搜档网
当前位置:搜档网 › 通风系统优化

通风系统优化

通风系统优化
通风系统优化

平禹煤电有限责任公司一矿通风系统优化分析报告

河南理工大学

平禹煤电有限责任公司一矿

二O一O年五月

平禹煤电有限责任公司一矿通风系统优化分析报告

平禹煤电有限责任公司一矿

通风系统优化分析报告

课题组主要成员名单:

河南理工大学:

平禹煤电有限责任公司一矿:

平禹煤电有限责任公司一矿通风系统优化分析报告

目录

1矿井概况 (3)

2通风系统优化分析 (4)

2.1矿井通风系统分析概述 (4)

2.2矿井通风系统优化设计的原则和指导思想 (5)

2.3平禹煤电有限责任公司一矿通风系统优化技术路线 (6)

2.4对通风网路分支风量及风阻值测算结果的评价 (6)

2.5平禹一矿新风井风机选型 (7)

2.6平禹一矿通风系统优化分析 (7)

3.结论 (15)

附件Ⅰ——矿井通风系统图和网络图 (16)

附件Ⅱ——解网数据文件 (20)

1矿井概况

平禹煤电有限责任公司一矿(原新峰矿务局一矿,以下简称平禹一矿),1969年9

月开始建井,1976年10月正式投产,建有一对竖井和一对斜井。设计生产能力60万吨/年,1991年生产能力为20~30万吨/年;至2005年9月,实际生产能力达100万吨/年;2005年10月19日,位于东大巷扩砌处,底板突水最大涌水量达38056m3/h,造成本矿

淹井。经数月注浆堵水及排放工作,与2006年6月恢复生产。

采掘范围内,二1煤层厚度大部比较稳定,一般厚5~8m,最大厚度达14m,结构

简单,偶含一薄层泥岩夹矸,顶板大部为泥岩、砂质泥岩,局部直接顶为砂岩,底板为砂质泥岩或细粒砂岩。二3煤层大部厚2.0m。1981年3月上旬,二采区轨道上山二1煤层曾发生自燃,1982年该处冒顶后再次发生自燃,1985年7月7日,+30m总回风巷掌子面突水,最大流量2375m3/h;矿井历年瓦斯相对涌出量1.33~14.23/t.d,绝对瓦斯涌出量0.30~11.19m3/min,属低瓦斯矿井。

矿区内含煤地层为石灰系上统太原组、二叠系下统山西组、下石盒子组,上统上石

盒子组,含煤地层总厚705m,太原组为一煤组,山西组为二煤组,下石盒子为三、四、五、六煤组,上石盒子组分七、八、九煤组。含煤总厚39.72m,含煤系数为5.63%。其中山西组下部的二1煤层全区可采,二3煤层为大部可采,下石盒子组的四6煤层为局部可采,上石盒子组的七4煤层为大部可采煤层,其他煤层不可采或偶尔可采。可采煤层

总厚9.0m,可采含煤系数1.28%。

二1煤层位于山西组下部,下距太原组顶部硅质泥岩或菱铁质泥岩4.50m左右,距太原组下部L4石灰岩55.50m,距本溪组铝土质泥岩68.50m左右;上距香炭砂岩

23.00m左右,距砂锅窑砂岩64.00m左右。煤层埋深140.00m~1090.00m,煤层底板标

高为+25m~-950m。

二1煤层直接顶板岩性多为泥岩、砂质泥岩,其次为细~中粒砂岩。老顶大多为灰

白色、浅灰色厚层状中~细粒石英长石砂岩(大占砂岩);泥岩或砂质泥岩多为深灰~

灰色,水平层理,富含植物叶化石,较松软,与二1煤层为明显接触,局部为炭质泥岩

伪顶,呈过度接触。

二1煤层底板为黑色泥岩或粉砂岩,含植物根化石和黄铁矿结核,具透镜状层理、

波状层理和水纹层理,遇水易膨胀,受击打呈楔形碎裂。

据矿井资料,二1煤层和二3煤层开采过程中均未发生过煤尘爆炸事故。根据以往

勘探资料和矿井采样化验测试资料,二1煤层火焰长度50mm,二3煤层火焰长度

40mm,岩粉加入量分别为25~60%、55%,均具煤尘爆炸危险性。

以往勘探中二1、二3煤层均做了煤层着火点试验,由试验成果可知统一煤层的还

原样与氧化样着火点之差(△T0)均小于25℃,二1、二3煤层均属不易自燃煤层。矿

井生产中,自1976年投产以来,仅于1980年在二采区轨道上山发生冒顶,1981年3月上旬二1煤层发生自燃及1982年该处再次发生冒顶,并再次发生自燃,看见煤发红,有些地方有火焰,自燃范围:走向长约10m,倾斜宽约30m,经直接喷水和灌浆后灭火。从上述矿井煤层着火与未着火资料看,该区二1、二3煤层应以不易自燃为主,局部有

自燃存在。为防止煤层发生自燃,矿井在生产中应防止煤体温度过高而发生自燃。

矿井通风系统为中央边界抽出式,主要通风机为FBCDZ(B)-№26型轴流式通风机,一台使用,

一台备用,转速740r/min,参照样本曲线风机叶片安装角度应为52/44°,配用电机功率为

2×355KW。新鲜风流由副井(主井)进入主石门、东西大巷,经采区运输上山供给各采面、掘进工作面,乏风流经采区轨道上山进入采区回风巷,经风井由主要通风机抽出地面。掘进工作面采用局

部通风机压入式通风。

2通风系统优化分析

2.1矿井通风系统分析概述

矿井通风系统分析是在充分掌握现场实际情况的基础上进行的,分析的对象是实测、计算的数据,通过对数据的统计找出通风系统存在的问题,为通风系统的(优化)改造提供依据。

在矿井通风系统设计时,因所有的用风地点要供应大小不同的风量,而各分支的风阻又大小各异,这就必然导致通风系统中各条通路上的通风阻力不等,但其中必有一条通路的通风总阻力最大,此条路线即是通风系统分析中的最大总阻力路线,其总阻力是通风设计时选择主要通风机的一个重要技术参数。满足通风设计要求的风量的必要条件是,所选用的主要通风机的风压必需保证克服矿井通风系统的最大总阻力,并供应矿井所需的总风量。

对于生产矿井的通风网络,每个主要通风机服务的系统中都有一条关键路线(原通

风设计中的最大阻力路线),其阻力分布即反映了通风系统阻力的分布。了解矿井通风

系统关键路线的位置及其阻力分布,不仅对合理使用主要通风机,而且对优化风量调节、指导合理安排采掘工作面及其配风、降低矿井通风系统阻力以及改善通风状况都具有重要意义。

通风网络的阻力分析,是通过统计各风路的风阻、阻力、功耗分布状况,找出高风阻、高阻力、高功耗的区域和井巷。

关键路线在矿井中的位置并不是一成不变的,它随着生产布局变化、需风量的变化和网络结构及其某些分支的通风参数变化而变动。

井巷通风总阻力是选择矿井主要通风机的参数之一,为了经济合理、不致因主要通风机的风压过大造成瓦斯和自然发火难以管理,以及避免主要通风机选型太大使购置、运输、安装、维修等费用加大,须控制总阻力不能太大(一般不超过3000Pa,特大井型例外),必要时应采取降阻措施。

对平禹煤电有限责任公司一矿的通风系统最大阻力路线上巷道的阻力、风量、风阻分布情况进行分析,为整个通风系统的分析与优化改造提供依据。

2.2矿井通风系统优化设计的原则和指导思想

通风系统方案设计总的原则是要保证所提方案安全可靠、技术可行,同时兼顾经济合理。设计时主要的因素较多,但要抓住起主要作用的因素来进行综合分析,这样才有可能拟定出比较合理的若干方案,从而运用有关理论、方法进行优化选择。在进行通风系统方案设计时主要遵循的原则有以下几个方面:

