搜档网
当前位置:搜档网 › 数列的五种求和公式

数列的五种求和公式

数列的五种求和公式
数列的五种求和公式

数列求和的几种常见方法

数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨.

1、公式求和法

通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前n 个正整数和的计算公式等直接求和.运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算.特别地,注意数列是等比数列时需要讨论1q =和1q ≠的情况.

⑴等差数列求和公式:d n n na a a n S n n 2

)

1(2

)

(1

1-+

=+=

另外,还有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:1

(1)

2

n

k n n k =+=

∑;

2

1

(1)(21)

6

n

k n n n k

=++=

3

2

1

(1)

[

]

2

n

k n n k

=+=∑

例1、已知数列(){}n f 的前n 项和为n S ,且.22

n n S n +=若(),11f a =()n n a f a =+1()*

∈N

n ,求数列{}

n

a 的前n 项和.n T

分析:根据数列的项和前n 项和的关系入手求出(),n f 再根据()n n a f a =+1(∈n *

N )求出数列{}n a 的通项

公式后,确定数列的特点,根据公式解决.

解:∵当2≥n 时,().121+=-=-n S S n f n n 当1=n 时,(),311==S f 适合上式

()12+=∴n n f ()*

∈N

n ,(),311

==f a

121+=+n n a a ()*

∈N

n ,即)1(211

+=++n n a a

∴数列{}1n a +是首项为4、公比为2的等比数列.

∴()12,22

111

111-=∴=?+=+++-n n n n n a a a ()*

∈N n ;(

).42

2

22

2

1

32

--=-++=++n n T

n n n

【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题. 变式训练1: 已知3

log

1log 2

3

-=

x ,求???++???+++n

x x x x 32的前n 项和.

变式训练2: 设*

12()n s n n N =+++∈…,求1

)32()(++=

n n

S n S n f 的最大值.

2、倒序相加法

如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公

式的推导,用的就是“倒序相加法”.

121121n n n n n n S a a a a S a a a a --=++++?

?=++++?…………则()()()12112n n n n S a a a a a a -=++++++……

例2、已知函数().211223??? ??≠--=

x x x x F 求.200920082009220091??

?

??+??? ??+??? ??F F F 分析:由所求的和式的特点,易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否用倒

序相加法求和.

【解析】∵()()()().31

122131

2231=----+

--=

-+x x x x x F x F

∴设.200920082009220091

??? ??+??? ??+???

??

=F F F S ①200820071200920092009S F F F ??????

=++ ? ? ??????? ②

∴①+ ②得???

?????? ??+??? ??++????????? ??+??? ??+?????

?

??? ??+???

??

=200912009200820092007200922009200820091

2F F F F F F S 602420083=?=,所以.3012=S

【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方

法.当求一个数列的有限项和时,若是“与首末两端等距离”的两项和都相等,即可用此法. 例3、已知22

()1x

f x x

=

+,则111(1)(2)(3)(4)234f f f f f f f ??????

++++++=

? ? ???????

解:∵由2

2

22

2

2

2

111()1

11111x x

x f x f x x x

x

x ?? ???

??

+=+=

+

= ?+++??

??

+ ?

??

∴原式1111

1(1)(2)(3)(4)111323422f f f f f f f ?

???????????=++++++=+++=

? ? ??????????????

?????

变式训练1: 求

89sin 88sin 3sin 2sin 1sin 2

2

2

2

2

++???+++的值

变式训练2:如已知函数()f x 对任意x R ∈都有2

1)1()(=

-+x f x f ,++=)1

()0(n

f f S n

)3()2(n f n f ++…)1()2(n

n f n n f -+-+)1(f + ,(*

N n ∈),求n S

变式训练3:已知2

21)(x

x

x f +=

,那么=+++++)2008

1(

)3

1()2

1()2008()2()1(f f f f f f

裂项相消法是将数列的各项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n 项和. 一般地,我们把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.适用于类似?

????

?

+1

n n a a c

(其中{}n a 是各项不为0的等差数列,c 为常数)的数列,以及部分无理数列和含阶乘的

数列等.用裂项法求和,需要掌握一些常见的裂项方法:

?

