搜档网
当前位置:搜档网 › 线性代数 基础解系求法举例

线性代数 基础解系求法举例

教学目的

理解齐次线性方程组的基础解系的概念与求法。掌握非齐次线性方程组通解的结构。掌握向量空间的基的概念与求法

作业

重点基础解系及其求法、向量空间的基练习册P37-40第13题

第19题,期中交:P37-40

难点方程组解的结构讲授方法媒体与投影

讲授内容主线齐次解的基础解系概念-基础解系求法-举例-非齐次通解的求法-向量空间的封闭与生成性-基与坐标-向量内积与长度。

内容概括

齐次方程组的基础解系由n-r 个无关解向量组成,非齐次是齐次解加特解,向量组生成具有封闭线性运算的向量空间。向量内积实际上是矩阵运算,由施瓦茨不等式引出长度与正交。

班级:

时间:

年月日;星期

本次课讲第四章第四节第五节,方程组解的结构与向量空间,

下次课讲第五章第一二节,

下次上课时交作业P37~P40

二、齐次线性方程组解的结构:

1.复习齐次线性方程组解的秩的判定定理

2.解向量的概念n

r A R AX n n A R AX <=?==?=)(0()(0有非零解(无穷多解)齐次方程组为解向量的维数)

有唯一零解齐次方程组设有齐次线性方程组

??????

?=+++=+++=+++0

00221122221211212111n m n m m n n n n x a x a x a x a x a x a x a x a x a (1)设,2

1

2222111211

??????? ??m n m m n n a a a a a a a a a

A =x =,21????

??

? ??n x x x 则(1)式可写成向量方程Ax = 0(2)

?

??

?

??

? ??=====12111112121111,,,n n n x x x x x x x ξξξξ)的解则为(若称为方程组(1)的解向量,它也是向量方程(2)的解.第十讲向量组的秩与方程组解的结构

2.解向量的性质

性质1若为齐次方程组的解,则也是相应齐次方程组的解.

21,ξξ==x x 21ξξ+=x 证()21ξξ+A 21ξξA A +=00+=0

=性质2若为齐次方程组的解,k 为实数,则k

也是相应齐次线性方程组的解.

1ξ=x 1 ξ=x 证:)()00.

k k k ==?=(11A ξA ξ的解(向量)。

均是的线性组合的解向量结论:0,,,0221121=+++==AX k k k x AX t t t ξξξξξξ 3.AX =0的基础解系

的一个基础解系。

为的任一个最大无关组称中,则(或解向量组)的全体解向量组成解集定义:设00==AX S S AX

基础解系不唯一

的的最大无关组,所以)由于基础解系是解集(01=AX t

t t t k k k x x AX AX ξξξξξξξξξ+++=== 22112121,,,00,,,2线性表示,即:

均可用的任意解的一个基础解系,则方程组为线性设解向量)由最大无关组定义,(4.求AX =0的基础解系--AX =0的通解:

事实上,上一章我们已经学会了用矩阵的秩求线性方程组通解的方法:假定AX =0,A 的秩为R(A)=r,求解步骤如下

化A 为行最简形矩阵为

,

0000

1001,1,111????????

?

? ??--

r

n r r r n b b b b =A 与A 对应的方程组的同解方程组为

,,11111n r n r x b x b x -+---= .

,11n r n r r r r x b x b x -+---= ??

?1122,,r r n n r x c x c x c ++-=== 令自由未知数

则:

??

????

??

???++++=++++=++++=-+--=-+--=-++----r

n n r r r n r n r r r r r n r n c x c x c x c b c b c b x c b c b c b x 0000

000002

1

11,2211,12121111?????????? ??++++++++-+---+--=?????????? ??----+r n r

n r n r r r r n r n n r r c c c b c b c b c b c b c b x x x x -1,2211,121211111000000 为:

向量(列矩阵)的形式矩阵表示通解,并写成根据上式求得通解,用????

??????

? ??--++??????????? ??--+??

