搜档网
当前位置:搜档网 › 生物农药论文

生物农药论文

生物农药论文
生物农药论文

产抗菌物质芽孢杆菌在农业生物防治中的应用与研究

摘要:

芽孢杆菌能分泌多种具有抗菌活性的次级代谢产物,主要包括抗生素、细菌素、抗菌蛋白、水解酶类以及挥发性物质等。本文主要介绍产抗菌蛋白芽孢杆菌在农业生物防治中的应用研究,并对其产抗菌物质类型、抗菌作用机理做简要论述。

关键词:芽孢杆菌;抗菌蛋白;农业生物防治

芽孢杆菌(Bacillus spp.)在防治植物病害中的研究应用非常广泛,从土壤传播病害到气流传播病害,从粮食作物病害到水果、蔬菜、花卉等经济作物病害都有涉及。这类生防细菌可以产生内生芽孢,抗逆能力强,繁殖速度快,营养要求简单,易定殖在植物表面。目前用于病害生防的芽孢杆菌种类有:枯草芽孢杆菌(B. subtilis)、多粘芽孢杆菌(B. polymyxa)、蜡状芽孢杆菌(B. cereus)、地衣芽孢杆菌(B. licheniformis)、巨大芽孢杆菌(B.megaterium)、短小芽孢杆菌(B. pumilis)和蕈状菌变种(B. cereus var. 1mycoides)等。

1.芽孢杆菌分泌的主要抗菌物质

1.1抗生素(antibiotic)

是一类微生物产生的对其他微生物具抑制或杀死作用的非蛋白质的小分子化合物。抗生素一般在低浓度(小于10ppm)下就能起抗生作用。蜡状芽孢杆菌(B. cereus)菌株UW85 产生两种抗生素即zwittermicin A 和kanosamine,其中zwittermicin A 抑制苜蓿猝倒病菌(Phytophthora medicaginis)芽管的伸长,kanosamine 引起孢子囊膨胀[1]。

1.2细菌素

是一种细菌产生的对亲缘关系较近的种或种以下不同菌株有抑制作用的抗菌物质,大多含有一些稀有氨基酸分子结构,而且一般是环肽。细菌素可分为低分子量多肽类、核苷酸类似物细菌素,与分高分子量蛋白质颗粒细菌素两大类,蛋白质颗粒细菌素有球形、椭圆形、棒形与带棒状尾部多面体等多种结构。枯草菌素(Subtilin)是迄今为止研究较深入的细菌素之一。它的前体是56个Aa小肽,其中24个Aa为信号肽,经信号肽酶切除和一系列修饰如Thr脱水和Ser与Cys硫酯化可以形成32个Aa的活性小肽,具有抗酸和抗热的特性。Zheng等[2]从枯草芽孢杆菌中分离出一种分子量为3.4kD细菌素,其对引致食品变质的细菌

B. aureus和Salmonella typhimuritum有抑制作用,它可以作为一种抗菌物质应用于食品保鲜。

1.3抗菌蛋白

芽孢杆菌生长代谢过程中能分泌一些抑制植物病原菌的活性蛋白,这些蛋白在生防中的作用显著。芽孢杆菌产生的抗菌蛋白中包括多肽、脂蛋白和糖蛋白,结构有环状、线状和分支环状等。

枯草芽孢杆菌BS-98 菌株产生的蛋白能强烈抑制苹果轮纹病菌(Physalosporapiricola)等植物病原真菌。其氨基酸组分分析表明,该蛋白含11种不同的氨基酸,尤其富含谷氨酸和半胱氨酸等,此外,还有一些未知蛋白在抑制植物病原菌方面也表现出强烈的作用[3]。枯草芽孢杆菌JM4菌株能够产生JM4-A和JM4-B两种新型抗菌肽,分子量分别为1422.71D 和1422.65D,这两种抗菌肽除了3个未知序列外,7个氨基酸序列组成相同,有很强的同源性[4]。BS-2菌株分泌的抗菌多肽分子量≤2884.39Da,该多肽对热稳定并能抗紫外线照射,对炭疽病菌和番茄青枯病菌等多种植物病原真菌和细菌有强烈的抑制作用,对辣椒果实炭疽病具有69.79%(9d后)的防病效果[5]。刘永锋等[6]分离的枯草芽孢杆菌Bs-916对多种病菌具抑制活性,他们分别采用丙酮沉淀、PEG沉淀、等电点沉淀和超微浓缩等方法从Bs-916代谢液中获得的胞外抗菌物质具有蛋白质的性质。

蜡状芽孢杆菌(B. cereus)S-1 菌株的发酵液,经过酸沉淀和有机溶剂抽提,Sephadex G-100 与DEAE-52 柱层析等步骤后,分离得到一种环状多肽APS-1,同时进行了氨基酸组分分析[7,8]。平板抑菌试验结果表明,APS-1对9种真菌的孢子萌发有抑制作用。李伟光等筛选出了拮抗菌B. cereus G35,其拮抗物具蛋白性质,部分纯化物对蛋白酶敏感。