(1)提高通风系统的稳定性,使得用风地点风量满足要求和风流方向保持不变。

(2)充分利用现有的井巷和通风设备,极大地发挥其潜力并进行调整。

(3)尽量减少开拓工程和基本建设项目。

(4)根据生产实际,合理安排采掘部署,均衡生产,充分发挥各个系统的通风能力。

(5)尽量减少外部漏风和内部漏风,以提高有效风量率。

(6)改善矿井通风状况、创造良好的劳动卫生条件,为安全生产、不断改善和创造安全舒适的劳动环境、保护劳动者的身体健康提供保障。

(7)在改善矿井通风效果的基础上,尽可能节约能耗,以提高本矿经济效益。

(8)在阻力较大地点,应设法采取降阻措施,以减少通风阻力,使通风系统合理化。

矿井通风系统优化改造和设计是一项复杂的技术工作,他不仅要考虑当前矿井的生产情况、通风网络情况、通风设施情况,还要考虑到规划期间,甚至是更长远时期矿井的各种情况及其变化。因此,通风系统优化方案拟定的指导思想是:针对现实,着眼长远,以增强矿井的抗灾能力,确保安全生产,并能收到长远的经济效益。

2.3通风系统优化技术路线

矿井通风系统的优化是通风方式、通风方法、通风网络和调节方法所涉及的各种参数的合理组合。

结合平禹煤电有限责任公司一矿的实际生产部署情况,确定本次通风系统优化设计的技术路线为:测定矿井通风系统阻力;确定矿井通风网络分支风阻,编制矿井通风网络图,利用通风网络解算软件对通风网路进行模拟解算,对东翼进行风机选型,提出技改采区与生产采区之间不同通风方案,对各种方案进行解算并预测分析各方案的矿井通风状态,确定通风系统优化方案。

2.4对通风网路分支风量及风阻值测算结果的评价

为了解矿井通风系统的现状,全面掌握矿井通风阻力分布情况,以便进行通风系统调整、改善矿井通风条件、提高通风质量,保证矿井安全生产。根据矿井通风阻力测定的基本参数,对通风系统现状进行计算机模拟,检验通风阻力测定结果的可靠性。

现状模拟的参数误差主要通过以下方法进行控制:

1)以最大阻力路线上的工作面风量为约束条件,其相对误差控制在5%以下。

2)主要通风机的运行工况点的相对误差控制在5%以下。

3)主要井巷的风量相对误差一般控制在5%以下。

根据平禹一矿当前通风系统图、网络图(见附图1、2)和通风阻力测定风阻值、目前运行风机的特性曲线,对当前通风网路进行计算机解算。

西风井主要通风机型号为FBCDZ(B)-№26型风机。自然风压为244Pa,外部漏风率为4.79%。掘进工作面、硐室按需风量固定,进行挂网解算。

详细结果见附表解网数据文件pyyk1。平禹一矿主要通风机工况对照表见表2-1平

禹一矿主要巷道风量对照表见表4-2。

表2-1平禹一矿主要通风机运行工况表

表2-2平禹一矿主要地点通过风量对照表

由表4-1和表4-2及附表解网数据文件pyyk1可以看出,主要通风机工况和各分支实测风量值、实测阻力值与网络解算数据结果基本一致,满足误差控制范围,这说明通风阻力测定结果可靠,满足网络分析的要求,可以作为矿井通风系统优化、改造和管理的依据。

2.5平禹一矿新风井风机选型

根据生产部署,平禹一矿五采区新开一进风井和回风井,通过对五采区通风容易时期和通风困难时期工况点进行通风网络解算,选择FBCDZ(B)-№28轴流对旋式风机,该风机具有-6°、-3°、0°、3°、6°六组安装角,在矿井不同通风时期,可根据矿井需风要求,调整叶片安装角度,完全能够满足矿井的通风需要。

2.6平禹一矿通风系统优化分析

根据生产部署,新建风井投入使用后,将形成四进两回的格局,五采区和二、三、四采区相互作用。对于这个时期的通风,矿方设计三种通风方案:

1)在东翼输送机大巷上安设风门,保证最小风速,使五采区和二、三、四采区相对独立通风;

2)二、三、四、五采区联合通风;

3)从三采区回风巷新掘一条回风巷和五采区回风巷连接,使二、四采区和三采区相对独立通风。

以上三种方案孰优孰劣,是否可以满足通风需要,东大巷和东翼胶带输送机大巷处于角联分支上,具体风流方向、风量大小如何,均需挂网解算。

2.6.1在东翼输送机大巷上安设风门,保证最小风速,使五采区和二、三、四采区相对独立通风

⑴解网条件

在pyyk1的各项数据下,新开的各巷道风阻值由已知同类巷道的摩擦阻力系数或百米风阻推算出,在东翼输送机大巷上安设风门。新风井主要通风机型号为FBCDZ(B)-№28型对旋轴流式通风机,叶片安装角度为-6°,自然风压取244Pa,外部漏风率根据《规程规定》取5%。西风井主要通风机型号为FBCDZ(B)-№26型风机。自然风压为

244Pa,外部漏风率为4.79%。掘进工作面、硐室按需风量固定,进行挂网解算。

矿井生产工作面、掘进工作面、及硐室具体部署详见附图3平禹煤电有限责任公司一矿通风系统图和附图4平禹煤电有限责任公司一矿通风网络图所示。

⑵解算结果

在满足掘进用风的条件下,风机工况、矿井主要地点的风量见表2-3平禹一矿主要通风机运行工况表和表2-4平禹一矿主要地点通过风量表。详细结果参见数据文件pyyk2。

表2-3平禹一矿主要通风机运行工况表

表2-4平禹一矿主要地点通过风量表

⑶结果分析与结论

在东翼输送机大巷上安设风门,保证最小风速的情况下,西风井风压为

3077.06Pa,风量为87.73m3/s,新风井风压为1618.24Pa,风量为108.31m3/s,51011综采工作面通过风量为27.42m3/s,满足需求;51015高档普采工作面通过风量为

23.47m3/s,满足需求。

13091综采工作面通过风量为6.08m3/s,风量不满足需求,其主要原因是三采区回风巷、一轨道上山等巷道,断面较小,拐弯较多,局部阻力增大,因此,通过13091综采工作面风量不足。

东大巷风流方向从西至东(101流向102),风量为1.47m3/s,风量达不到最低风速要求。东翼胶带输送机大巷风流方向从西至东(228流向227),风量为4.5m3/s。

2.6.2二、三、四、五采区联合通风

⑴解网条件

在pyyk1的各项数据下,新开的各巷道风阻值由已知同类巷道的摩擦阻力系数或百米风阻推算出,东翼输送机大巷上不安设风门,任其自然分风。新风井主要通风机型号为FBCDZ(B)-№28型对旋轴流式通风机,叶片安装角度为-6°,自然风压取244Pa,外部漏风率根据《规程规定》取5%。西风井主要通风机型号为FBCDZ(B)№26型风机。自然风压为244Pa,外部漏风率为4.79%。掘进工作面、硐室按需风量固定,进行挂网解算。

矿井生产工作面、掘进工作面、及硐室具体部署详见附图3平禹煤电有限责任公司一矿通风系统图和附图4平禹煤电有限责任公司一矿通风网络图所示。

⑵解算结果

在满足掘进用风的条件下,风机工况、矿井主要地点的风量见表2-5平禹一矿主要通风机运行工况表和表2-6平禹一矿主要地点通过风量表。详细结果参见数据文件pyyk3。

表2-5平禹一矿主要通风机运行工况表

表2-6平禹一矿主要地点通过风量表

⑶结果分析与结论

在东翼输送机大巷上不安设风门,任其自然分风,西风井风压为2927.5Pa,风量为89.40m3/s,新风井风压为1581.20Pa,风量为108.84m3/s,51011综采工作面通过风量为27.68m3/s,满足需求;51015高档普采工作面通过风量为23.72m3/s,满足需求。

13091综采工作面通过风量为5.77m3/s,风量不满足需求,起主要原因是三采区回风巷阻力较大,通过风量较小所致。

东大巷风流方向从西至东(101流向102),风量为7.04m3/s,满足最低风速要求。东翼胶带输送机大巷风流方向从西至东(228流向227),风量为9.12m3/s。满足最低风

速要求。

2.6.3从三采区回风巷新掘一条回风巷和五采区回风巷连接,使二、四采区和三采区相对独立通风

⑴解网条件

在pyyk1的各项数据下,新开的各巷道风阻值由已知同类巷道的摩擦阻力系数或百米风阻推算出,从三采区回风巷新掘一条回风巷和五采区回风巷连接,使二、四采区和三采区相对独立通风,该段巷道(106-223)长1000m,半圆拱锚喷支护,断面为9m2。新风井主要通风机型号为FBCDZ(B)-№28型对旋轴流式通风机,叶片安装角度为-6°,自然风压取244Pa,外部漏风率根据《规程规定》取5%。西风井主要通风机型号为FBCDZ(B)-№26型风机,叶片安装角度为-6°,。自然风压为244Pa,外部漏风率为4.79%。掘进工作面、硐室按需风量固定,进行挂网解算。