????????? ??--=---001010001)()(121221111 r n r r n r n r r b b c b b c b b c 第十讲向量组的秩与方程组解的结构

巧得很,AX=0的通解正好是n-r 个解向量的线性组合,如果这n-r 个解向量就是解集的最大无关组,我们就等于找到了AX=0的基础解系。事实上,我们有如下定理:

(2)定理:设n 元齐次方程组AX=0的系数矩阵的秩R(A)=r ,解集(解向量组)为S ,则R(S)=n-r

(下:

得到齐次方程组通解如*2211r n r n c c c x --+++=ξξξ

定理:设n 元齐次方程组AX=0的系数矩阵的秩R(A)=r ,解集(解向量组)为S ,则R(S)=n-r

证:,00001

001~,1,111????

??

???

?

?

?--

r n r r r n b b b b A 第一步:和以前一样,将

系数矩阵化成行最简形:

第二步:仍然是写出与A 对应的齐次线性方程组的同解方程组

,

,11111n r n r x b x b x -+---= .

,11n r n r r r r x b x b x -+---= ???

,00121????

??

?

??=??????? ??++ n r r x x x ,010??????? ?? ,100 ,????

??

? ?? ()().

,,1,010,,,::1

1r n r i x x x

c c r n i r r n -+==-+- 其中依次令

量向量组的取值的取值相当于对自由变原自由变量的任意性由于自由变量取值第三步代入同解方程组依次可得:

,1211121????

???

??---=??????? ??r r b b b x x x ,22212???

??

?

?

??---r b b b ,

, ,,2,1??????? ??------r n r r n r n b b b

第四步:整理得出齐次线性方程组的一组解向量:

,0011111??????????? ??--= r b b ξ,

0102

122???????

???

? ??--= r b b ξ.100,,1???????

???

?

??--=--- r

n r r n r

n b b ξ,

r

n r n r n r n r n k k k x c c c x c c c -----+++=+++=ξξξξξξ 2211221121 ,,,或:

一致:即前一种方法的通解完全组解向量的线性组合与的方法求出的一由变量向量为单位向量结果,这里,通过令自求出通解的量为任意常数通过比较原来令自由变

的线性组合。

,,,中任意的解向量均是的解集知它们是通解,即首先,由上一章知识已r n AX -=ξξξ 210线性无关。

,,,故:,,,因此:阶单位子式中,存在,,,其次,解向量组r n r n r n r n r n R E r n -----=≠=-ξξξξξξξξξ 212121,)(,01r n S R S AX r n -==-)(021系。即得:最大无关组,即基础解的的解集是,,,由最大无关组定义,ξξξ 该定理的论证说明了两点:

r

n S R S R r n AX AX -===)()(0201之间的关系:解集的秩及、系数矩阵的秩的元)说明两方程组(的基础解系的求解步骤)指出了(

即基础解系。成解集的最大无关组,线性无关的解向量均构个的解集中任意则的秩矩阵推论:设r n Ax r A R A n m -==?0,)(线性相关。,由相关性秩的判别法,的解集的秩的任意一解。

是设个解向量且线性无关。

的是证:设b a a a r n r n b a a a R r n R Ax Ax b r n Ax a a a r n r n s r n ---+-<-≤∴-===-= ,,1

),,,(,000,,212121解系

的最大无关组,即基础就是无关组定义,

唯一线性表示。由最大能由关系定理,由相关性与线性表示的线性相关。

,线性无关,并且0,,,,,,,,21212121=∴----Ax a a a a a a b b a a a a a a r n r n r n r n

4.齐次线性方程组的求解结论:

根据以上齐次线性方程组的通解求解过程和定理及其推论,我们可以得到如下结论:

(4)由此还可以推断:齐次线性方程组的基础解系不是唯一的.齐次线性方程组的通解形式也是不唯一的.

(3)齐次线性方程组(1)的任何n -r 个线性无关的解向量都可作为它的基础解系.

(1)当R (A ) = n 时,齐次线性方程组(1)只有零解,无基础解系;(2)当R (A ) < n 时,齐次线性方程组(1)的基础解系含有n –r 个解向量.

的一个基础解系。

构成了个线性无关的解向量均的任意的秩为维,系数矩阵为这一推论说明了,变量0)(=-=Ax r n r A R A n x

????

?

??????? ??--????? ??-010001010010011010001010010011111000011110011~~~:

行变换,化成行最简有解:对系数矩阵作初等A ,000453521??