还有一些对未鉴定种的芽孢杆菌抗菌蛋白研究与报道。刘晓妹等[9]发现芽孢杆菌B1和B2的培养滤液对豌豆尖镰孢具有抑制作用,在两个菌株的培养滤液中分别检测出一种抗菌蛋白。辛玉成等[10]苹果霉心病的生防菌株枯草芽孢杆菌XM16培养液中分离纯化得到一种抗菌蛋白。芽孢杆菌BS-98和B130菌株的抗菌蛋白对热稳定,对蛋白酶部分敏感。

2.生防菌的主要作用机制

生防菌的生防机制是多种多样的,如产生抗菌素、重寄生、溶菌作用、竞争作用和诱导抗性等。由于大多数据是在试验条件下获得的,而田间条件要复杂的多,所以实际上可能两种或三种机制同时起作用,也可能是在植物不同部位或不同发育时期某一机制在起主要作用,目前已明确的主要有以下4种。

2.1 竞争作用

竞争是微生物间在对生活空间和营养物质的需求发生冲突时发生的。表现为营养物质的竞争、物理位点、生态位点的抢占以及氧气的竞争。拮抗菌在人工导入的情况下,能抢先到达自身能够定殖的部位,从而优先占领了有利的物理学位点和生物学位点,造成对病原菌侵染的物理阻隔或生态排斥应效,使病菌无法接近侵染位点而不能侵染寄主。另一方面,拮抗菌与病原菌间对相同位点的营养争夺(包括有机质和微量元素),是拮抗菌控制病菌繁殖的又一重要方式。如拮抗细菌通过产生嗜铁素(嗜铁素是一种胞外低分子化合物,为一具二烃基配位体的链状六肽,对Fe3+有高度的络合能力)大量结合根际或根围土壤中的Fe3+,使包括病原菌在内的其它微生物因缺铁元素而难以繁殖,从而使寄主免遭病菌侵染。可能的机制有三:①由于其结合了根际有限的Fe3+,限制了病原菌对Fe3+的利用、抑制病原菌生长,寄主免遭病菌浸染;②病原菌自身不能产生嗜铁素或产生的极少,不能与Fe3+结合或结合能

力弱;③病原菌产生的嗜铁素结合的铁可被拮抗菌所利用,而拮抗菌产生的嗜铁素结合的铁不能被病原菌所利用。

2.2 拮抗作用

由于抗生物质的作用而产生的对病原菌的抑制作用叫抗生作用或拮抗作用。自从1945 年Johnson 等报道枯草芽孢杆菌产生拮抗物质以来,人们已从枯草芽孢杆菌的不同菌株中分离出几十种抗菌物质,并弄清了这些抗菌物质是一类从简单分子到复杂化合物即从杆菌肽(bacitracin),大环脂(cycleopetite)(Zimmerman S. B.,1987)到类似噬菌体颗粒(Tagg J. R.,1976)等不同成份组成的物质。此外,其中一部分是低分子量的抗菌素,也有一些蛋白类的抗菌物质(Michael A.,et al,1983)。这些抗生物质在很低浓度下即可对病原菌等其它微生物的生长和代谢活动产生毒害作用,常将这类抗生物质称为抗生素。大致包括以下几类:细菌素(bacteriocin),荧光素(fluorescein/pyoverdines)、酚类物质、多肽类抗生素、蛋白质类抗真菌素及挥发性抑菌物质等其它抗生素。Cubeta 等对Bsl 菌株的抗生试验研究显示,该菌株能对包括青霉菌(Penicillium spp.)在内的26 种大豆种子病菌起杀菌或抑菌作用,即使经高压灭菌后的培养物滤液仍能抑制病菌Phomopsis sp.的生长和子座的形成(Cubeta M. A.,1985)。MackeenC.D.等(1986)、Baker C.J.(1985)等,Pusey P. L.等(1984)用B.subtilis 的不同分离物进行的各类病害防治试验一致表明,产生抗生素是该菌的共同防病机理。已发现 B .subtilis 类抗生体可产生诸如枯草菌素(subtilin)、杆菌毒霉素(toximycin)、伊枯草菌素A(iturinA)、抗霉枯草菌素(mycosubtilin)、酶基肽(acylpeptide)、优霉素(eumycin)、伊枯草菌素C 及枯草杆菌肽(bacitracin)等多肽类抗生素,多肽抗生素26a 和杆菌毒素SLD(bacillomycin S .L. D.)等蛋白类抗真菌素,有的甚至还能产生挥发性的抑菌物质。这些抗菌物质或抑制菌丝生长或抑制孢子萌发或二者兼具,对病菌产生有效的拮抗作用。在已知的50多种抗生素和植物毒素中,绝大多数都是不常见的氨基酸、多肽或含氮(N)杂环化合物等次生代谢产物。