矿井生产工作面、掘进工作面、及硐室具体部署详见附图3平禹煤电有限责任公司一矿通风系统图和附图4平禹煤电有限责任公司一矿通风网络图所示。

⑵解算结果

在满足掘进用风的条件下,风机工况、矿井主要地点的风量见表2-7平禹一矿主要通风机运行工况表和表2-8平禹一矿主要地点通过风量表。详细结果参见数据文件pyyk4。

表2-7平禹一矿主要通风机运行工况表

表2-8平禹一矿主要地点通过风量表

⑶结果分析与结论

从三采区回风巷新掘一条回风巷和五采区回风巷连接,使二、四采区和三采区相对独立通风,在这种情况下,西风井风压为3050.5Pa,风量为87.50m3/s,新风井风压为1149.7Pa,风量为114.67m3/s,51011综采工作面通过风量为22.68m3/s,满足需求;51015高档普采工作面通过风量为18.97m3/s,满足需求。13091综采工作面通过风量为

表 2-10 平禹一矿工作面通过风量汇总表

如表 2-9 平禹一矿主要通风机运行工况汇总表,表 2-10 平禹一矿工作面通过风量汇

17.36m 3/s ,风量基本满足需求。

东大巷风流方向从西至东(101 流向 102),风量为 7.41 m 3/s ,满足最低风速要求。 东翼胶带输送机大巷风流方向从西至东(228 流向 227),风量为 0.07m 3/s 。不能满足最 低风速要求。

2.6.4 方案对比分析

表 2-9 平禹一矿主要通风机运行工况汇总表

风机名称

风压(Pa) 风量(m 3/s) 功率(kw) 备注

西风井风机 3077.06 87.73 269.96 新风井风机 1618.24 108.31 175.27 方案 1

西风井风机 2927.5 89.40 261.71 新风井风机 1581.20 108.84 172.09 方案 2

西风井风机 3050.5 87.50 266.90 新风井风机

1149.7

114.67

131.85

方案 3

总表所示,可以看出方案 1 和方案 2 风机运行工况点,各工作面通过风量差别很小,方 案 2 不用在东翼输送机大巷安装风门,较少了施工量,因此方案 2 优于方案 1;方案 3 新风井阻力减小较多,风量有所增加,51011 综采工作面和 51015 高档普采工作面通过 风量虽有所减少,但是仍可以满足需求,13091 综采工作面风量达到 17.40

m 3/s ,也基

本达到了需求,但是从三采区回风巷新掘一条回风巷和五采区回风巷连接施工期较长, 费用较高,经济上不合理。方案 1 东大巷不能满足最低风速要求;方案 3 东翼胶带输送 机大巷不能满足最低风速要求

综上,建议采用方案 2,但为了解决 13091 综采工作面风量不足的问题,建议对三

采区回风巷、一轨道上山等巷道进行扩修,减小阻力,即可增加13091综采工作面风量,较之方案3工程量有较大减少,费用较低。

2.6.6新风机单级运行

新风机能力较大,以节约电能为出发点,可考虑单级运行,单级运行后具体通风状况如何,需解网分析。

⑴解网条件

在pyyk3的各项数据下,新风井主要通风机型号为FBCDZ(B)-№28型对旋轴流式

通风机,叶片安装角度为-6°,单级运行,自然风压取244Pa,外部漏风率根据《规程规定》取5%。西风井主要通风机型号为FBCDZ(B)-№26型风机。自然风压为244Pa,外

部漏风率为4.79%。掘进工作面、硐室按需风量固定,进行挂网解算。

矿井生产工作面、掘进工作面、及硐室具体部署详见附图3平禹煤电有限责任公司一矿通风系统图和附图4平禹煤电有限责任公司一矿通风网络图所示。

⑵解算结果

在满足掘进用风的条件下,风机工况、矿井主要地点的风量见表2-11平禹一矿主

要通风机运行工况表和表2-12平禹一矿主要地点通过风量表。详细结果参见数据文件pyyk5。

表2-11平禹一矿主要通风机运行工况表

⑶结果分析与结论

新风井单级运行后,西风井风压为2921.8Pa,风量为89.45m3/s,新风井风压为1117.36Pa,风量为99.42m3/s,51011综采工作面通过风量为23.08m3/s,满足需求;51015高档普采工作面通过风量为19.37m3/s,满足需求。

13091综采工作面通过风量为5.83m3/s,风量不满足需求,起主要原因是三采区回风巷阻力较大,通过风量较小所致。

东大巷风流方向从西至东(101流向102),风量为6.15m3/s,满足最低风速要求。

东翼胶带输送机大巷风流方向从西至东(228流向227),风量为6.68m3/s。满足最低风

表 2-12 平禹一矿主要地点通过风量表

2.6.7 五采区通风容易时期及困难时期通风状况简述。

速要求。

根据解网结果可知,新风井单级运行后,五采区各用风地点依然能够满足需要。

经网络结算结果可知,五采区通风容易时期通风阻力较小、风量充足,完全满足通

风需要。等积孔 A = 1.19= 3.5m 2

,属通风容易。

由五采区通风困难时期系统图可知,五采区通风路线较短,巷道断面较大,通风系统较简单, 避灾性能好。

3.结论

通过对平禹煤电有限责任公司一矿通风系统解网分析得出如下结论:

1)主要通风机工况和各分支实测风量值、实测阻力值与网络解算数据结果基本一致,满足误差控制范围,这说明通风阻力测定结果可靠,满足网络分析的要求,可以作为矿井通风系统优化、改造和管理的依据。

2)根据生产部署,平禹一矿五采区新开一进风井和回风井,通过对五采区通风容易时期和通风困难时期工况点进行通风网络解算,选择FBCDZ(B)-№28轴流对旋式风机,该风机具有-6°、-3°、0°、3°、6°六组安装角,在矿井不同通风时期,可根据矿井需风要求,调整叶片安装角度,完全能够满足矿井的通风需要。

3)对三种通风方案进行解网分析,建议采用方案2,但为了解决13091综采工作面风量不足的问题,建议对三采区回风巷、一轨道上山等巷道进行扩修,减小阻力,即可增加13091综采工作面风量,较之方案3工程量有较大减少,费用较低。

4)经解网分析,新风井单级,五采区各用风地点依然能够满足需要。

5)经网络结算结果可知,五采区通风容易时期通风阻力较小、风量充足,完全满足通风需要。等积孔A=1.19

=3.5m2,属通风容易。由五采区通风困难时期系统

图可知,五采区通风路线较短,巷道断面较大,通风系统较简单,避灾性能好。

平禹煤电有限责任公司一矿通风系统优化分析报告附件Ⅰ——矿井通风系统图和网络图

附图1平禹煤电有限责任公司一矿通风系统图(2009.6)

联回风巷

总回风巷

西总回风巷

新西总

风巷一

12073风巷

12073机巷

三采区回风巷

14020备用采面

四采区回风巷

二F11机巷/mi

二12093采面

轨道皮

带西大巷

东大

上山上山

14041采面四

F*1W/20

明斜

山F

水巷

*1W/F1302*1W/m3in

西翼探水巷

*1W/

~17~

14041工作面1209

平禹煤电有限责任公司一矿通风系统优化分析报告

附图2平禹煤电有限责任公司一矿通风网络图(2009.6)

e62

31

30 e60e61 e59

29

109

e39e58

12

e24

e57108

e38

e11

112127e56

107

e9e55 e20

e34 920

e19106

e54

105

26

e23

e10

e37e36

8

e33

e29

e28e13e15

e6e7

e825

e22

e18

24

e26

e25

e41e43e46e49

e51e52

e53

e48

10e32

e31

e17

e21

104

e50

e35

13

723103 e30

e47

6

e27

e1422

e16

e5

e44112 5

e12

e42102

4

e4

3

e40101明

e3

2

e2e1

e45井

主井

1

副井

11

通风系统优化方案

通风系统优化方案 平禹煤电公司一矿 编制:陈占旭 2009年5月8日

一、矿井概况 平禹一矿位于禹州市北9km,郑平公路两侧。井田西起小王庄断层,东至315勘探线,北至二1煤层露头及魏庄断层为界,南到黑水河断层、肖庄断层,即-800m水平,东西长8km,井田面积10.5km2。 平禹一矿始建于1969年,1976年10月投产。设计生产能力60万吨/年,经过多次技术改造,2005年实际生产能力达100万吨/年,矿井二1、二3两层煤。主采二1煤层,煤厚0.99—12.55m,平均5.69m,一般4.0---7.0m,井田西北有一条封闭型的断层,造成局部瓦斯富存量较大,在开采过程中,由于二1、二3煤层间距较小,易出现未采煤层瓦斯释放到开采煤层的现象;二3煤层较薄平均厚度在1.8m左右。 矿井为低瓦斯矿井。 平禹一矿,地质构造处于白沙向斜的东北部。矿区北、西、南三面环山,为一向东南开阔的“箕形”向斜汇水盆地。多次受水灾的危害,造成矿井巷道普遍压力大,巷道变形快,有效通风断面小,通风阻力大,维护周期短。目前矿井正处于东区水灾复矿阶段。 矿井运输、回风大巷、采区上、下山及车场采用砌硂、U型钢、裸巷、锚喷、锚网、工字钢等多种支护形式,由于受压力和顶板(顶板破碎严重)条件影响,巷道变形较大,