?

?

??+--=

+-12112121)

12)(12(1

n n n n ;

1111()

()

n n k k

n

n k

=-++;

n

n n n -+=++

11

1;

例4、{}n a 是公差为d 的等差数列,求1

1

1n

k k k a a =+∑

解:∵

()

()

1

111

1110k k k

k

k k d

a a a a d

d a a ++??

=

=

-≠ ?

+??

·

∴1

1

1

11223111111111111n

n

k k k k k k n

n a a d a a d a a a a a a ==+++??

????????=

-=-+-++-?? ?

? ? ???????????∑

……11111n d a a +??=- ???

例5、数列 {}n a 满足n n n a a a a a 3

23

5,3

5,11221-

=

=

=++ (

)*

∈N

n ,求.32323232

1

4

33

3

22

2

1+??

? ??+

+??

? ??+

??

?

??+

=

n n n

n

a a a a a a a a T

分析:根据给出的递推式求出数列{}n a ,再根据1

32+??

? ??n n n

a a 的特点拆项解决.

解:∵由已知条件,得()n n n n a a a a -=

-+++1123

2,{}n n a a -∴+1是以3

212=

-a a 为首项,3

2为公比的等

比数列,故,321n

n

n a a ??

? ??=-+ ∴()()()

21

1213212

222131.3333n n

n

n n a a a a a a a a --??

????

??=+-+-++-=++++=-?? ? ?

?????

??????

11

1

22111

33322221131313333n

n

n n n n n n a a +++????

??

?? ? ???

??

??==-??????????????

---?-?????? ? ? ? ?

??????????

????????

2

3

2

1

1

1223341

2222

11111

1133333.23322221111133333n

n n

n n n n T a a a a a a a a +++????

????

???

??

? ? ? ???

??

??

????=

++++=-

++

-

=-

????????????

-----???? ? ?

?

?

??

??

??

???

???

变式训练1:在数列{}n a 中,1

1

21

1++

???+++

+=

n n n n a n ,又1

2+?=

n n n a a b ,求数列{}n b 的前n 项的和.

变式训练:2:求和:11

1

112

123

123s n

=++

++

+++++++

变式训练3:求和:

n

n +

++

++

+

+

+

+113

412

311

21 .

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.即若在(差比数列)

{}n n a b ?中,{}n a 成等差数列,{}n b 成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可

以求出前n 项和.

例6、2

3

1

1234n n S x x x nx

-=+++++……

()2

3

41

2341n n

n x S x x x x n x

nx -=+++++-+·…… ②

①—②()2

1

11n n

n x S x x x nx --=++++-……

当1x ≠时,()

()

2

111n

n

n x n x

S x

x -=

-

--,当1x =时,()11232

n n n S n +=++++=

……

【能力提升】错位相减法适用于数列{}n n b a ,其中{}n a 是等差数列,{}n b 是等比数列.若等比数列{}n b 中公比q 未知,则需要对公比q 分11≠=q q 和两种情况进行分类讨论. 例7、已知数列{}n a 是首项为,4

11=

a 公比为4

1=

q 的等比数列,设n n a b 4

1log

32=+(

)*

∈N

n ,数列{}

n

c 满足.n n n b a c ?=求数列{}n c 的前n 项和.n S

分析:根据等比数列的性质可以知道数列{}n b 为等差数列,这样数列{}n c 就是一个等差数列与一个等比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决. 解:∵由题意知,n

n

a ??

?

??=41()*

∈N n ,又2log

34

1-=n n

a b

,故23-=n b n (

)*

∈N

n .

∴()1324n

n c n ??=-? ???

()

*

∈N n

∴()()231

1

1111147353244444n n

n S n n -??????

??

=?+?+?++-?+-? ? ? ?

?????????

∴()()2

3

4

1

1

111111473532444444n

n n S n n +??????????

=?+?+?++-?+-? ? ? ? ? ???????????

∵两式相减,得()().4123214123414141341

4

3

1

132++???

???+-=??? ???--???

???????? ??++??? ??+??? ??+=n n n n

n n S n

n n S ??

? ???+-

=

∴413

233

2()*∈N n .