2.3 寄生作用

有的细菌能寄生在植物病原菌体内,从后者吸取营养并最终导致后者衰亡,产生“溶菌”现象。如寄生性蛭弧菌(Bdellovibrios spp.)对菜豆晕萎病细菌(Pseudomonas phaseolicola)的寄生作用。

2.4 诱导植物产生抗病性

非亲和性病原菌或其代谢产物能诱导寄主植物产生抗性,从而避免或减轻植物受亲和性病原菌的侵染。这是利用无毒的病原细菌突变株处理植物以获得植物诱导抗病性的理论依据。诱导抗病性的提出,拓宽了利用细菌防治植物病害的空间,使非亲和性的病原细菌进入了生防细菌之列。国外利用无毒青枯菌突变体处理番茄幼苗和马铃薯块茎表现一定程度的抗病性,研究认为青枯菌细胞壁表层脂多糖中的脂质是引起保卫反应的诱导体。

3.国内外芽孢杆菌在生物防治中的研究进展

3.1国内研究

江苏农科院植保所开发的B-916 菌剂对多种病原真菌和水稻白叶枯病菌都有显著防治效果,对水稻纹枯病田间防效持续10年稳定在50~80%,每年施用面积达百万亩[11]。枯草芽孢杆菌B-3 为南京农业大学分离的小麦纹枯病生防菌,商品名为麦丰宁,田间防效达50~80%,增产10%以上[12]。中国农业大学利用多种有益芽孢杆菌,如蜡质芽孢杆菌、短小芽孢杆菌、枯草芽孢杆菌等,研制的增产菌系列产品具有良好抗菌防病效果,在水稻、小麦、蔬菜和经济作物上的应用面积超过1667.5万hm2,增产幅度在10~20%。我国已经登记的芽孢杆菌类杀菌剂有枯草芽孢杆菌、地衣芽孢杆菌和蜡质芽孢杆菌[13]。苏云金芽孢杆菌(B. thurgienses)在生物防治害虫中应用较广,现已有而防治线虫的B. thurgienses 菌剂登记[14]。

3.2国外研究进展

在美国,枯草芽孢杆菌被用于控制黄瓜和番茄上的瓜果腐霉(Pythium aphanidermatum)和烟草疫霉(Phytophthoranicotianae)。美国已开发了枯草芽孢杆菌不同菌株的生防菌剂,如QST713、GBO3、MBI600 菌株,这些生防菌剂已得到美国环保署(EPA)商品化或有限商品化生产应用许可[15]。其中以QST713 菌株研制的生防菌剂为AgraQuest 公司产品,商品名Serenade。澳大利亚研究开发属的B.subtilisA-13 对麦类和胡萝卜立枯病和土传病害具有很好的防病增产的作用。在德国。解淀粉芽孢杆菌FZB24(B. amplolquefaciens)最初作为植物促长剂被商业化生产,2000 年取得了EPA 的注册,现已被用于控制温室和大田植物的不同真菌病害。生防细菌的协同作用能提高防病效果。

4.结语

芽孢杆菌属是一类重要生防菌,它能分泌多种具有抗菌活性的次级代谢产物,主要包括抗生素、细菌素、抗菌蛋白、水解酶类以及挥发性物质等,具有抗菌能力强,抗菌谱广的特点,并且植物病原菌不易产生耐药性。生防菌株及其抗菌物质与化学药剂或其它多种菌株或其拮抗物质复配,研制新型、高效的生防菌剂,这必将给农业中植物病害的生物防治带来美好的前景。

4.参考文件

[1] Milner J L,Silo-Suh L A.,Lee J C,et al. Production of kanosamine by Bacillus cereus UW85[J]. Applied Environment and Microbiology,1996,62:3061~3065

[2] Zheng G,Slavik M. Isolation,partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain [J]. Lett Appl Bacteriol,1999,28:363~367 [3] Wu S M,Jia S F,Sun D D,et al. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced byBacillus subtilisJM4 [J]. Current Microbiology,2005,51(5):292~296