一定程度上影响通风。 矿井目前的通风系统为中央边界抽出式,主要通风机为FBCDZNo26型对旋式,一台使用,一台备用,转速740r/min,风机叶片安装角度为-9/-9o,配用电机功率为2*355KW,两条立井进风和一条斜井进风,一条并联回风斜井:1、新鲜风流由副井(主井)进入主石门、东西大巷,经采区运输上山供给各采面、掘进工作面,乏风流经采区轨道上山进入采区回风巷,经风井由主要通风机抽出地面。2新鲜风流由明斜井进入三采区,经采区运输上山供给各采面、掘进工作面,乏风流经采区轨道上山进入采区回风巷,经风井由主要通风机抽出地面。掘进工作面采用局部通风机压入式通风。 二、矿井通风系统优化改造的必要性 平禹一矿目前总进风量为5416m3/min,总回风量5703m3/min(风速为9.70 m3/s,超过最高允许风速8m3/s),风机房水柱记读数为3000Pa。主石门的供风量为3547m3/min(风速为6.03m3/s,接近最高风速8m3/s),明斜井的供风量为1869m3/min(风俗为3.80m3/s)。 东翼实际进风量为2629m3/min。设计风量为(各地点)1160*(通风系数)1.2+300(一采区下车场至明斜井之间避免出现盲巷和风路絮乱情况)=1692m3/min。目前有效用风地点为2个扒修工作面(三皮带下山扒修需风量为

矿井通风系统的优化设计与应用

矿井通风系统的优化设计与应用 鉴定材料 临沂矿业集团邱集煤矿

二?一?年四月 1、鉴定大纲 2、计划任务书 3、工作报告 4、技术研究报告 5、社会经济效益分析报告 6、用户使用报告

矿井通风系统的优化设计与应用 鉴定大纲 临沂矿业集团邱集煤矿 二?一0年四月

矿井通风系统的优化设计与应用 鉴定大纲 一、鉴定条件 《矿井通风系统的优化设计与应用》项目是临沂矿业集团公司2010 年度科技计划,由山东省邱集煤矿研究实施,经过应用测试,各项性能指标均达到设计要求。目前,技术文件已经齐全,应用后效果明显才,具备了鉴定条件。特申请鉴定。 二、项目名称 矿井通风系统的优化设计与应用 三、项目来源及编号 临沂矿业集团公司2010年度科技计划 四、鉴定目的 通过专家评议做出结论,以便进行推广应用。 五、鉴定形式 会议鉴定 六、鉴定内容 1、审查技术文件是否齐全、完整、正确、统一。 2、评价系统是否科学、合理、先进。 3、审查改造后的系统是否满足安全生产需要。 七、鉴定资料文件 1、计划任务书; 2、工作报告; 3、技术研究报告; 4、经济效益分析报告; 5、用户使用报告。

八、鉴定程序 1、成立鉴定委员会; 2、讨论并通过鉴定大纲; 3、项目完成单位向鉴定委员会汇报研究开发情况; 4、专家质疑; 5、专家评议,通过鉴定意见; 6、专家、评委签字。 鉴定委员会二0—0年四月

编号 类另U 二O一O年科学技术项目 计划任务书 项目名称:矿井诵风系统的优化设计与应用 负责单位:临沂矿业集团邱集煤矿起止年限:2006 年5月?2010 年4月

浅谈矿井通风系统优化改造技术

浅谈矿井通风系统优化改造技术 摘要:对矿井通风系统优化的具体问题,如矿井通风系统阻力研究、矿井通风网络优化调节研究、矿井通风系统安全可靠性优化、矿井通风系统主通风机工况优化研究、矿井通风系统测量平差优化等进行阐述,并指出具体技术措施。 关键词:矿井;通风系统;优化;改造 0 引言 矿井通风系统是矿井生产系统的重要组成部分,它服务于生产系统,同时又制约着生产系统。矿井通风系统的优劣好坏,直接影响着矿井的安全生产、灾害防治和经济效益。在实际生产中,往往由于矿井通风系统的不合理,影响了矿井的正常生产和矿井的抗灾能力,导致矿井经济效益的严重滑坡。为确保矿井安全生产、稳产和高产,提高矿井的抗灾能力,最终提高矿井的经济效益,通风系统必须保持最佳运行状态。因此,建立完善、合理的矿井通风系统是矿井安全生产和提高效益的基本保证。而实行矿井通风系统优化改造正是为这一目的而进行的,它是通风管理工作和矿井设计过程中的一项主要任务和内容。 1矿井通风系统优化的重要意义建立完善的矿井通风系统是矿井安全生产的基本保证,生产矿井由于生产布局的变化、自然条件的影响及生产能力的提高,必须进行矿井通风系统的改造。 2矿井通风系统的优化问题 矿井通风系统的优化问题归纳起来主要包括如下几类:矿井通风系统阻力研究、矿井通风网络优化调节研究、矿井通风系统安全可靠性优化、矿井通风系统主通风机工况优化研究矿井通风系统测量平差优化。2.1矿井通风系统阻力优化 降低矿井通风阻力技术措施的研究对于矿井通风系统优化有着至关重要的作用,无论是矿井通风优化设计还是矿井通风技术管理工作,都要尽力降低矿井通风阻力,这项工作的好坏直接关系到矿井的安全生产和经济效益。矿井通风阻力的影响因素较多,归纳起来主要有四个方面。 2.1.1风量对阻力的影响 (1)根据通风阻力定律2 h RQ =可知:通风阻力与风量的平方成正比。当矿井总风阻不变,矿井总风量增加时,通风总阻力按风量的平方的倍数增加;同理,各个分支风量增加时,分支的阻力也相应地随风量的增加按风量平方的倍数增加。 (2)各个分支通过的风量(包括用风地点需风量)越接近自然分风风量,矿井通风阻力越小,各个分支的阻力就越接近平衡。 2.1.2分支风阻对通风阻力的影响 巷道风阻()7/ R kg m取决于巷道的长度() L m、断面积()2 S m、周长() U m、支护形式等参数,它们之间的关系为: 3 LU R m α =

通风系统优化方案

xxxxxx煤业有限公司 2014年通风、抽放系统优化方案 科长: 分管领导: 通风科 2013-11-19

2014年通风系统优化方案 为进一步完善通风系统,保证矿井通风系统完善、合理、稳定可靠,现根据我公司井下通风系统现状,特制定2014年矿井通风系统优化调整方案。 一、矿井通风基本情况 矿井采用两翼对角抽出式和采区小风井独立进、回风相结合的通风系统。进风井有三个,即主井、副井和12区进风井;回风井有三个,即11区、12区、14区回风井。我公司为高瓦斯矿井。 11区回风井担负11采区上、下山及15采区开拓供风,12区回风井担负12采区供风,14区回风井担负14采区供风。11区回风井安装FBCDZ№.18-2×110型主通风机两台,电机功率为2×110Kw;12区回风井安装FBCDZ№.16/2×55型主通风机两台,电机功率2×55Kw/台;14区回风井安装FBCDZ№.18-2×110型主通风机两台,电机功率分别为2×110Kw;每个风井两台主通风机,互为备用。 矿井等积孔2.85m2,通风难易程度为容易,总进风量为6258m3/min,矿井总回风量为6387m3/min,矿井有效风量为5810m3/min。现11采区及14采区风量、负压不匹配。 二、系统优化的目的 减小通风阻力、提高通风能力,力求通风系统简单可靠,

