中,只有≤10%的原料油分子变小的加氢技术。 3.加氢裂化:指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。 4.加氢脱硫(HDS)反应:石油馏分中的含硫化合物在催化剂和氢气的作用下, 进行氢解反应,转化为不含硫的相应烃类和H2S。 5.加氢脱氮(HDN)反应:石油馏分中的含氮化合物在催化剂和氢气的作用下, 进行氢解反应,转化为不含氮的相应烃类和NH3。 6.加氢脱氧(HDO)反应:含氧化合物通过氢解反应生成相应的烃类及水。 7.空速:指单位时间里通过单位催化剂的原料油的量,有两种表达形式,一种 为体积空速(LHSV),另一种为重量空速(WHSV)。 8.氢油比:单位时间里进入反应器的气体流量与原料油量的比值。 9.石脑油加氢精制:指对高硫原油的直馏石脑油和二次热加工石脑油(如焦化 石脑油)进行加氢精制,脱除其中硫、氮等杂质及烯烃饱和,从而获得乙烯裂解原料。 10.润滑油催化脱蜡技术:在氢气和择形分子筛的存在下,将高凝点的正构烷烃 选择性地裂化成气体和较小的烃分子,从而降低润滑油凝点的过程。 11.润滑油异构脱蜡技术:指在专用分子筛催化剂的作用下,将高倾点的正构烷 烃经异构化反应生成低倾点的支链烷轻。 12.氢脆:由于氢残留在钢中所引起的脆化现象。 13.高温氢腐蚀:在高温高压条件下扩散侵入钢中的氢与不稳定的碳化物发生化 学反应,生成甲烷气泡(它包含甲烷的成核过程和成长),即Fe3C+2H2→CH4+3Fe,并在晶间空穴和非金属夹杂部位聚集,引起钢的强度、延性和韧性下降与劣化,同时发生晶间断裂。 14.设备漏损量:即管道或高压设备法兰连接处及循环氢压缩机运动部位等处的 漏损。 15.溶解损失量:指在高压下溶于生成油中的气体在生成油减压时这部分气体排 出时而造成的损失。 二、简答题 1.加氢精制的目的和优点。 答:⑴加氢精制的目的在于脱除油品中的硫、氮、氧杂原子及金属杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善油品的使用性能。⑵加氢精制的优点是,原料油的范围宽,产品灵活性大,液体产品收率高(>100%(体)),产品质量好。而且与其它产生废渣的化学精制方法相比还有利于保护环境和改善工人劳动条件。因此无论是加工高硫原油还是加工低硫原油的炼厂,都广泛采用这种方法来改善油品的质量。 2.为什么说热裂解反应在渣油加氢裂化过程中有重要作用?