[4] 何红,蔡学清,关雄,等. 内生菌BS-2 菌株的抗菌蛋白及其防病作用[J]. 植物病理学报,2003,33(4):373~377

[5] 裴炎,李先碧,彭红卫,等. 抗真菌多肤APS-1 的分离纯化与特性[J]. 微生物学报,1999,39(4):344~349

[6] 刘建国,丛威,欧阳藩,等. 新型抗真菌多肤APS 的抑菌性能研究[J]. 中国生物防治,1999,15(3):108~110

[7] 裴炎,李先碧,彭红卫,等. 抗真菌多肽APS-1 的分离纯化与特性[J]. 微生物学报,1999,39(4):344~349

[8] 丛威,欧阳藩,刘建国,等. 新型抗真菌多肽APS 的抑菌性能研究[J]. 中国生物防治,1999,15(3):108~110

[9] 刘晓妹,陈秀蓉,蒲金基. 芽孢杆菌B1、B2 对豌豆尖镰孢菌抗菌机理的研究[J]. 微生物学通报,2004,31(3):1~5

[10] 辛玉成,秦淑莲,金静,等. 苹果霉心病生防菌株抗菌蛋白的提纯与部分性质初报[J]. 莱阳农学院学报,1999,16(1):35~38

[11] 胡剑,赵永岐,王岳五. 枯草杆菌BS-98 分泌的抗真菌蛋白的分离纯化及其部分性质的研究[J]. 微生物学通报,1997,24(1):3~6

[12] 郭坚华,潘登明,任欣正. 抗青枯生防菌拮抗物性质的初步研究[J]. 南京农业大学学报,1994,18(2):59~62

[13] 陈志谊. 拮抗细菌B-916 防治水稻纹枯病作用机制的研究[D]. 南京:南京农业大学,1998

[14] 张学君,凌宏通,李洪连,等. 生物农药麦丰宁B-3 对小麦纹枯病菌的抑制作用[J]. 植物病理学报,1994,24(4):361~366

[15] 杨海莲,孙晓璐,宋夫. 植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J]. 植

物病理学报,2000,30(2):106~110

微生物农药的应用现状和发展前景

微生物农药的应用现状和发展前景 摘要化学农药的使用能够控制病虫害,增加作物的产量,但在土壤、空气和粮食中的残留也带来了环境污染、生态平衡破坏和食品安全等一系列问题。微生物农药是指微生物及其代谢产物,和由它加工而成的、具有杀虫、杀菌、除草、杀鼠或调节植物生长等活性的物质,包括活体微生物农药和农用抗生素两大类。前者主要包括Bt制剂、病毒杀虫剂、真菌杀虫剂和真菌除草剂;后者主要指微生物所产生的一些有活性的次级代谢产物及其化学修饰物。微生物农药由于其广谱、高效、安全、环境相容性好等特点,日益受到重视。本文介绍了微生物农药的种类、特点、应用现状,并在此基础上对其发展前景进行了展望。 关键词微生物农药;应用现状;发展前景 1.传统化学农药和微生物农药的比较 1.1传统化学农药产生的危害 1.1.1对土壤的影响 传统化学农药施用以后,一部分残留在农作物表面,一部分直接进入土壤,被土壤颗粒吸附。大气中的残留农药和农作物上的农药经雨水淋洗进入土壤,直接或间接与土壤接触,杀灭土壤中的微生物,影响土壤的腐熟和透气性,破坏土壤结构和土壤肥力,影响作物生长发育。 1.1.2破坏生态平衡 在杀灭害虫的同时,也杀灭了害虫的天敌,破坏了生态平衡,导致害虫种群急剧上升。有些次要的害虫,由于天敌数量急剧减少,很快发展为主要害虫。 1.1.3产生抗药性 针对一种害虫长期使用同种农药,往往会使其产生抗药性,从而导致农药浓度及用药频率增加,使农药残留更高。 1.1.4威胁食品安全和人体健康 化学农药在蔬菜水果上的残留会对食品安全造成巨大的威胁。农药通过饮食或食物链间接进入人体造成急性或慢性中毒,甚至致癌,危害人体健康。 1.2微生物农药的优点 与传统化学农药相比,微生物农药具有以下优点:(1)对病虫害的防治效果良好。病原