变式训练1、求2

3

1

1234n n S x x x nx

-=+++++……

变式训练2、若数列{}n a 的通项n

n n a 3)12(?-=,求此数列的前n 项和n S . 变式训练3、 求数列

??????,2

2,

,2

6,

2

4

,223

2

n

n 前n 项的和.

5、(分组)拆项求和法(裂项重组法)

所谓裂项重组法就是针对一些特殊的数列,既不是等差数列,也不是等比数列的数列,我们可以通过拆分、合并、分组,将所求和转化为等差、等比数列求和

例8、已知数列{}n a 的通项公式为,132-+=n a n

n 求数列{}n a 的前n 项和.

分析:该数列的通项是由一个等比数列{}n

2与一个等差数列{}13-n 组成的,所以可将其转化为一个等比数

列与一个等差数列进行分组求和.

【解析】()()()13252222

1

21-+++++=++=n a a a S n

n n

=()()[].13522

222

1

-++++++n n

=

(

)

()[]

2

1322

1212-++

--n n n

=.22

12

322

1

-+

+

+n n

n

【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和. 例9、数列{}n a 的前n 项和是n

S ()

*

∈N n ,若数列{}n a 的各项按如下规则排列:

,,6

1

,54,53,52,51,43,42,41,32,31,21 若存在自然数k ()*

∈N k ,使10,101≥<+k k

S S

,则=k a .

分析:数列的构成规律是分母为2的一项,分母为3的两项,分母为4的三项,···,故这个数列的和可以并项求解. 解:55

4

3213,343

2123,233

2121,2110631=++++

==+++

==++=

=

S S S S ,2156

5

4321515=+++++=S 而,37

6

54321=+++++这样1022121>=

S ,而

,102

52157152

157

543212

1520=+<+=

+++++

=

S 故7

5=

k a ,故填.7

5

【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法.

变式训练1:求和:2536+47++(+3)n n ?+??……

变式训练2:求数列2

2

1

1,1+2,1+2+21+2+2++2n -,…,

…… 的前n 项和

变式训练3:求数列{(1)(21)}n n n ++的前n 项和.

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数列中裂项求和的几种常见模型

数列中裂项求和的几种常见模型

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列{}n a 是以d 为公差的等差数列,且),3,2,1(0,0 =≠≠n a d n ,则 )1 1(111 1++-=n n n n a a d a a 例1已知二次函数()y f x = 的图像经过坐标原点,其导函数为 '()62f x x =-,数列{}n a 的前 n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x = 的 图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1 1 n n n b a a += ,n T 是数列{}n b 的前n 项和,求使得20 n m T <对所有n N * ∈都成立的最小 正 整 数 m ; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax 2 +bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2 -2x. 又因为点(,)()n n S n N *∈均在函数()y f x = 的图像上,所以n S =3n 2 -2n. 当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n ( =6n -5. 当n =1时,a 1=S 1=3×12 -2=6×1-5,所以,a n =6n -5 (n N *∈) (Ⅱ)由(Ⅰ)得知13+= n n n a a b =[]5)1(6)56(3---n n =)1 61 561( 21+--n n ,

数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边 数学归纳法可以证 也可以如下做比较有技巧性 n^2=n(n+1)-n 1^2+2^2+3^2+......+n^2 =1*2-1+2*3-2+....+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n) 由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 所以1*2+2*3+...+n(n+1) =[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3 [前后消项] =[n(n+1)(n+2)]/3 所以1^2+2^2+3^2+......+n^2 =[n(n+1)(n+2)]/3-[n(n+1)]/2 =n(n+1)[(n+2)/3-1/2] =n(n+1)[(2n+1)/6] =n(n+1)(2n+1)/6 2)1×2+2×3+3×4+...+n×(n+1)=? 设n为奇数, 1*2+2*3+3*4+...+n(n+1)= =(1*2+2*3)+(3*4+4*5)+...+n(n+1) =2(2^2+4^2+6^2+...(n-1)^2)+n(n+1) =8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1) =8*[(n-1)/2][(n+1)/2]n/6+n(n+1) =n(n+1)(n+2)/3 设n为偶数, 请你自己证明一下! 所以, 1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3 设an=n×(n+1)=n^2+n Sn=1×2+2×3+3×4+...+n×(n+1) =(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