催化加氢过程中催化剂的选择

催化加氢过程中催化剂的选择 从事催化的各位虫友,经常会面临催化剂种类的选择,先将我用过的催化剂的优缺点和大家分享,有不足的和错误的,请大家补充和指正。 催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。 从用途上分,可以分成加氢催化剂、氧化催化剂和异构化催化剂等。加氢镍催化剂又分为:1.骨架镍催化剂(镍-铝合金粉);2.负载碳酸镍与碳酸铜催化剂;3.负载型镍催化剂。 我们常用到的催化剂有钯碳、雷尼镍、德国6504K、C207(铜类)催化剂、KT-02镍催化剂等。先将各催化剂的优缺点陈列如下,给各位从事催化加氢的虫友做个参考。 (1)从价格上分析:钯碳最贵,价格为450万元/吨左右;雷尼镍价格为20万元/吨左右;6504K催化剂为30万元/吨;C207催化剂价格不详,但因其主要催化成份为铜,估计是这里面最便宜的;KT-02型镍催化剂价格在35万元左右。 (2)从活性上分析:钯碳>KT-02>雷尼镍>6504K>C207。 (3)从催化反应温度分析:钯碳反应温度很低,在常温下也可以催化反应;KT-02镍催化剂在40左右就可以进行催化;雷尼镍催化反应温度稍高,60度左右;6504K催化反应温度在80度左右;C207催化反应温度一般不低于150度。 (4)从使用安全按角度分析:KT-02型镍催化剂150摄氏度下空气中不自燃;6504K 也可以在空气中120摄氏度下保存;钯碳常温下暴露在空气中容易自燃;雷尼镍暴露在空气中容易着火。 (5)从催化反应的选择性上分析:钯碳活性太高,在多基团的时候选择性低,生成副产物;KT-02型镍催化剂选择性很好;雷尼镍加氢选择性比钯碳要好,但是比KT-02稍差;C207选择性很好。 (6)从转化率分析:钯碳>KT-02>雷尼镍>6504K>C207。 (7)从使用方便角度分析:KT-02和6504K在使用前都不需要活化,直接投入反应体系即可进行催化;钯碳不需要催化,但是必须密封隔绝空气保存;雷尼镍和C207使用前必须先进行活化,用碱处理溶去铝方可投入反应进行催化,而且雷尼镍在保存时也必须隔绝空气。 (8)从与产物进行分离来分析:催化加氢完毕后,必须将产物与催化剂进行分离,从分离难易程度来看:KT-02>雷尼镍>6504K>钯碳,C207一般用于固定床加氢,分离不存在太大的问题。 (9)从重复使用次数来看:KT-02>雷尼镍>6504K>钯碳>C207。这里综合考虑反应过程中的失活及后分离过程中的损失。KT-02重复使用次数不少于100次;雷尼镍重复使用次数在70次左右;6504K重复使用次数为30-35次;C207在固定床上使用;一般用一段时间后重新换新催化剂;具体使用次数不好估计,钯碳一般在使用后需要进行活化。 (10)催化剂形式:钯碳、KT-02、6504K、C207为负载型催化剂,雷尼镍为镍铝合金。 以上主要是对各催化剂的特性进行比较,如有不合适的地方,请多指点。各位虫友可以根据自己所要加氢的原料及产物特点,选择合适的催化剂。

硝基苯催化加氢制苯胺的安全技术分析

硝基苯催化加氢制苯胺的安全技术分析 苯胺是重要的有机化工中间体,广泛地应用于橡胶助剂、染料、感光化学品、医药、农药、炸药及聚氨酯等行业。由于市场需求较大,近几年改建、扩建及新建一批苯胺生产装置。但在苯胺及配套装置生产过程中使用大量易燃易爆、有毒有害的危险化学品,加之生产工艺条件苛刻,装置及控制技术要求严格,使其生产过程事故具有突发性、灾害性的特点。因此,有必要对苯胺的安全生产问题进行认真剖析并提出具体的对策。 1 苯胺生产工艺流程简介 以目前国内先进的35000t/a硝基苯催化加氢制苯胺生产装置为例。苯胺生产中的原料氢与系统中的循环氢混合经氢压机增压至0.2MPa后,与来自流化床顶的高温混合气在热交换器中进行热交换,被预热到约180oC进入硝基苯汽化器,硝基苯经预热后在汽化器中汽化,与过量的氢气合并过热至180oC~200oC,进入流化床反应器,与催化剂接触。硝基苯被还原,生成苯胺和水并放出大量热,利用流化床反应器中的余热锅炉中的软水汽化产生蒸气带走反应热来控制反应温度在250oC~270℃。反应后的混合气与催化剂分离,进热交换器与混合氢进行热交换,用水冷却,粗苯胺及水被冷凝,与过量的氢分离,过量氢循环使用,粗苯胺与饱和苯胺水进入连续分离器,粗苯胺进入脱水塔脱水,然后进精馏塔精馏得到成品苯胺。苯胺水进共沸塔回收苯胺,废水中含苯胺≤500 mg/L,去污水车间进行二级生化处理。 2 苯胺生产中的主要危险介质分析 苯胺生产中的危险介质主要是硝基苯、氢气和苯胺。 2.1 硝基苯 硝基苯的分子式为C6H5NO2,相对分子质量为123.11,淡黄色透明油状液体,有苦杏仁味,能溶于苯、乙醇及乙醚,难溶于水。有毒,多量吸人蒸气或经皮肤吸收都会引起中毒,在车间空气中的最高容许浓度为5mg/m3。 常用的理化数据:相对密度1.205(25℃),熔点5.7℃,沸点210.9℃,闪点87.8℃(闭杯),爆炸下限1.8%(93.3℃),自燃点482℃,蒸气密度4.25 g/L。 危险特性:有毒,遇火种、高热能引起燃烧爆炸,与硝酸反应强烈。 储运注意事项:储存于通风阴凉的仓间内,远离火种、热源,避免日光曝晒并且与氧化剂、硝酸分开存放;搬运时轻装轻卸,防止破漏,引起中毒;误触皮肤立即用肥皂水洗涤。 2.2 氢气 氢气为无色无臭气体,极微溶于水、乙醇、乙醚,无毒、无腐蚀性,极易燃烧,燃烧时发出青色火焰,并发生爆鸣,燃烧温度可达2 000℃,氢氧混合燃烧火焰温度为2 100℃~2 500℃,与氟、氯等能起猛烈的化学反应。 理化常数:密度0.089 9g/L,熔点-259.18℃,沸点-252.8℃,自燃点400℃,爆炸极限4.1%~74.2%,最易引爆体积分数24%,产生大量爆炸压力的体积分数32.3%,最大爆炸压力0.73 MPa,最小引燃能量0.019 mJ,临界温度-239℃,临界压力1.307MPa。 危险特性:与空气混合能成为爆炸性混合物,遇火星、高热能引起燃烧爆炸。在室内使用或储存氢气,当有漏气时,氢气上升滞留屋顶,不易自然排出,遇到火星时会引起爆炸。 储运注意事项:氢气应用耐高压的钢瓶盛装;储存于阴凉通风的仓间内,仓温不宜超过30℃,远离火种、热源,切忌阳光直射;应与氧气、压缩空气、氧化剂、氟、氯等分仓间存放,严禁混储、混运。 2.3 苯胺