生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民

2011.01B 总第206期生物农药的发展 在全球范围内,由于农业病虫害所造成的农产品损失每年达到15%~25%.大规模地使用化学农药是当前控制害虫的主要策略。这一措施虽然对于稳定农业产量具有一定的积极作用,但是,由于化学农药的杀虫谱广,田间残效期较长,容易诱发害虫对其产生抗药性,特别是化学农药对农产品和环境的污染,导致妇女流产、婴儿畸变以及诱发人类癌症等各种疾病。因此,使用生物农药防治害虫越来越受到人们的重视。 1.生物农药发展概况 随着人类环境保护意识的增强,高效低毒的生物农药已成为当今农药的发展方向。生物农药是指非人工合成,具有杀虫、杀菌或抗病、除草能力的,并可以制成具有农药功效和商品价值的生物制剂,包括微生物源农药(细菌、病毒、真菌及其次生代谢产物)、植物源农药、动物源农药和抗病虫草害的转基因植物等。相对于常规的化学农药而言,生物农药具有作用方式独特,防治对象专一,对天敌等有益生物安全,用量小,降解快,对人、畜、环境风险性低,适用于病、虫、草害综合防治等特点。1992年,世界环境与发展大会曾明确指出,到2000年要在全球范围内控制化学农药的销售和使用,生物农药的用量达到60%,然而,目前生物农药在全球农药销售总量中仅占2%的市场份额,与预期目标相差甚远。因此,大力发展生物农药已经成为世界各国共同面临的重大任务。我国有关部门提出到2015年,要求生物农药的使用占农药总量的30%~50%,按此比例计算,当前我国农药耗用量每年达120万t,年需生物农药量至少在60万t以上。至2002年底,包括转基因棉花,我国生物农药年产量仅占到农药总产量的10%左右,推广应用面积占到农药总应用面积的12%左右。可见发展生物农药已经成为我国急待解决的重大问题之一。目前,我国正式注册的农药生产企业近2000家,品种约250种,年产量近40万t,总产量仅次于美国。其中,化学农药占农药总量的90%以上,生物农药所占比例不足10%,我国农药品种结构老化,高毒品种仍在继续使用,集中表现为“3个70%”,即杀虫剂约占农药总产量的70%,有机磷农药约占杀虫剂的70%,几个高毒老品种,如,甲胺磷、甲基对硫磷、敌敌畏等约占有机磷农药的70%,这种现状已不能适应现代农业生产发展和环境保护的要求。 生物农药在我国发展有两个高潮,即20世纪60年代-70年代和20世纪90年代以后。在前一个高潮阶段由于当时生物技术水平相对较低,满足不了生物农药对工艺、贮藏和运输要求的条件,除井冈霉素外,未形成有影响的产品。进入20世纪90年代以后,由于生物技术尤其是微生物技术的进步,为生物农药的开发提供了便利,形成了第二个高潮。据《农药登记公告》统计,我国已商品化的生物农药产品主要有以下几类:苏云金杆菌、核型多角体病毒、阿维菌素和农用抗生素等。 不同种类的生物农药各有特点,病毒类生物农药由于病毒无法离体培养,生产中需要大量养殖昆虫,从而使大规模生产受到限制;真菌类生物农药,由于大量培养抗逆孢子技术没有突破,致使产品的保存期和稳定性达不到农药登记的要求,造成规模化生产存在一定的难度;植物源农药由于需要种植大量植物,工业规模化生产受到土地、植被和生态保护等限制;动物源农药主要是被开发成仿生合成农药,直接开发成生物农药难度很大;转基因植物,由于安全性评价问题也影响其推广应用。以苏云金杆菌为代表的细菌类杀虫剂,由于 山西省芮城县生物农药厂刘保民 与 苏云金杆菌杀虫剂研究现状 27 AGRICULTURAL TECHNOLOGY&EQUIPMENT

花卉常用生物农药的种类

花卉常用生物农药的种类 生物农药一般是指用生物活体防治病虫害的药剂,具有无残留、无公害、不污染环境的特点,能专一作用于有关的病害、有害生物种类。目前国内外公认应用最多的有细菌性、抗生素类、昆虫激素类、昆虫病原线虫类及昆虫病毒类。 防治花卉食叶害虫 一、昆虫生长调节剂。灭幼脲系列杀虫剂是新的昆虫生长调节剂,它的杀虫作用机理是抑制昆虫表皮的几丁质合成。灭幼脲类主要是胃毒剂,但也能侵入昆虫表皮发生作用。该产品具有防治效果好,残效期长,防治成本低,耐雨水冲淋,害虫不易产生抗药性,对花卉植株、人畜及环境安全等优点。 二、是细菌性农药——Bt乳剂。Bt乳剂是苏云金杆菌微生物农药类,属于芽孢杆菌细菌性杀虫剂。其主要杀虫成分是半孢晶体。该药现已成为世界各国广为应用的主要生物杀虫剂。Bt乳剂的致病机理是Bt杀虫毒素使害虫的消化道发生病变而死亡。食叶害虫吃了带Bt乳剂的叶片后,引起瘫痪、停食、反应迟钝、腹泻,尔后腹部出现黑环,并逐渐扩大到全身,最终中毒致死。害虫死后变为黑色软体,腐烂、倒挂或死在树叶和枝条上。Bt菌剂对多种鳞翅目幼虫和叶蝉有致病和毒杀作用,如食心虫、黄刺蛾、尺蠖蛾等,主要用于防治鳞翅目害虫的幼虫。 三、植物性农药,主要包括以下四种。 1%烟·百·素油:多元中草药植物乳油杀虫剂,对易产生抗性的昆虫也可迅速杀死,具有降解好、无残毒、使用安全、无公害、无污染等特性,对花卉有刺激生长的作用。 百草一号(0.6%苦参碱·内酯水剂):由牛心朴子、苦豆草等多种植物及中草药粉碎、溶解、添加助剂和渗透剂配置加工而成。作用机理是以触杀为主,胃毒为辅,对花卉生长有促进作用,可用于防治花卉各类蚜虫及食叶害虫。 百虫杀(1.2%烟·参碱乳油):属于植物性农药,有效成分是烟碱和苦参碱,对昆虫有胃毒、触杀和熏蒸作用。对人畜低毒,对环境无污染、花卉无药害。 蔬果净(0.5%楝素乳油):属于植物性农药。该药高效、安全、低毒、低残留、花卉不会发生药害。同时具有胃毒、触杀和一定的拒食作用。 防治花卉刺吸式害虫一、真菌性农药,主要有灭蚜菌。