?

?

?==++=++

+x x x x x x 得同解方程组:的基础解系和通解求齐次线性方程组??

?

??=++=-+=++0005433

2152

1x x x x x x x x x 分)

,数学一,(例题6961

()

()()()()2

211215432

1

,

1,0,1,0,1,0,0,0,1,121,0,1,0,10,0,0,

1,1,

,,,ξξξξk k r n x x x x x T

T

T

T

T

+-=-==---=通解为:-个解向量:

对应的基础解系是。

-和则:和令。非零行的非首元为行最简形的自由变量,1001,,2,3)(,55252???

?

?????? ??=???? ??=-==x x x x r n A R n

.)()(,02n B R A R B A l n n m ≤+=??证明::设例题的解集的一部分。

是的解,是的秩的解集则设0,,,0,,,,

)(0,)(2121=∴=-===AX b b b AX b b b r n S R S AX r A R l l n

A R

B R A R n r n S R B R b b b R l ≤+∴-=-=≤=∴)()()()()(),,,(21 ,

部分的秩小于整体的秩的解。

都是即均满足方程组且即:令阶矩阵,是证明:0,,,,0,,,,,2,1,0,0),,,(,0).

,,,(21212121=====∴==∴???AX b b b AX b b b l i Ab b b b A B A b b b B l n B l l i l l n n m l

(二)非齐次线性方程组的通解

1.非齐次线性方程组的解向量的性质设有非齐次线性方程组

???????=+++=+++=+++,

,,22112222212111212111m n m n m m n n n n b x a x a x a b x a x a x a b x a x a x a (4)它也可写作向量方程

Ax =b

(5)性质3的齐次线性方程组0

=Ax 的解.

(6)

设及都是(5)的解,则为对应1η=x 2η=x 21ηη-=x

()21ηη-A 21ηηA A -=b b -=0=所以满足方程(6).

21ηη-=x 证()ηξ+A ηξA A +=b +=0b =即满足方程(5).ηξ+=x 性质4设是方程(5)的解,是方程(6)的解,η=x ξ=x ηξ+=x 仍是方程(5)的解.则η

ξξη+====x b AX AX b AX 的任意解(通解)为:

的任意解,则是对应的

的一个特解,是非齐次线性方程组结论:设0η

ηη+-==)(x x b AX x 为其一个特解,则:的任意解,为设η

ξξξηξξξξξξηξ++++=+=+++==-=----r n r n r n r n k k k x k k k x AX x 22112211,,03故:

由齐次方程组通解形式也具有任意性,因此所以,具有任意性,的解,由于是对应齐次方程组,由性质称上式为非齐次方程组AX=b 的通解

第十一讲:方程组解的解构与向量空间

的值及方程组的通解。)求(的秩)证明方程组系数矩阵(个线性无关的解,有程组分)已知非齐次线性方,数学一,(例题b a A R A bx x x ax x x x x x x x x ,22

)(1313153419063432143214321=???

??=+++-=-++-=+++2

)(20200,,.0)(,0)()(3,,132212132132211213222113221321≥==--∴==∴=--+=-+---S R Ax Ax k k k k k k k k 个线性无关的解向量。包含基础解系最少

个线性无关的解,即的是,线性无关,将其恒等变形为:,其线性表达式为:,对于对应的齐次解:个线性无关的解是非齐次线性方程组的)证明:设(ααααααααααααααααααααα 2

)(,4,2)()(≤∴=≥-=A R n A R n S R 第十一讲:方程组解的解构与向量空间

线性代数 基础和常考知识点

线性代数基础知识点 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ??????? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

√ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 = =()mn A O A A O A B O B O B B O A A A B B O B O * = =* *=-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1 (即:所有 取自不同行不同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 由m n ?个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L M M M L 称为m n ?矩阵.记作:() ij m n A a ?=或m n A ? () 1121112 222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ??? L L M M M L ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A * -= ○注: 1 a b d b c d c a ad bc --????= ? ?--???? 1 L L 主换位副变号 ②1()()A E E A -????→M M 初等行变换