浅析精细化工中催化加氢技术的运用

浅析精细化工中催化加氢技术的运用 近年来由于我国的化工行业在技术领域取得了较大的进步,催化加氢技术不仅在石油化工领域得到普遍的应用,并且也开始大规模的应用到精细化工行业中。由于精细化工中部分化合物需要通过还原处理才能够进行后续生产,但是我国现今仍旧沿用以往的传统技术,因此,需要对催化加氢技术在精细化工中的应用情况进行全面的了解。 标签:精细化工;催化加氢技术 1 加氢催化剂 1.1 镍催化剂 二氧化硅与硅藻土是最常见的负载型的镍催化剂,主要是通过使用沉淀法得到。需要注意首先将催化剂在温度为350到450%的气流中通过氢进行还原,还需要避免催化剂在还原时发生自烧现象。骨架镍是通过强碱腐蚀后形成的大量孔状存在的海绵骨架镍,通过添加稀土金属等一定量的微量元素能够显著的提升合金的负荷能力、再生能力、机械稳定性以及合金亲和性等性能[1]。 1.2 钯系催化剂 通常制备钯催化剂采用的方法是:首先需要把氯化钯在0.1M盐酸溶液里进行充分溶解处理,然后在氯化钯的水溶液里面添加一定量的活性炭,并确保钯在活性炭上已经全部浸染,然后在温度110%的条件下进行干燥处理,将氢气在100到300%的条件下进行还原处理。这样的制备方法广泛的使用在制备金属催化剂中,需要注意的是,在进行制备时,在干燥的条件需要确保活性组分尽可能不会迁移,且还原与活化时还需要避免其出现烧结的现象。 2 催化剂加氢技术在精细化工中的应用 2.1 催化剂加氢制备对氨基酚 使用催化剂加氢制备对氨基酚较常使用的制备方法是将硝基苯放入一定量的稀硫酸然后能够生成全新的苯基氰胺,并且能够通过重排反应最终得到对氨基酚。其中主催化剂使用的是0.5%Pt/C,硝基苯和贵金属的重量之比是1∶(0.000 5~0.005 0)。以三甲基十二烷氯化铵为助催化剂,温度维持在80℃范围即可,氢气压力在11到12MPa,并且还需要使用过氧化氢处理。较之以往的方法,收率在原来的基础上最大能够提升5%,并且使用这种方法还能够在显著的降低废弃物,最为重要的是能够大幅度提升产品的质量。 2.2 催化剂加氢制备邻氯苯胺