生物农药的种类及使用

生物农药的种类及使用 目前国内生物农药的年产量为12万吨,防治面积达2670万公顷,约占农药市场份额的5%。生物农药有效成分登记超过90种,登记产品约3000个,其中抗生素产品约占登记产品总数的70%。生物农药产品约占我国登记农药总数的11%~13%。 一、生物农药的种类 1.微生物农药品种

3.植物源农药品种

4.抗生素类农药品种

5.天敌生物类农药品种 赤眼蜂和平腹小蜂产品在我国已登记并商品化,登记产品4种,主要是杀虫卵卡、杀虫卵袋。主要天敌产品有:赤眼蜂、平腹小蜂等。 二、生物农药如何使用? 1.微生物农药 掌握温度微生物农药的活性与温度直接相关,使用环境的适宜温度应当在15℃以上,30℃以下。低于适宜温度,所喷施的生物农药,在害虫体内的繁殖速度缓慢,而且也难以发挥作用,导致产品药效不好。通常,微生物农药在20~30℃条件下防治效果比在10~15℃间高出1~2倍。

把握湿度微生物农药的活性与湿度密切相关。农田环境湿度越大,药效越明显,粉状微生物农药更是如此。最好在早晚露水未干时施药,使微生物快速繁殖,起到更好的防治效果。 避免强光紫外线对微生物农药有致命的杀伤作用,在阳光直射30和60min,微生物死亡率可达到50%和80%以上。最好选择阴天或傍晚施药。 避免雨水冲刷喷施后遇到小雨,有利于微生物农药中活性组织的繁殖,不会影响药效。但暴雨会将农作物上喷施的药液冲刷掉,影响防治效果。要根据当地天气预报,适时施药,避开大雨和暴雨,以确保杀虫效果。 另外,病毒类微生物农药专一性强,一般只对一种害虫起作用,对其他害虫完全没有作用,如小菜蛾颗粒体病毒只能用于防治小菜蛾。使用前要先调查田间虫害发生情况,根据虫害发生情况合理安排防治时期,适时用药。 2.植物源农药 预防为主发现病虫害及时用药,不要等病虫害大发生时才防治。植物源农药药效一般比化学农药慢,用药后病虫害不会立即见效,施药时间应较化学农药提前2~3天,而且一般用后2~3天才能观察到其防效。 与其他手段配合使用病虫害危害严重时,应当首先使用化学农药尽快降低病虫害的数量、控制蔓延趋势,再配合使用植物源农药,实行综合治理。 避免雨天施药植物源农药不耐雨水冲刷,施药后,遇雨应当补施。 3.生物化学农药 生物化学农药是通过调节或干扰植物(或害虫)的行为,达到施药目的。

生物农药考试题库

一、名词解释 1、生物农药 2、重寄生 3、植物源农药 4、半数致死浓度(LC50) 5、可持续农业 6、农用抗生素 7、农药剂型 8、半数致死剂量(LD50) 9、可持续农业10、激活蛋白11、植物过敏蛋白12、隐地蛋白13、病毒卫星RNA 二、填空 1.生物农药的种类按来源分,包括、和。 2.真正可以开发为杀虫剂的病毒主要集中在、、和等科,尤其是最具发展和应用潜力。 3. 枯草芽孢杆菌作为细菌杀菌剂应用,其作用机制主要有、、和三个方面。 4. 农用抗生素按照作用机理大致可以分为4类,分别是____________、___________、和。 5. 井冈霉素是由产生的多组分的抗生素,其主要成分井冈霉素A分子中包含了结构和一个。 6. 毒素类植物杀虫剂有、等(至少写出2个),拒食类植物杀虫剂有、等(至少写出2个)。 7. 昆虫病原线虫已知种类数在3000种以上,分属31科,比较集中于 和。 8. 我国农药登记分为、和三类。9.双丙氨膦为一种经发酵而产生的代谢产物,其有效杀

草成分为具有结构的抗生素物质。 10. 阿维菌素是阿维链霉菌产生的一种类化合物,具有杀虫、杀螨和杀线虫活性。 11.由于大量不科学地施用合成化学农药,造成的国外称之为“3R”的现象分别为:、、(写出英文或中文)。 12. 常见的微生态制剂按照微生物菌种的类别包括、、和。 13. 捕食性真菌杀线虫剂通常具有各种简单或复杂而精巧的捕食器官,包括、、、、 和。 14. 木霉是非常优良的植病生防剂,其中和已经被国内外很多厂商开发应用,其主要防病作用方式包括、和。 15. 昆虫病原真菌的致病过程一般分为、、 、和5个阶段。 三、简答题 1、简述与化学农药相比,生物农药在农业上应用的优点? 2、简述生物农药创制的一般过程? 3、简述鱼藤酮的杀虫作用机制? 4、简述井冈霉素的杀菌作用机制?