数列公式大全

数列公式大全 设An为等差数列,d为公差 性质1)An=A1+(n-1)d=Am+(n-m)d Sn=n(A1+An)/2=nA1+n(n-1)d/2 2)An=Sn-S(n-1),2An=A(n-1)+A(n+1)=A(n-k)+A(n+k) 3)若a+b=c+d,则Aa+Ab=Ac+Ad 设An为某数列,Sn为前n项和,则有以下几点性质: 4)形如Sn=an^2+bn+c(ab≠0),当且仅当c=0时,An为等差数列.即当An为等差 数,Sn是不含常数项的关于n的二次函数. 5)形如aAn=bA(n-1)+c(a≠b)的数列,总可以化为等比数列,即令ax=bx+c,即 x=c/(a-b),即An-c/(a-b)=a[A(n-1)-c/(a-b)] 所以Bn=An-b/(1-a)为等比数列 6)形如aAn+bA(n-1)+cA(n-2)=0(abc≠0)的数列,总可以化为等比数列,即令 ax^2+bx+c=0的根为x1,x2,则 An-x1A(n-1)=x2[A(n-1)-x1A(n-2)] An-x2A(n-1)=x1[A(n-1)-x2A(n-2)] 令B(n-1)=An-x1A(n-1) (1) B(n-1)'=An-x2A(n-1) (2) 则Bn,Bn'为等比数列,从而可以求出Bn,Bn'。再解(1)(2)方程组可求出An。 7)若An>0,形如An^a=cA(n-1)^b的数列可化为5)的形式,即两边取对数 即:algAn=blgA(n-1)+lgc,令Bn=lgAn,即aBn=bB(n-1)+c 等差数列:Sn=a1n+n(n-1)d/2

等比数列:1:q=1时;Sn=na1 2:q#1时;Sn=a1(1-q的n次方)/(1-q) 求和 等差“(首数+末数)*项数/2 等比数列求和公式=首项*(1-比值^项数)/(1-比值) 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、 等比数列求和公式: 自然数方幂和公式: 3、 4、 5、 [例] 求和1+x2+x4+x6+…x2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x2的等比数列而且有n+3项 当x2=1 即x=±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的 通项公式主要有如下几种类型 亠、S n是数列{a n}的前n项的和 (n =1) Array (n-2) 【方法】:S n- S nJ'代入消元消3n 【注意】漏检验n的值(如n = 1的情况 【例1】.(1 )已知正数数列{a n}的前n项的和为S n, 且对任意的正整数n满足2 二為T,求数列{^}的通项 公式。 (2)数列{a n}中,a厂1对所有的正整数n都有 a a2 a^tl a^ n2,求数列{a n}的通项公式 【作业一】 1 - 1.数列4满足a^ 3a? + 3剋+111 + 3% =彳叶N*), 求数列云的通项公式.

a (二)■累加、累乘型如a n-a n「f(n), —^=f(n) a n_1 型一:| —n - —n_i = f (n),用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 a n - a n厂f (n), a n_i - 二f(n T), a? -—I = f (2) n - 2, 从而a n 一—I二f(n) f(n-1) IH f(2),检验n 二1 的情况 型二:玉=f(n),用累乘法求通项公式(推导等比 a n 4 数列通项公式的方法) 【方法】n — 2,生也 ||| 鱼“(n) f(n-1)H|f (2) a n -1a n-2 a i 即直=f(n) f(n-1^1 f (2),检验n=1的情况a i 【小结】一般情况下,“累加法”“累乘法”里只有n-1个等式相加(相乘).