(完整版)01-加氢催化剂使用手册-v1.0

苯加氢催化剂使用手册 文件编号: 文件版次: 1.0 版 二O—三年五月天津

目录 1 苯加氢催化剂简介 (3) 2 苯加氢催化剂成份、主要物化指标及储存方法 (3) 2.1 催化剂的主要成份......................................................... 3... 2.2 催化剂的物理特征......................................................... 4... 2.3 催化剂的催化性能指标..................................................... 4... 2.4 催化剂小釜评价数据图..................................................... 5... 2.5 催化剂储存方法........................................................... 5... 3 苯加氢催化剂的催化原理及寿命 (5) 3.1 催化剂催化原理........................................................... 5... 3.2 催化剂的寿命............................................................. 6... 4 催化剂浆液中催化剂及辅料配比 (7) 4.1 辅料的作用原理........................................................... 7... 4.2 催化剂及辅料的配比....................................................... 8... 4.3 相关辅料要求............................................................. 9... 5 催化剂使用注意事项 (9) 5.1 加氢装置清洗............................................................. 9... 5.2 催化剂装填 1..0. 5.3 催化剂的预处理和更换 1..0. 5.4 催化剂浆液的调节 1..0. 5.5 装置开停车注意事项 1..1. 6 其它注意事项 (11) 附录一钌催化剂评价方法 (12) 附录二主要辅料技术指标 (13) 附件三催化剂评价数据图 (14)

催化加氢技术及发展前景

催化加氢技术及发展前景 摘要:本文介绍石油馏分加氢技术,回顾加氢技术的发展历史及贡献,阐述在目前的能源状况下加氢技术的发展空间及前景。 关键词:催化加氢催化加氢裂化发展前景 催化加氢技术根据原料的不同可分为石油馏分的催化加氢、煤焦油加氢、粗苯加氢及其他化合物的加氢技术。本文重点介绍石油馏分的催化加氢技术及发展。 目前炼厂采用的加氢过程,按生产目的分有:加氢精制、加氢裂化、临氢降凝、润滑油加氢等。 加氢精制是指在加氢反应过程中,只有≤10%的原料油分子变小的加氢技术,包括对原料处理和产品精制,如催化重整、催化裂化、渣油加氢等原料的加氢处理;石脑油、汽油、喷气燃料、柴油、润滑油、石蜡和凡士林加氢精制等。 加氢精制的目的在于脱除油品中的硫、氮、氧及金属等杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善原料的品质和产品的使用性能。加氢处理具有原料油的范围宽,产品灵活性大,液体产品收率高,产品质量高,对环境友好,劳动强度小等优点,因此广泛用于原料预处理和产品精制。 加氢裂化是在较高的压力和温度下(10-15MPa,400℃左右),氢气经催化剂作用使重质油发生加氢、裂化和异构化反应,转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。包括高压加氢裂化和中压加氢裂化技术。依照其所加工的原料油不同,可分为馏分油加氢裂化、渣油加氢裂化。 加氢裂化的目的在于将大分子裂化为小分子以提高轻质油收率,同时还除去一些杂质。其特点是轻质油收率高,产品饱和度高,杂质含量少。 加氢裂化原料通常为原油蒸馏所得到的重质馏分油,也可为渣油(包括减压渣油经溶剂脱沥青后的脱沥青渣油)。其主要特点是生产灵活性大,产品产率可以用不同操作条件控制,或以生产汽油为主,或以生产低冰点喷气

催化加氢方程式

催化加氢方程式 石油馏分中的硫化物主要有硫醇、硫醚、二硫化合物及杂环硫化物,在加氢条件下发生氢解反应,生成烃和H2S. 主要反应如下: RSH +H2RH+H2S R S R+2H2+H2S (RS)2+3H22RH+2H2S S +4H2R C4H9+H2S R S +2H 2+H2S 石油馏分中的氮化物主要是杂环氮化物和少量的脂肪胺或芳香胺,在加氢条件下反应生成烃和NH3. 主要反应如下: R CH2NH2+H R CH3+NH3 N +5H2C5H12+NH3 N +7H2C3H7+NH3 N H +4H2C4H10+NH3 石油馏分中的含氧化合物主要是环烷酸及少量的酚、脂肪酸、醛、醚及酮,含氧化合物在加氢条件下通过氢解生成烃和H2O. 主要反应如下: OH+H 2+H2O COOH +3H2CH3+2H2O 石油馏分中的金属主要有镍、钒、铁、钙等,主要存在于重质馏分中,尤其是渣油中。这些金属对石油炼制过程,尤其对各种催化剂参与的反应影响较大,必须除去。渣油中的金属可分为卟啉化合物(如镍和钒的络合物)和非卟啉化合物(如环烷酸铁、钙、镍)。以非卟啉化合物存在的金属反应活性高,很容易在