生物农药研究进展

生物农药研究进展

生物农药研究进展 由于控制全球化合物生物积聚的呼吁越来越强烈、新化学农药开发耗资巨大和周期延长、农业害虫对化学农药抗药性日益增强,以及生物技术飞速发展带来的冲击,当今农药研究、开发和生产应用等正面临选择方向挑战,生物农药以其独特的优势迎来了新的发展机遇。 1 生物农药的发展 在农药的发展历史中,生物农药是最古老的一类。《周礼·秋官》就有“莽草熏之”“焚牡菊,以灰洒之”等防治害虫的记述;古罗马也有使用藜芦防治忍鼠类和昆虫的民间传说。19世纪以来,开发应用生物成分防治有害物逐渐从以经验上升到科学试验阶段,如除虫菊、鱼藤和烟草的应用。20世纪早期,微生物学的发展,特别是苏云金杆菌(Bacillus thuringiensis,以下简称Bt)的发现促进了微生物农药的开发。20世纪30年代以来,几类植物内源激素先后被发现和利用,20世纪40年代后,由于有机合成化学农药的发展,使生物成分农药的研究开发被相对忽视而发展缓慢,这段时期基于B.popillae、Bt的产品在美国上市.20世纪60年代,化学农药的弊端暴露出来,生物农药的研究又受到重视.在最近的几十年中,生物农药得到了长足发展,如农用抗生素、活体微生物农药等[15,30]。20世纪末,植物农药(或转基因植物农药)等的出现,极大丰富了生物农药的内容。 2生物农药的内涵 不同学者、不同机构、组织对生物农药的内涵意见不同。过去,生物农药就是指“微生物农药”。后来,其概念发展为“相对于化学农药而言的天然资源的生理活性物质,用于农药的有微生物、植物(除)虫菊”、菸碱等)、昆虫(性引诱剂、变态激素等)”[11]。FAO(中文名称)(1988)将其定义为生物害物控制剂(Biological pest control agents),包括生物化学农药和微生物农药,将传统的鱼藤酮、烟碱等具有直接毒性的物质排除在生物农药之外。《中国农业百科全书———农药类》中生物农药(biogenic pesticides)是指利用生物资源开发的农药;狭义概念,指直接利用生物产生的天然活性物质或生物活体作为农药;广义概念,还包括按天然物质的化学结构或类似衍生结构人工合成的农药。 随着科技的发展,生物农药的内涵发生了巨大变化,英国作物保护委员会根据来源将生物农药分为五类,来自微生物、植物、动物的相关基因也包括在内。美国环保署农药部(EPA)将生物农药(Bio-pesticides)分为三大类,其中一类为植物农药(Plant-pesticides)或转基因植物农药———将基因植入植物体内的农药,使得生物农药的概念进一步地得到延伸。2001年农业部参考FAO和EPA的定义界定了生物农药的内涵,加强了我国生物农药的管理工作。 在这些定义中,完全仿生物合成的化合物、人工合成与天然产物相同的化合物、人工合成的衍生物(如烯虫酯、米满等)、转基因植物,以及鱼藤酮、烟碱等具有直接毒性的天然产物农药的归属存在分歧。 笔者认为,张兴等(2002)对生物农药内涵的界定较为科学。生物农药是可以

常用生物农药介绍

常用生物农药介绍! 1.5%多抗霉素可湿性粉剂:属抗生素类杀菌剂,具较好的内吸性。防治苹果霉心病、轮纹病、炭疽病,用300-500倍液,在花期至膨果期前连喷2次;防治斑点落叶病,在落花后7-10天开始喷施,春梢期喷施2次,秋梢期喷1次,若能与波尔多液交替使用,效果更好。 4%农抗120水剂:属广谱抗菌素,对病害有预防和治疗作用。防治苹果树腐烂病,用20倍液涂抹刮除病斑后的病疤,治疗效果可达80%以上;防治白粉病,在发病初期,用有效浓度100毫克/升药液进行喷雾,过15-20天再喷1次,如果病情严重,可缩短喷药时间的间隔期。 B.T杀虫剂:常用细菌农药,以胃毒作用为主,对鳞翅目害虫防治效果可达80%-90%。防治桃小食心虫于卵果率达1%时,喷施B.T可湿性粉剂500-1000倍液;防治刺蛾、尺蠖、天幕毛虫等鳞翅目害虫,在低龄幼虫期喷洒1000倍液。 1.8%齐螨素乳油:属抗生素类杀螨杀虫剂,对害螨和害虫有触杀和胃毒作用,不能杀卵。防治红蜘蛛于落花后7-10天两种害螨集中发生期喷洒5000倍液,持效期30天左右。对二斑叶螨、黄蚜、金纹细蛾也有较好的防效。