提高矿井防灾、抗灾能力,确保矿井安全生产。 三、通风系统存在的问题 (一)部分采区通风负压大,其原因是: 1、11区、12区、14区的主要进、回风巷部分段巷道喷浆层脱落、巷道底板隆起,造成巷道断面小、回风阻力大。 2、15采区未形成独立的通风系统,现15采区通风采取压入式通风,风机安设在11采区大煤仓向东35米处,增加了11采区的通风负担,使11采区通风负压偏大。 3、我公司属典型的“三软”煤层,工作面上下巷巷道受采动影响极易底鼓、变型。 (二)采区变电所未形成独立通风系统: 1、15采区未形成独立通风系统。 2、12区、14区采区变电所目前没有形成独立的通风系统。 四、通风系统优化方案和计划 针对以上问题,特制定矿井通风系统优化改造方案: (一)通风系统主要优化方案 1、矿井主要进回风巷道局部地段变形严重,影响巷道的通风断面,增加了通风阻力,需要对其进行扩修。2012年对矿井主要进回风巷扩修了1200米;2013年截至目前已扩修了750米,预计年底完成850米;2014年计划对矿井主要进回风巷进行扩巷降阻1050米。

矿井通风系统调整优化方案及安全技术措施

×××××煤矿 矿井通风系统调整方案及安全技术措施 措施名称:矿井通风系统调整方案及安全技术措施 编制人:×××× 矿长:×××× 编制单位:×××安技科 编制时间:2013年6月29日

安全技术措施审批意见表

矿井风量调整方案及安全技术措施 因+500水平巷道即将贯通形成通风回路,为确保全矿井通风可靠,对井下采掘工作面以及主要通风巷的风量进行重新分配和调整,为使整个调风工作能顺利进行,特制定具体实施方案以及相关管理措施,请有关单位和部门遵照执行: 一、计划调风日期:预计贯通日期为2013年7月5日,巷道贯通后应立即停止井下作业,构筑通风设施,调整通风系统。 二、采掘工作面风量计算: (一)、采煤工作面风量计算: 1、按瓦斯(或二氧化碳)涌出量计算 ①按瓦斯涌出量计算 回采工作面回风流中瓦斯的浓度不超过0.75%的要求计算: Q采=q瓦采×K采/c 式中:q瓦采—回采工作面绝对瓦斯涌出量,m3/min; K采—采面瓦斯涌出不均衡通风系数。通常机采工作面取1.2~1.6;炮采工作面取1.4~2.0; K采=1.5。 c—回采工作面正常生产时工作面及回风流中允许的最大瓦斯浓度, c取0.75%。 根据兵团发改委对我矿2011年《矿井瓦斯等级鉴定结果》的批复,矿井绝对瓦斯涌出量为0.41m3/min,且相对瓦斯涌出量为1.82m3/t,属低瓦斯矿井。 则:Q采=q瓦采×K采/c=0.41×1.5/0.75%=82 m3/min ②按二氧化碳涌出量计算 回采工作面回风流中二氧化碳的浓度不超过1%的要求计算: Q采=q采×KCO2/c

式中:Q采—回采工作面实际需要风量,m3/min q采—回采工作面回风巷风流中二氧化碳的平均涌出量m3/min。 Kco2涌出不均衡通风系数—通常机采工作面取1.2~1.6;炮采工作面取1.4~2.0;水采工作面取2.0~3.0, Kco2=1.5。 c—回采工作面正常生产时工作面及回风流中允许的最大二氧化碳浓度,c取1%。 根据兵团发改委对我矿2011年《矿井瓦斯等级鉴定结果》的批复,二氧化碳绝对涌出量为0.83 m3/min,二氧化碳相对涌出量为3.63m3/t。 则:Q采=q采×KCO2/c=0.83×1.5/1%=124.5 m3/min 2、按工作面进风流温度计算需风量 采煤工作面应有良好的气候条件,其气温与风速的关系应符合下表的要求: 工作面空气温度与风速对应表 长壁工作面实际需要风量,按下式计算: Q采=60×V采×S采×K采 式中:Q采—采煤工作面需要风量,m3/min; V采—采煤工作面适宜的风速,v=1.0m/s; S采—采煤工作面的平均面积,s=7.4㎡ 平均断面积可按最大和最小控顶时有效断面的平均值计算; K长—采煤工作面长度风量系数,按下表取:

DVent在大型复杂矿井通风系统设计中的应用

3DVent在大型复杂矿井通风系统设计中的应用 戴晓江、陈日辉、王丽红 (昆明理工大学,云南昆明 650093) 摘要:云锡老厂矿13-8#矿群的通风系统是大型复杂系统。本文通过介绍3DVent 通风软件在该系统设计中的应用,介绍了对这类通风系统进行优化设计的方法,及3DVent通风软件的优越性 关键词:矿井通风通风系统设计 3DVent通风软件云锡老厂矿 1 引言 3DVent是3DMine矿业软件的专业通风解算与模拟软件包。3DVent依托3DMine强大的三维建模功能,在完成通风巷道单线图的三维模型建立后,即可快速生成通风巷道关联的数据库。通过三维图形和表格交互的操作界面,可在数据库中直观方便地输入通风系统解算的基础信息,极大地提高了矿井通风网络解算的数据准备效率和准确性。 在矿井通风安全管理方面,3DVent提供了完善的系统功能。如多级机站复杂通风网络解算、风机自动选型、特殊分支巷道的风量调节、计算风窗面积并确定安装位置,自动选择辅扇,计算出辅扇的工作参数、通风巷道风速三维动画模拟等。应用于矿井通风设计,可以显着地提高通风设计工作的效率,降低的通风网络分析计算的技术难度。本文拟结合云南锡业公司老厂分矿13-8#矿群通风设计的实例,介绍3DVent作为专业通风设计软件的先进性与优越性。 2 矿山概况 老厂锡矿是云南锡业公司下属的大型矿山,已经有上百年的开采历史。正在开采设计中的13-8#矿体群位于老厂矿田白龙井矿段,主要赋存标高为1360~1560m,是老厂锡矿深部重要资源接替区之一。因地处矿区腹地深部,13-8#矿群距离地表最近的巷道距离超过了8km。 13-8#矿群采区的设计年生产能力为65万吨,选用无轨斜坡道开拓。依矿体厚度不同,分别采用人工间柱连续高效采矿法;切顶、护顶下向平行中深孔落矿连续高效采矿法;顶板剥离废石充填连续高效采矿法。采用2m3电动铲运机出矿、

通风系统优化调整制度通用版

管理制度编号:YTO-FS-PD361 通风系统优化调整制度通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

精品制度范本 编号:YTO-FS-PD361 2 / 2 通风系统优化调整制度通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1、每月初由通防技术人员对井下各用风地点的风量进行核算,并按照“以风定产”的原则,核定矿井的生产能力。 2、每季未由通防技术人员对井下各用风地点的通风阻力进行核算,合理分配风量。 3、井下备用面形成后,要进行通风阻力核算,选择通风阻力小的巷道,合理建筑通风设施。 4、各采掘工作面施工前需要编制通风设计及安全措施,杜绝不符合规定的串联通风、扩散通风。 5、每月对矿井的有效风量率进行计算,每季度对矿井的外部漏风率进行测定。 6、对北三瓦斯异常区瓦斯涌出情况进行分析,合理调整通风系统。 该位置可输入公司/组织对应的名字地址 The Name Of The Organization Can Be Entered In This Location

通风系统专项整治实施方案

通风系统专项整治实施方案 按照《省人民政府关于强化煤矿瓦斯防治攻坚进一步加强煤矿安全生产工作的意见》(黔府发〔2020〕3号)、《国家煤矿安监局关于开展“一通三防”专项监察的通知》(煤安监监察〔2020〕2号)以及《贵州煤矿安监局省能源局关于印发贵州省煤矿“一通三防”全覆盖专项监察实施方案的通知》(黔煤安监办函〔2020〕31号)要求,为推动煤矿优化通风系统,提高煤矿通风系统防灾抗灾能力,制定本方案。 一、整治时间及对象 (一)整治时间:2020年3月至12月。 (二)整治对象:全省正常生产建设煤矿。 二、工作目标 通过深入排查全省煤矿通风系统存在的缺陷和突出问题,严厉打击煤矿通风系统不完善、不可靠仍然组织生产作业等重大违法行为,推动煤矿构建“系统合理、设施完好、风量充足、风流稳定”的通风系统,提升煤矿通风系统可靠性、合理性、稳定性,提高煤矿通风系统防灾抗灾能力,为防止煤矿安全生产事故提供系统保障。 三、整治内容及责任分工