H 2/H 2S 存在条件下,转化为金属硫化物沉积在催化剂表面上。而以卟啉型存在的金属化合物先可逆地生成中间产物,然后中间产物进一步氢解,生成的硫化态镍以固体形式沉积在催化剂上。加氢脱金属反应如下: 22,''H H S R M R MS RH R H --???→++ 烯烃在加氢条件下主要发生加氢饱和及异构化反应。烯烃饱和是将烯烃通过 加氢转化为相应的烷烃;烯烃异构化包括双键位置的变动和烯烃链的空间形态发生变动。这两类反应都有利于提高产品的质量。其反应描述如下: R -CH=CH 2 + H 2 → R -CH 2-CH 3 R -CH=CH -CH=CH 2 + 2H 2→ R -CH 2-CH 2-CH 2-CH 3 nC n H 2n →iC n H 2n (异构化) iC n H 2n + H 2 →iC n H 2n +2 值得注意的是,烯烃加氢饱和反应是放热效应,且热效应较大,因此对不饱和烃含量高油品加氢时,要注意控制反应温度,避免反应床层超温。

精细化工中催化加氢技术的运用

新材料与新技术 化 工 设 计 通 讯 New Material and New Technology Chemical Engineering Design Communications ·90· 第44卷第11期 2018年11月 1 加氢催化剂 在还原反应中,加氢催化剂是其重要的组成部分,现阶段,我国所开展的研究工作中主要使用的是Pd/Pct/骨架镍这类催化剂。 1.1 镍系催化剂 镍系催化剂主要分为两种,其分别是硅藻土以及二氧化硅。其相关的化工人员选用沉淀的方式,把硝酸镍进行沉淀的处理,将其放置到载体上面,在实际的使用过程中,要对其进行利用氢催化的形式,确保其催化剂在400℃左右,且其上下浮动不超过50℃时,不会产生不良的自烧等反应。骨架镍是一种会经过强碱腐蚀处理的物质,其会以一个多孔海绵的状态呈现,所以在实际的制备过程中,其应当在钛中添加一些较为稳量的元素,这样会改良其各类合金的性能,在实际的催化剂应用过程中,无论是酸碱度还是腐蚀度都会在一定程度上影响到其催化剂的性能。镍系的催化剂具有极强的经济性,所以在实际的使用中比较便捷,同时其应用的空间也比较大。 1.2 钯系催化剂 钯系催化剂的制作方式比较简单,其先要进行氯化钯的溶解处理,让其物质更好地溶解到盐酸溶液当中,之后再添加一定量的活性炭,让钯可以充分的作用,在浸染之后,对活性炭进行干燥的处理,还原其氢气,控制好其产生还原反应时的温度,这种制备方式主要被应用于大部分的催化剂的制作过程,其制作过程要控制好其活性物质组成的迁移频率。 1.3 铂系催化剂 铂系催化剂的制备方式主要把氯铂酸放置到水中,并在水中添加过量的硝酸钠,对其进行烘干的处理,将其烘干的温度调整到35℃,让其可以快速地熔融以及发生分解的反应,进而产生出二氧化氮气体,同时还会带有褐色沉淀物质的现象,待其产生了该化学反应之后,要再次调整其温度,让其温度上升到500℃,继而分解之后产生二氧化铂加氢催化剂。 1.4 活性炭/载体物质 活性炭/载体物质具有极为高效的催化能力,所以其会对活性炭自身性能的要求会比较高,活性炭这类物质和其他的机械类杂质等不能混合在一起,其所选择的材料大部分都是果核类的物质。 1.5 铜系催化剂 铜系催化剂的面积比较大,另外其物质自身的活性也会比较高,会将其用于烯烃的加氢反应,如果其催化剂在实际的使用中为单独的方式,那么其就极容易产生烧结的现象,一旦产生了烧结的现象,就给其制备过程带来困扰,想要避免产生该类问题,就需要使用载体进行处理。2 催化加氢技术的运用 2.1 氨基酚 氨基苯的制作主要是将硝基苯放置到稀硫酸当中,让其通过介质的效用产生重排反应,进而得到氨基酚,其所选用的催化剂主要是5%Pt/C 。需要对贵金属与硝基苯的质量比进行调控,让其比值始终为(0.000 5~0.005 0)∶1。控制好其使用的温度,让其温度始终保持在80℃左右。压力控制在11~12MPa ,最后利用过氧化氢处理,10%的稀硫酸为介质进行反应。 2.2 催化加氢制备2,2- 二氯氢化偶氮苯 2-二氯化偶氮苯采用0.8%Pd/C 的催化剂,以甲苯为溶剂,在反应过程中加入表面活性剂和助催化剂,将邻硝基氯化苯在0.6MPa 、55~75℃下,加氢3h 。