一1 1 【例2】.(1)已知a12 , % 2),求a n { I n 2 (2 )已知数列a n'满足a n厂厂2 K ,且a/ 3 , 求a n . 【例3】.(2009广东高考文数)在数列{a n}中, , -1、 n 十1 h =旦1 4 = ha n 厂(1 n )a n 丁 .设h n,求数列{b n} 的通项公式

经典数列求和公式.docx

数 列 求 和 的 基 本 方 法 和 技 巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法 . 1、等差数列求和公式: S n n( a 1 a n ) na 1 n(n 1) d 2 2 na 1 ( q 1) 2、等比数列求和公式: S n a 1 (1 q n ) a 1 a n q 1) 1 q 1 (q q n 3、 S n k 1 k 1 n(n 1) 自然数列 2 4、 S n n k 2 1 n(n 1)(2n 1) 自然数平方 成的数列 k 1 6 [例1] 已知 log 3 x 1 ,求 x x 2 x 3 x n 的前 n 和 . log 2 3 解:由 log 3 x 1 log 3 x log 3 2 x 1 log 2 3 2 由等比数列求和公式得 S n x x 2 x 3 x n (利用常用公式) 1 1 = x(1 x n ) = 2 (1 2n ) =1- 1 1 x 1 1 2n 2 [例2] S n = 1+2+3+?+n , n ∈N *, 求 f (n) (n S n 的最大 . 32)S n 1 解:由等差数列求和公式得 S n 1 n(n 1), S n 1 ( n 1)(n 2) (利用常用公式) 2 2 ∴ f ( n) S n = n 2 n ( n 32)S n 1 34n 64 = 1 = 1 1 64 8 2 50 n 34 ( n ) 50 n n ∴当 n 8 ,即 n = 8 , f ( n) max 1 8 50 二、 位相减法求和

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a。 【注意】漏检验n的值(如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????= L,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈ L,求数列 {} n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-??L L 即1 ()(1)(2)n a f n f n f a =?-??L ,检验1n =的情 况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知21 1=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列{}n a 满足1 2n n n a a n +=+,且3 21=a ,求n a .

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

高中数学数列求和的五种方法

高中数学数列求和的五种方法 一、公式法求和 例题1、设 {a n} 是由正数组成的等比数列,Sn为其前 n 项和,已知a2 ·a4=1 , S3=7,则 S5 等于( B) (A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2 解析: ∵ {a n} 是由正数组成的等比数列 , 且a2 ·a4 = 1, q > 0 , 例题1图 注: 等比数列求和公式图 例题2、已知数列 {a n} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B) (A) 16 (B) 8 (C) 4 (D) 不确定

解析: 由数列 {a n} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {a n} 是等差数列, 由S25= 1/2 ×(a1 + a25)× 25 = 100 , 解得a1+a25 = 8, 所以a1+a25 = a12+a14 = 8。 注: 等差数列求和公式图 二、分组转化法求和 例题3、在数列 {a n} 中, a1= 3/2 , 例题3图(1) 解析: 例题3图(2) 故

例题3图(3) ∵a n>1,∴ S < 2 , 例题3图(4) ∴有 1 < S < 2 ∴ S 的整数部分为 1。例题4、数列 例题4图(1) 例题4图(2) 解析: 例题4图(3)

三、并项法求和 例题5、已知函数 f(x) 对任意x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少? 解析: 由条件可知:f(x)+f(1-x)=1,而x+(1-x)=1, ∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1, ∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。 例题6、数列 {a n} 的通项公式a n=ncos(nπ/2),其前 n 项和为Sn,则 S2012 等于多少? 解析:n 取奇数和偶数分组;答案:1006 。 四、裂项相消法求和 例题7、若已知数列的前四项是 例题7图(1) 则数列前n项和是多少? 解析: 因为通项

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n [ [∴当8 -n ,即n =8时,50)(max =n f 题1.等比数列的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a =,b =,c = . 解:原式=答案:

二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. [例3]求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) n n 1432-∴[例4]2 练习题1已知,求数列{答案: 练习题2的前n 项和为____ 答案: 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5]求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项 公式? 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +?? =+ ??? *()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.

4.构造新数列: 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+211 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足3 21=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的 通项1___n a ?=?? 12 n n =≥ 2!n a n =)2(≥n 解

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

数列求和7种方法(方法全-例子多)

数列求和 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n 5、 21 3)]1(21[+==∑=n n k S n k n [例1],求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 题1.等比数列 的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = 二、错位相减法求和 { a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+???++++=n n x n x x x S ………………………① [例4] 求数列??????,2 2,,26,24,2232n n 前n 项的和.