大一线性代数的知识点

2009年线性代数必考的知识点 1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系: (1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则 (1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则 (1)2 2(1) n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则 4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积 (1) 2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B = =、 (1)m n C A O A A B B O B C = =-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶 主子式; 7. 证明0A =的方法: ①、 A A =-; ②、反证法;

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

最全线性代数知识表

线性代数公式 1-------4 宋利常 线性代数 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ??????? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 √ 行列式的计算: ⑤范德蒙德行列式:()12222 12 11111 2n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 1 11 由 m n ?个数排成的m 行n 列的表11 12121 2221 2n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为 m n ?矩阵.记作:() ij m n A a ?=或 m n A ? () 1121112222*12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为 A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ?--?? ??1 主换位副变号 ②1()()A E E A -????→ 初等行变换 1 2 3111 1 2 13a a a a a -???? ? ?= ? ? ? ? ?? ?? ? 3 2 1 1 1 112 13 a a a a a -???? ? ? = ? ? ? ? ????? √ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B E X ????→ 初等行变换 (I)的解法:构造()() T T T T A X B X X =(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得 1零向量是任何向量的线性组合,零向量与任何同维实向量正交. 2单个零向量线性相关;单个非零向量线性无关. 3部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

线性代数讲义

线性代数讲义 线性代数攻略 线性代数由两部分组成: 第一部分:用矩阵解方程组(判断解的存在性,用有限个解表示所有的解)第二部分:用方程组解矩阵(求特征值,特征向量,对角化,化简实二次型)主观题对策 1. 计算题精解 计算题较之选择题与填空题难度几乎没有增加,但计算量大大增加,故出错的机会大幅增长,因此应力求用简便方法解决问题. 一.行列式的计算: 单纯计算行列式的题目大概永远不会出现.所以需要结合其它的知识点. l 核心内容 范德蒙行列式/余子式/代数余子式/Cramer法则: l 典型方法 降阶法(利用Gauss消元法化为三角矩阵:常常是将所有的行或列加到一起)/特征值法(矩阵的行列式等于其特征值之积)/行列式的其它性质(转置矩阵/逆矩阵/伴随矩阵/矩阵之积) 例1 计算下述三个n阶矩阵的行列式: . 解先算|B|=xn;再算|A|: 故|C|= |A|(-1)(1+?+n)+[(n+1)+…+(2n)] |B-1| =(-1)(1+2n)n(n+x)/x. 例2(2004-4) 设矩阵 ,矩阵B满足ABA*=2BA*+E,则|B|=[ ]. 分析化简可得(A-2E)BA*=E;于是|A-2E||B||A*|=1. 又|A*|=9,|A-2E|=1,所以|B|=1/9. (切忌算B=(A-2E)-1(A*)-1.) 例3 设4×4矩阵A=(x,a,b,g), B=(h,b,g,a). 若|A|=1, |B|=2,则行列式|A+B|=[ ].