(一)整治内容。一是机构制度不健全。机构设置、人员配备不到位,通风安全生产责任制、操作规程和管理制度不健全等。二是通风系统不完善。采区进回风巷未贯穿整个采区,存在一段进风一段回风,采掘工作面违规串联通风、无风、微风、循环风作业;突出煤层采区没有独立回风系统、未实现分区通风,准备采区突出煤层掘进巷道回风经过有人作业的其他采区回风巷,突出煤层揭煤前系统未独立,掘进工作面进风侧未安设至少两道联锁的正向风门和两道反向风门等。三是设备设施不完好。矿井未安装2套同等能力主通风机和主通风机监测系统,通风设施质量和构筑位置不符合要求,掘进工作面风机不能满足“三专两闭锁”和“双风机、双电源”且自动切换规定等。四是通风管理不到位。未按规定进行主要通风机性能测试、通风阻力测定和矿井通风能力核定,井下各用风地点风量、风速不能满足要求,主要通风机、防爆门和反风设施未按规定检查,仪器仪表未按规定检验。五是技术资料不全,通风系统图等图纸不符合实际,没有通风值班记录、测风记录、通风情况旬报和月报等,未按规定制定计划停风安全技术措施和调风安全技术措施,未按规定召开通风工作例会。六是瓦斯超限作业、瓦斯超限未按规定停电撤人、停风区中瓦斯浓度或者二氧化碳浓度超过3%时未制定安全排放瓦斯措施经矿总工程师批准后实施。 (二)责任分工。由省能源局、贵州煤矿安监局牵头组织开

矿井通风系统优化及可靠性评价

矿井通风系统优化及可靠性评价Optimization and Reliability Assessment of Mine Ventilation System 2015年09月20日 September 20, 2015

摘要 作为煤矿生产中重要的一环,矿井通风系统会对煤矿的安全生产与经济效益造成直接的影响,因此需要对其运行可靠性进行评价,对其中存在的问题进行优化与整改,以期矿井通风系统达到最优的工作状态。分析了可靠性评价的主耍内容包括可靠性评判指标与评判方法、确定可靠性评价指标权重与建立可靠性评价指标体系,望对相关工作实施有所借鉴。 关键词:矿井通风;可靠性评价;优化

Abstract As an important link in the production of coal mine, the mine ventilation system will have a direct impact on the safe of and economic benefits of mine production ,so it is needed to evaluate the operational reliability of it,optimize and rectify the existing problems, in order to achieve the optimal working condition of mine ventilation system. The main contents of the reliability assessment are analyzes,including reliability assessment index and assessment methods,determination of the reliability assessment index weight and construction of reliability system, hoping to provide reference for the implementation of related work. Keywords:Mine Ventilation;Reliability Assessment;Optimization

通风系统优化

平禹煤电有限责任公司一矿通风系统优化分析报告 河南理工大学 平禹煤电有限责任公司一矿 二O一O年五月

平禹煤电有限责任公司一矿 通风系统优化分析报告 课题组主要成员名单: 河南理工大学: 平禹煤电有限责任公司一矿:

目录 1 矿井概况 (3) 2通风系统优化分析 (4) 2.1矿井通风系统分析概述 (4) 2.2矿井通风系统优化设计的原则和指导思想 (5) 2.3平禹煤电有限责任公司一矿通风系统优化技术路线 (6) 2.4 对通风网路分支风量及风阻值测算结果的评价 (6) 2.5 平禹一矿新风井风机选型 (7) 2.6 平禹一矿通风系统优化分析 (7) 3. 结论 (16) 附件Ⅰ——矿井通风系统图和网络图 (17) 附件Ⅱ——解网数据文件 (21)

1 矿井概况 平禹煤电有限责任公司一矿(原新峰矿务局一矿,以下简称平禹一矿),1969年9月开始建井,1976年10月正式投产,建有一对竖井和一对斜井。设计生产能力60万吨/年,1991年生产能力为20~30万吨/年;至2005年9月,实际生产能力达100万吨/年;2005年10月19日,位于东大巷扩砌处,底板突水最大涌水量达38056m3/h,造成本矿淹井。经数月注浆堵水及排放工作,与2006年6月恢复生产。 采掘范围内,二1煤层厚度大部比较稳定,一般厚5~8m,最大厚度达14m,结构简单,偶含一薄层泥岩夹矸,顶板大部为泥岩、砂质泥岩,局部直接顶为砂岩,底板为砂质泥岩或细粒砂岩。二3煤层大部厚2.0m。1981年3月上旬,二采区轨道上山二1煤层曾发生自燃,1982年该处冒顶后再次发生自燃,1985年7月7日,+30m总回风巷掌子面突水,最大流量2375 m3/h;矿井历年瓦斯相对涌出量1.33~14.23/t.d,绝对瓦斯涌出量0.30~11.19m3/min,属低瓦斯矿井。 矿区内含煤地层为石灰系上统太原组、二叠系下统山西组、下石盒子组,上统上石盒子组,含煤地层总厚705m,太原组为一煤组,山西组为二煤组,下石盒子为三、四、五、六煤组,上石盒子组分七、八、九煤组。含煤总厚39.72m,含煤系数为5.63%。其中山西组下部的二1煤层全区可采,二3煤层为大部可采,下石盒子组的四6煤层为局部可采,上石盒子组的七4煤层为大部可采煤层,其他煤层不可采或偶尔可采。可采煤层总厚9.0m,可采含煤系数1.28%。 二1煤层位于山西组下部,下距太原组顶部硅质泥岩或菱铁质泥岩4.50m左右,距太原组下部L4石灰岩55.50m,距本溪组铝土质泥岩68.50m左右;上距香炭砂岩23.00m 左右,距砂锅窑砂岩64.00m左右。煤层埋深140.00m~1090.00m,煤层底板标高为+25m~-950m。 二1煤层直接顶板岩性多为泥岩、砂质泥岩,其次为细~中粒砂岩。老顶大多为灰白色、浅灰色厚层状中~细粒石英长石砂岩(大占砂岩);泥岩或砂质泥岩多为深灰~灰色,水平层理,富含植物叶化石,较松软,与二1煤层为明显接触,局部为炭质泥岩伪顶,呈过度接触。 二1煤层底板为黑色泥岩或粉砂岩,含植物根化石和黄铁矿结核,具透镜状层理、波状层理和水纹层理,遇水易膨胀,受击打呈楔形碎裂。

通风系统专项整治实施方案(1)

附件1 通风系统专项整治实施方案 按照《省人民政府关于强化煤矿瓦斯防治攻坚进一步加强煤矿安全生产工作的意见》(黔府发〔2020〕3号)、《国家煤矿安监局关于开展“一通三防”专项监察的通知》(煤安监监察〔2020〕2号)以及《贵州煤矿安监局省能源局关于印发贵州省煤矿“一通三防”全覆盖专项监察实施方案的通知》(黔煤安监办函〔2020〕31号)要求,为推动煤矿优化通风系统,提高煤矿通风系统防灾抗灾能力,制定本方案。 一、整治时间及对象 (一)整治时间:2020年3月至12月。 (二)整治对象:全省正常生产建设煤矿。 二、工作目标 通过深入排查全省煤矿通风系统存在的缺陷和突出问题,严厉打击煤矿通风系统不完善、不可靠仍然组织生产作业等重大违法行为,推动煤矿构建“系统合理、设施完好、风量充足、风流稳定”的通风系统,提升煤矿通风系统可靠性、合理性、稳定性,提高煤矿通风系统防灾抗灾能力,为防止煤矿安全生产事故提供系统保障。 三、整治内容及责任分工 — 1 —