练习题1 已知 ,求数列{a n }的前n 项和S n . 练习题2 的前n 项和为____ 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例6] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 题1 已知函数 (1)证明:; (2)求 的值. 练习、求值: 四、分组法求和 [例7] 求数列的前n 项和:231,,71,41, 1112-+???+++-n a a a n ,…

数列求和常用公式

数列求和常用公式: 1、1+2+3+......+n=n ×(n+1)÷2 2、12+22+32+......+n 2=n(n+1)(2n+1)÷6 3、 13+23+33+......+n 3=( 1+2+3+......+n)2 =n 2×(n+1)2÷4 4、 1×2+2×3+3×4+......+n(n+1) =n(n+1)(n+2)÷3 5、 1×2×3+2×3×4+...+n(n+1)(n+2)=n(n+1)(n+2)(n+3)÷4 6、 1+3+6+10+15+... =1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+...+n) =[1×2+2×3+3×4+...+n(n+1)]/2=n(n+1)(n+2) ÷6 7)1+2+4+7+11+...=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n) = (n+1)×1+[1×2+2×3+3×4+......+n(n+1)]/2=(n+1)+n(n+1)(n+2) ÷6 8)12 +12×3 +13×4 +1n(n+1) =1-1/(n+1)=n ÷(n+1)

9)1 1+2+ 1 1+2+3 + 1 1+2+3+4 + 1 1+2+3+4+…+n = 2 2×3 + 2 3×4 + 2 4×5 + 2 n(n+1) =(n-1) ÷(n+1) 10) 1 1×2 + 2 2×3 + 3 2×3×4 + (n-1) 2×3×4×…×(n-1) = 2×3×4×…(n-1) 2×3×4×…×n 11)12+32+52+..........(2n-1)2=n(4n2-1) ÷3 12)13+33+53+..........(2n-1)3=n2(2n2-1) 13)14+24+34+..........+n4=n(n+1)(2n+1)(3n2+3n-1) ÷30 14)15+25+35+..........+n5=n2 (n+1)2 (2n2+2n-1) ÷12 15)1+2+22+23+......+2n=2(n+1)–1

数列的通项公式与求和的常见方法

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =,12n n a a +-=* ()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,1 3n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=* ()n N ∈,求数 列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++* ()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足2 11=a ,n a a n n 21+=+,* ()n N ∈求 数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈, 13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,*()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,2 51n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可得数列 λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{} n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列 {}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-* ()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新的等差数 列。 例:已知数列{}n a 满足11a =,122 n n n a a a += +*()n N ∈, 求数列{}n a 的通项公式。 变式练习: 1. 已 知 数 列 {} n a 满 足 11 a =, 1(1)n n na n a +=++(1)n n +, * ()n N ∈,求数列{}n a 的 通项公式。 2. 已知首项都为1的两个数列{}n a 、{} n b (0n b ≠* n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b =求数列{}n c 的通 项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ=-++11,即数列? ? ????n n p a 为以p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数 列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1 15 5+++=n n n a a ,11=a ,求数列 {}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列 {}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的 前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2232221n a a a a ++++Λ. 类型二:分组求和法 例. 求数列的前n 项和: 232 1 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 2 1 )12(+ +=,求n S . 类型三:倒序相加法 例.求ο ο ο ο 88sin 3sin 2sin 1sin 2 2 2 2+???+++ο 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,1 2)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式; (2)设n n n b a c = ,求数列}{n c 的前n 项和n T . 类型五:裂项相消法 例.已知数列}{n a 中,) 2(1 += n n a n ,求n S . 1.求数列 1 1 ,,321,211++???++n n 的前n 项和. 2.在数列}{n a 中,1 1211++???++++=n n n n a n , 又1 2 +?=n n n a a b ,求数列}{n b 的前n 项的和. 3.求和 求数列的通项与求和作业 1.已知数列}{n a 的首项11=a (1)若12n n a a +=+,则n a =__________; (2)若12n n a a +=,则n a =_________ 1 11{}:1,{}.31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式

相关主题