正解:|A+B|=|x+h, a+b, b+g, g+a|=|x+h, 2(a+b+g), b+g, g+a|=2|x+h, a+b+g, b+g, g+a| =2|x+h, a, b+g, g+a|=2|x+h, a, b+g, g|=2|x+h, a, b, g|=2(|x, a, b, g|+|h, a, b, g|)=2(|A|+|B|)=6. 巧解:正解令人羡慕,但可能想不起来.于是令A=E,则.但|B|=2,所以取最简单的 .于是 ,故|A+B|=6. 例4 若四阶方阵A的特征值分别为-1,1,2,3,则行列式|A-1+2A*|=[ ]. 解此题考查对特征值的理解.特征值的性质中最重要(也是最简单的)的有两条,即所有特征值的和等于矩阵的迹(=对角线元素之和),而所有特征值的积等于矩阵的行列式.因此|A|= -6!剩余的就是简单的变形了: A-1+2A* = A-1 (E+2A A*) = A-1 (E+2|A|E)=-11A-1. 故|A-1+2A*|=|-11A-1|=(-11)4|A-1|=-114/6. 本题有巧解,你想到了吗?对!就让A是那个满足条件的最简单的矩阵! 例2(上海交大2002) 计算行列式 其中,. 本题只要对特征多项式有一定认识,则易如反掌.所求行列式对应的矩阵A=xE+B, 其中B=(aibj)的任意两行均成比例,故其秩为1(最重要的矩阵类型之一)或0,但由题中所给条件,B10,于是,B至少有n-1个特征值为0,另有一特征值等于trB= a1b1+ a2b2+…+ anbn10. 从而,A有n-1个特征值x,另有一个特征值x+trB.OK 例3(2001) 设A为三阶矩阵,X为三维向量,X,AX, A2X线性无关,A3X=4AX-3A2X.试计算行列式|2A2+3E|. 很多人觉得此题无从下手,实在冤枉了出题人.由A3X=2AX-3A2X可知, A(A2+3A-4E)X=0.由此知, |A|=0:否则,A可逆,X,AX, A2X将线性相关,矛盾!从而(A2+3A-4E)X=0:故X是齐次线性方程组(A2+3A-4E)Y=0的非零解.于是|A2+3A-4E|=0.故A的三个特征值为0,1,-4.于是2A2+3E的三个特征值为3,5,35.所以, |2A2+3E|=3′5′35=525. 例4(1995) 设n阶矩阵A满足AA¢=I,|A|<0,求|A+I|. 解首先, 1=|AA¢|=|A|2,所以|A|=-1. 其次, |A+I|=|A+AA¢|=|A||I+A¢|=|A||I+A|=-|I+A|, 故|A+I|=0. (涉及的知识点: |A|=|A¢|, (A+B)¢=A¢+B¢.) 例5(1999)设A是m′n矩阵,B是n′m矩阵,则

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

线性代数练习册习题及答案本

第四章 线性方程组 §4-1 克拉默法则 一、选择题 1.下列说法正确的是( C ) A.n 元齐次线性方程组必有n 组解; B.n 元齐次线性方程组必有1n -组解; C.n 元齐次线性方程组至少有一组解,即零解; D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B ) A.当0D ≠时,非齐次线性方程组只有唯一解; B.当0D ≠时,非齐次线性方程组有无穷多解; C.若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题 1.已知齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解, 则λ= 1 ,μ= 0 . 2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠, 则方程组有唯一解i x = i D D . 三、用克拉默法则求解下列方程组 1.832623x y x y +=??+=? 解: 8320 62 D = =-≠ 1235 32 D = =-, 28212 63 D = =- 所以,125,62D D x y D D = ===-

2.123123123 222310x x x x x x x x x -+=-?? +-=??-+-=? 解: 2131 12112122 130 3550111 01 r r D r r ---=--=-≠+--- 11222 10051 1321135 011011D r r ---=-+-=---, 2121215 052 1322 1310 10 1 101 D r r --=-+-=-----, 3121225 002 1122 115 1 1 110 D r r --=+=--- 所以, 3121231,2,1D D D x x x D D D = ===== 3.21 241832x z x y z x y z -=?? +-=??-++=? 解: 13201 0012 412041200 183 583 D c c --=-+-=≠- 13110110014114020 283285D c c -=-+=, 2322 11 2 102 112100 123 125 D c c -=-+=--, 313201 01 2 4120 4120 182 582 D c c =-=-- 所以, 3121,0,1D D D x y z D D D = =====

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数试题及复习资料

(试卷一) 一、 填空题(本题总计20分,每小题2 分) 1. 排列的逆序数是_______。 2. 若122 21 12 11=a a a a ,则=1 6 03032221 1211 a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则 CA B =-1。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5.设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。 6. 设A 为三阶可逆阵,???? ? ??=-1230120011 A ,则=* A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有 非零解的充分必要条件是

8.已知五阶行列式 1 23453 201111111 2140354321=D ,则 = ++++4544434241A A A A A 9. 向量α=(2,1,0,2)T -的模(范数)______________。 10.若()T k 11=α与()T 121-=β正交,则=k 二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,2 1 Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8 B.8- C.34 D.3 4- 3.设向量组A 能由向量组B 线性表示,则 ( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。 答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。例如:排列45312为偶排列。 10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。 答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。例如:偶排列45312对换4与3,则变成排列35412,它的逆序数为7,排列35412是奇排列。 11.任一个n阶排列与标准排列可以互变吗?【知识点】:n阶排列与标准排列的关系。 答:可经过一系列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5

相关主题