(一)整治内容。一是机构制度不健全。机构设置、人员配备不到位,通风安全生产责任制、操作规程和管理制度不健全等。二是通风系统不完善。采区进回风巷未贯穿整个采区,存在一段进风一段回风,采掘工作面违规串联通风、无风、微风、循环风作业;突出煤层采区没有独立回风系统、未实现分区通风,准备采区突出煤层掘进巷道回风经过有人作业的其他采区回风巷,突出煤层揭煤前系统未独立,掘进工作面进风侧未安设至少两道联锁的正向风门和两道反向风门等。三是设备设施不完好。矿井未安装2套同等能力主通风机和主通风机监测系统,通风设施质量和构筑位置不符合要求,掘进工作面风机不能满足“三专两闭锁”和“双风机、双电源”且自动切换规定等。四是通风管理不到位。未按规定进行主要通风机性能测试、通风阻力测定和矿井通风能力核定,井下各用风地点风量、风速不能满足要求,主要通风机、防爆门和反风设施未按规定检查,仪器仪表未按规定检验。五是技术资料不全,通风系统图等图纸不符合实际,没有通风值班记录、测风记录、通风情况旬报和月报等,未按规定制定计划停风安全技术措施和调风安全技术措施,未按规定召开通风工作例会。六是瓦斯超限作业、瓦斯超限未按规定停电撤人、停风区中瓦斯浓度或者二氧化碳浓度超过3%时未制定安全排放瓦斯措施经矿总工程师批准后实施。 (二)责任分工。由省能源局、贵州煤矿安监局牵头组织开— 2 —

矿井通风系统设计范本

目录 前言3 第一章矿井基本简况5 第一节矿井简况4 一、井田简况4 二、煤层地质简况4 三、瓦斯简况5 四、水文简况5 五、煤尘、煤炭自燃简况5 六、通风简况5 第二章通风系统设计可行性论证8 第一节矿井通风系统优化背景8 一、矿井目前通风及生产能力情况8 二、矿井生产能力发展前景8 第二节通风系统改造的必要性分析、论证9 第三节通风系统改造的主要手段10

第四节通风系统改造总体技术方案的选择10 第三章矿井通风参数计算14 第一节通风系统改造后矿井需要风量的计算14 一、矿井风量计算原则14 二、矿井需风量的计算14 第二节通风系统改造后矿井通风阻力的计算19 一、矿井通风总阻力计算原则19 二、矿井通风总阻力计算19 第三节通风系统改造技术方案比较33 第四章矿井通风设备的选择35 第一节主要通风机选型35 一、设计依据35 二、通风设备选型35 第二节矿井主要通风设备的配置要求38 第五章通风费用概算40 第六章矿井安全技术措施43

第一节粉尘灾害防治43 一、防尘措施43 二、防爆措施43 三、隔爆措施43 第二节瓦斯灾害防治44 第三节防灭火44 一、煤的自燃预防措施44 二、外因火灾防治44 第四节矿井防治水45 第五节井下其它灾害预防45 一、顶板灾害防治45 二、机电运输事故防治45 前言 矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员

的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。 剖析历次煤矿重大灾害事故发生及扩大的原因,无不与矿井通风系统有着密切的关系。因此,建立一个既能满足日常生产需风,保证风向稳定、风质合格,在灾害时期又能保持通风设备运行可靠、稳定、能快速实现风流控制的通风系统是至关重要的。 本设计基于郑兴义兴(新密)煤矿的现状,本着为矿井的长期发展,提高矿井生产能力进行的矿井通风系统改造。总设计技术方案:维修扩大矿井东回风巷的断面,回收矿井西回风巷,对皮带巷进行扩修增大通风断面减小阻力,并经过矿井通风设施改造。通过风量、风阻等计算,选择出主要通风机以及配套的电机型号。通过各种论证,本设计可靠可行,提高矿井的抗灾能力,提高了矿井的经济效益。

探讨矿井通风系统优化评判的模糊优选分析法

龙源期刊网 https://www.sodocs.net/doc/b517016318.html, 探讨矿井通风系统优化评判的模糊优选分析法 作者:牛德草周宽 来源:《科技资讯》2012年第31期 摘要:在制定矿井通风系统过程中,要对各方面因素进行综合考虑,尤其在技术支持、 安全性能、经济效益等方面,要多角度、全方位地考量,设立一个最佳的优化评判方案,而其中模糊优选分析是近几年常用的一种综合分析方法,本文将结合矿井通风现状对系统优化证券的模糊优选法进行深入探讨,以期提高模糊优选法在系统优化评判中的应用,使模糊优选法为促进矿井通风系统的优化进程提供更大的帮助。 关键词:矿井通风系统优化评判模糊优选分析法 中图分类号:TD724 文献标识码:A 文章编号:1672-3791(2012)11(a)-0050-01 随着社会的不断发展和进步,人们的生活水平不断提高,对于矿井业的安全问题也更加重视起来,但目前矿井通风系统的优化评判中仍存在一些问题有待提高,针对这些问题,一些矿井单位使用了模糊优选分析法建立了模糊优选模型和模糊优先程序,这对于现阶段的矿井通风系统的完善和矿井通风工作的顺利开展提供了便利。 1 优化评判的模糊优选模型 现如今,矿井通风优化评判中往往存在很多不确定性因素,例如通风的方式和风量的供需不平衡等因素,因此在建立模糊优选模型时常常使用数学的方法,尤其是模糊数学法,这种具体的模糊数学法曾被用在很多领域的模型构建中,但常常出现很多问题,例如其中的目标决策法,在实际应用中往往单项指标小于理论偏离值或者大于指定的积分值,再例如综合评判法,这种方法使一些加权模型的评判值过于平均化,这些都导致方法与实际操作的离散度不够,从而影响最优方案的评选,因此,为了避免以上问题的出现,研究者设计出了新的评判模型,即模糊优选分析模型,用模糊数学法可以做如下阐述。 假如A是所有矿井通风系统的集合,用符号可以表示为:A={a1,a2,a3,a4,…,an},ab,其中a代表其中任意一种通风方案,b=1,2,3,…,n。从这个公示中可以确定其中每个通风方案的隶属度,从这些隶属度中可以看出方案的优劣,隶属度越大,方案越优化,这就给方案的选择提供方便,使通风系统的优化工作变得更加便捷、安全。在进行矿井通风系统的优化评判时,要制定科学的评判标准,假如把所有的评判标准设为集合X,在X里有N个评判标准,用公示表示为:X={x1,x2,x3,…,xn},其中评价标准对a个通风方案进行综合评价,用公示可以表示为Xi={xi1,xi2,xi3,…,xin},i=1,2,3,…,n,其中xin就是b个方案中第i个评价标准的特征量,从以上数学公示中可以看出评判标准有两种,一种是越大越

实验室通风系统优化研究

实验室通风系统优化研究 摘要: 实验室通风系统的主要作用是提高实验室空气质量环境,保障检验人员安全。本文以我院实验室通风系统作为研究对象,分析提高实验室通风系统效率性、安全性、稳定性的方法与措施,总结实践经验。 关键词:实验室通风;通风系统;空气质量 随着生产安全意识的不断提高,以及对空气质量环境的高度关注,作为一个现代化的实验室,除了关注部分有洁净度、恒温恒湿等特殊要求的实验室外,一些试剂使用种类较多、使用量较大的实验室更应该得到重视。这部分实验室作为高污染区域,产生的废气容易造成室内空气污染,对检验人员的安全与健康造成不可估量的影响。而实验室通风系统则是实验室废气收集和净化的主体,优化通风系统运行效果,提高实验室安全性是未来实验室发展的重要方向之一。 1 通风系统优化 1.1 优化方向 实验室废气的主要来源于试验过程中使用的各种化学试剂的挥发,产生的废气主要有乙醚、醛类、酮类、四氯化乙烯、酸雾气体等各种有机或无机废气,大部分都会对人

体产生不同程度影响。 本项目主要是针对新建的实验室的通风系统进行研究,通过前期的设计优化以及后期调整、调试和试验,结合智能化的控制,改善通风系统的整体性能,提高实验室内部空气质量,创造一个更舒适、更安全的试验环境,并通过实验室空气质量、通风系统参数等进行对比,检验通风及控制系统的实际效果,总结相关实践经验,为以后实验室建设提供重要的经验参考。 1.2 实现的效果 项目选取了干洗检验以及生态前处理的旧有和新建实验室作为主要的研究对象,通过以下手段,包括:针对性配置末端排风设备、新风补风系统合理配置、实验室微负压控制、排风系统管道压力控制等,实现通风系统的优化,达到改善实验室空气环境质量的目的。 从新建和旧有实验室通风系统运行参数以及环境参数的对比来看(具体参数见表1),新建实验室通风系统的排风量和房间换气系数并没有增加很多,但是房间的废气浓度却有了明显的改善,基本达到国家室内空气质量标准所规定VOC的推荐浓度限值(0.6mg/m?)要求。而其主要的使用感受差异如下:旧有实验室产生的废气没有得到很好的收集,即使在室外过道上也能闻到室内散发出的刺激性气味,在实验室内必须佩戴安全防护器具才能长时间停留,否则会引起