以上做法是宋东明化学家提出的方法,而美国申请专利最早使用方法是在碱性条件下邻硝基氯化苯液相加氢制备2,2-二氯氢化偶氮苯,为固-液-气三相反应。主催化剂为0.5%~1%Pd/C 或Pt/C ,贵金属与硝基物重量比为(0.000 2~0.001 0)∶1。 2.3 催化加氢制备邻氯苯胺 邻硝基苯加氢还原生成邻氯苯胺,主催化剂为0.8%Pd/C ,贵金属与硝基氯苯质量比为(0.000 1~0.000 5)∶1。助催化剂为亚磷酸钠,在甲苯为溶剂,温度控制在60~80℃,氢气压力为0.6~2MPa 。制得的纯度可以达到99.7%,收率达到92%。与传统相比,大大减少了三废的生产。3 结语 催化加氢技术和其他化工技术有着很大的差异性,其技术所制备出的产品大多是产物和水,不会产生较多的废弃物质,具有极强的环保节能效用。随着我国可持续发展战略思想的推广,绿色化学已经成为了现阶段我国城市发展的风向标,大部分的科学研究项目都成为了其所要考虑的一部分内容,催化加氢技术应用下所制备出的产品收率比较高,且其实际的质量也比较好,整体所需要的化学反应条件极为温和,所以其技术的应用污染性低下,可操作性比较强,应当不断地改进该技术,完善其生产过程。 摘 要:随着我国科学技术发展水平的提升,越来越多的技术开始涌现在人们的面前。在精细化工中,催化加氢技术的应用效果极为显著,被广泛地应用到我国的化工行业中,其主要使用的是负载型催化剂。该类型的催化剂活性比较高,会对一些金属负载量产生不同程度的影响,因此,催化剂在实际的使用中通常会受到各类外力条件的限制和约束。主要就精细化工中催化加氢技术进行较为详尽的论述,探究其技术的应用要点,使该技术可以在精细化工中展现出其自身最大的效用。 关键词:催化加氢技术;精细化工;催化剂中图分类号:TQ06 文献标志码:B 文章编号:1003–6490(2018)11–0090–02 Application of Catalytic Hydrogenation Technology in Fine Chemical Industry Zhu Yu-feng Abstract :With the development of science and technology in China ,more and more technologies are emerging in front of people.Catalytic hydrogenation technology is widely used in China ’s chemical industry ,and its main use is supported catalysts.This type of catalyst has high activity ,which will affect the load of some metals in varying degrees.Therefore ,the catalyst is usually limited and restricted by various external force conditions in practical use.In this paper ,the catalytic hydrogenation technology in ?ne chemical industry is discussed in detail ,and the main points of its application are explored ,so that the technology can show its greatest effectiveness in ?ne chemical industry. Key words :catalytic hydrogenation technology ;?ne chemical industry ;catalyst 精细化工中催化加氢技术的运用 朱玉峰 (江苏滨海经济开发区沿海工业园管委会,江苏盐城?224555) 收稿日期:2018–09–15作者简介: 朱玉峰(1991—),男,江苏涟水人,助理工程师,主要 研究方向为高压加氢。

相关主题