矿井通风系统优化

第一章矿井通风系统 定义:矿井通风系统是矿井生产系统的主要组成部分,是矿矿井通风方式、通风方法和通风网络的总称。井通风方式、通风方法和通风 网络矿井通风方式是指进风井(或平硐)和回风井(或平硐)矿井通风方式的布置方式,即所谓中央式、对角式、区域式和混合式等;矿井通风方法是指产生通风动力的方法,有自然通风矿井通风方法法和机械通风法(压入式,抽出式);矿井通风网络是指井下各风路按各种形式联接而成的矿井通风网络网络。 建立完整的矿井通风系统是矿井安全生产的基本保证。目前用通风方 法排除井下瓦斯、粉尘和热量的平均能力。 研究表明,矿井通风系统能:排除全矿井瓦斯量的80%?90%,排除回采工作面瓦斯望的70%?80%,排除装有抑尘装置回采工作面的粉少量的:20%?30%排除深井回采作面热量的60%?70%。 在影响矿井安全的诸多因素中,瓦斯、高温和有自燃煤层的矿井对矿井通风系统有不同的要求,合理的矿井通风系统应有利于排除矿井瓦斯、降低工作面的温度和防止煤炭自燃。 第一节通风系统的类型 随着矿井开采深度的增大,矿井设计生产能力的增大,煤层的开采技 术条件日趋复杂化,相应的矿井瓦斯涌出量也增大,岩层温度也升高,矿井自然发火也越来越严重这就导致各矿井通风系统的差异也越来越大。为了使矿井通风系统与矿井开拓开采的条件相适应,应对不同开 拓开采条件的矿井的通风系统提出不同的要求。一、矿井通风系统的类

型与级别根据瓦斯煤层自燃和高温对矿井通风系统的要求和特点,为了便于管理、设计和检查,可把矿井通风系统分为:一般型、降温型、防火型、排放瓦斯型、防火及降温型、排放瓦斯及降温型、排放瓦斯及防火型、排放瓦斯与防火及降温型矿井通风系统及其相应的级别,如表1—1所示。 将矿井通风系统划分为不同的类型和级别,具有以下优点1)有利于矿井通风系统设计的规范化。1)有利于矿井通风系统设计的规范化。有利于矿井通风系统设计的规范化根据不同类型的矿井对通风系统的不 同要求,规范。按设计规范的要求进行矿井通风系统设计,具体制定出每一类型矿井通风系统的设计提高了矿井没计的质量。 2)可使通风管理标准化2)可使通风管理标准化。可使通风管理标准化矿井通风系统类型不同,通风管理酌标灌也有差异,根据每一类型矿井迎风系统类型的特点,制定出每一类型矿井通风系统具体的管理标准,即可使通风管理有的放矢。3)提高了矿井通风的管理质量提高了矿井通风的管理质量。3)提高了矿井通风的管理质量。根据矿井通风系统的不同类型,制定出了具体的管理标准,在进行通风质量检查时,按照通风系统的不同类型分别对待,提高了4)可使矿井的开拓开采和矿井通风结为一体可使矿井的开拓开米和矿井通风结为一体。4)可使矿井的开拓开采和矿井通风结为一体。在进行通风质量控查时通风检查,首先要检查的是矿井通风系统是否符合要求,然后才是检查通风 管管理是否符合质量标准。通风检查把矿井的开拓、开采与通风检查 联系在一起,可健全矿工程技术人员和生产管理人员都重视起通风工作。5)增强了矿井的技灾能力。5)增强了矿井的技灾能力。增强了矿

矿井通风系统优化方案

登金字﹝2014﹞号签发人:刘发展 登封市金星煤业有限公司 关于印发《矿井通风系统优化方案》的通知 矿属各部门: 为确保矿井通风系统完整、合理、稳定、可靠,使井下每一工作地点风量符合规程要求,实现矿井安全生产,根据目前我矿井下通风系统现状,特制定2014年矿井通风系统优化调整方案。 一、矿井通风状况 矿井通风方式为中央分列式,主扇工作方式为抽出式,由主、副立井进风、立风井回风,主扇采用FBCDZ54-8-№.22型矿用防爆对旋轴流式通风机两台,一备一用,风机工作风量范围55~123m3/S,风压范围1158.7~2182.7Pa。电动机型号YBF315-8型专用防爆电机2台,供电电压380V。属煤与瓦斯突出矿井。 二、现场存在问题

(一)通风系统存在问题 1.老主副斜井、一7斜井、二1东西斜井存在矿外漏风(300方以上)不利于通风管理。 2.130水平一7东巷采空区漏风严重(400方),属矿内漏风。 3.井下个别通风设施老化,部分需要更换和修理,同时也增加了矿内漏风。 4.由于人员不够的原因,临时设施比较多,造成系统不稳定,需要构筑永久设施。 5.部分地点存在下行风,造成通风不畅通, 6、个别密闭墙体爆皮,密闭前卫生差。 7、斜风井六巷下15米处密闭漏风。 8、对井下无用巷道(包裹以前的老井筒)进行统一论证,如老主副井、一7主副井、二1东西斜井、六巷东一斜巷、老主井六巷以上与回风斜井贯通段等。论证后该回撤的回撤,该封闭的封闭。 (二)局部通风存在的主要问题 局扇的安装因受地点、空间的限制,没有全部实现安装双风机,自动倒台,三专两闭锁。 三、优化调整方案和计划 针对以上问题,特制定矿井通风系统优化改造方案: (一)通风系统优化方案 1.构筑永久性通风设施,确保风流稳定性。 A、老井区通风设施的构筑

一、矿井通风设计的内容和要求

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1) 每一矿井必须有完整的独立通风系统。 2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。 3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一)、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二)矿井需风量的计算 1、采煤工作面需风量的计算 采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1)按瓦斯涌出量计算: 式中:Qwi——第i个采煤工作面需要风量,m3/min Qgwi——第i个采煤工作面瓦斯绝对涌出量,m3/min kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0 (2)按工作面进风流温度计算:

矿井通风系统优化改造的实践(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 矿井通风系统优化改造的实践 (最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

矿井通风系统优化改造的实践(最新版) 1矿井概况 东海煤矿于1958年建井,当时为农恳局所建的2对片盘斜井生产。后经1980年改扩建成集中胶带斜井生产。1989年矿井进行二次技改,分东、西区生产,分区联合通风。矿井东部区包含2个行政井区,即五采区、六采区。五、六采区走向长臂后退式开采,2个采区走向长均分别为1800~2400m,五采区于1989年投产,六采区于2000年3月份投产。 2问题的提出 矿井东部区由2条2段斜井及水平主运巷(-450m二水平)联合分区入风,2个采区走向中间一集中回风立井回风。当时由于历史原因五采构二水平、上、下山已开采完,下一个生产水平又未施工,迫使二水平下山又施工联络车场继续下山开采,这样导致五采区生

产工作面通风系统加长,五采区32 #层组一套下山系统开采,35 #、37 #层组一套下山系统开采,巷道维护量大,通风阻力高。五采区高档采煤队2个、掘进队8个、硐室6个,总需风量5160m3 /min。而六采区又刚刚投产,为二水平上山开采,1个采煤队、5个掘进队,需配风少,相对通风系统又较短,通风阻力小,这样导致为2个井区综合配风极为困难。只能采用增阻法,造成通风极为不合理,主要通风机效率低,吨煤电耗大,矿井安全度差。 3矿井通风系统优化方案 针对矿井五、六采区通风现状,提出了2个矿井通风系统优化方案。 方案Ⅰ:维持现状,采、掘工作面回风经两阶段下山(1600m)上行后入二水平回风总排(1200m)再至二水平回风总石门(400m)到回风立井。该方案初期投资小,仅需对回风系统进行维护。缺点:回风巷道服务年限过长,维护困难,巷道有效断面小,导致回风阻

相关主题