25%灭幼脲悬浮剂:属生物化学类农药,以胃毒作用为主,兼触杀作用,持效期15-20天。对鳞翅目害虫有特效,杀卵和幼虫,还能使成虫产生不育作用,生产上主要用于防治金纹细蛾,防治适期为成虫羽化盛期,使用浓度为2000倍液。该药尤其是对那些已经对有机磷、拟除虫菊酯等类杀虫剂产生抗性的害虫,有良好防治效果。 20%杀蛉脲悬浮剂:属昆虫生长抑制剂,与25%灭幼脲相比,杀卵、虫效果更好,持效期长。防治金纹细蛾使用浓度为8000倍液;防治桃小食心虫,在成虫产卵初期、幼虫蛀果前喷6000-8000倍液。 杀蛉脲悬浮剂:属昆虫生长抑制剂,对鳞翅目害虫的卵、幼虫防治效果明显。防治金纹细蛾在其幼虫发生期使用2000倍液;防治桃小食心虫,在成虫产卵盛期、幼虫蛀果前喷洒1000-1500倍液。 鱼藤酮:属植物源杀虫剂,具触杀、胃毒、生长发育抑制和拒食作用。在蚜虫发生盛期初始,用2.5%鱼藤酮乳油750倍液喷雾。施药后的安全间隔期为3天。 25%杀虫双水剂:属于神经毒剂,具有较强触杀和胃毒作用,并兼有一定的熏蒸作用。防治叶螨,在若螨和成螨盛发期喷洒800倍液,可兼治苹果全爪螨、梨星毛虫、卷叶蛾等。用杀虫双水剂喷雾时,可加入0.1%的洗衣粉,能增加药液的展着性。

生物农药的介绍及使用技术(培训)

生物农药的介绍及使用技术 目录 1、生物农药的内容简介 2、生物农药的出现和发展 3、生物农药的4大优点 4、生物农药的5大优势 5、生物农药四大类型 6、转基因生物农药 7、生物农药的使用技术 8、使用生物农药要注意四大气候因素 1、生物农药的内容简介 生物农药是指利用生物活体或其代谢产物对、、、线虫、鼠类等有害生物进行防治的一类,或者是通过仿生合成具有特异作用的制剂。关于生物农药的范畴,目前国内外尚无十分准确统一的界定。按照的标准,生物农药一般是天然或遗传基因修饰剂,主要包括生物化学农药(信息素、激素、昆虫生长调节剂)和(真菌、细菌、、原生动物,或经遗传改造的微生物)两个部分,农用抗生素不包括在内。我国生物农药按照其成分和来源可分为微生物活体农药、微生物代谢产物农药、植物源农药、四个部分。按照防治对象可分为、、除草剂、、、等。就其利用对象而言,生物农药一般分为直接利用生物活体和利用源于生物的两大类,前者包括细菌、真菌、线虫、及拮抗微生物等,后者包括农用抗生素、性信息素、摄食抑制剂、保幼激素和源于植物的生理活性物质等。但是,在我国农业生产实际应用中,生物农药一般主要泛指可以进行大规模工业化生产的微生物源农药。

2、生物农药的出现和发展 我国是最早应用杀虫剂、杀菌剂防治植物病虫害的之一,早在1800年前就已应用了汞剂、砷剂和藜芦等。直到20世纪40年代初,和无机农药仍是防治病害虫的有利武器。20世纪40年代发明农药之后,极大地增强了人类控制病虫危害的能力,为我们挽回产量损失作出了重大的贡献。但是,长期依赖和大量使用有机合成化学农药,已经带来了众所周知的、生态平衡破坏和食品安全等一系列问题,对推动农业经济实现持续发展带来许多不利的影响。 生物农药的出现和发展是和研究的发展及化学农药的使用分不开的,经历了曲折的过程。agostino bassi于1853年首次报道由引起的家蚕传染性”白僵病”,证实了该寄生菌在家蚕幼虫体内能生长发育,采用接种及接触或污染饲料的方法可传播发病;的梅契尼可夫于1879年应用防治小麦幼虫;1901年石渡从家蚕中分离出一种致病芽孢杆菌--苏云金芽孢杆菌;1926年g.b.fanford使用拮抗体防治。这些都是生物农药早期的研究基础,当时并未形成产品。化学农药发展到20世纪60年代,“农药公害”问题日趋严重,在国际上引起了震动,使农药发展发生了转折,引出了生物农药。1972年,我国规定了新农药的发展方向:发展低毒高效的化学农药,逐步发展生物农药。70~80年代,我国生物农药的发展呈现出蓬勃发展的景象。但是,由于化学农药高效快速,人们仍寄希望于化学农药防治病虫害,对生物农药的研制和应用曾一度漠视忽略。进入20世纪90年代,随着科学技术不断发展进步,减少使用化学农药,保护人类生存环境的呼声日益高涨,研究开发利用生物农药防治,发展成为国内外植物保护科学工作者的重要研究课题之一。生物农药具有安全、有效、无污染等特点,与保护生态环境和社会协调发展的要求相吻合。因此,近年来我国生物农药的研究开发也开始呈现出新的局面,目前,已发展成为具有几十个品种、几百个生产厂家的队伍。生物农药在病虫害综合防治中的地位和作用显得愈来愈重要。 3、生物农药的4大优点 概况 生物农药与化学农药相比,其有效成分来源,工业化生产途径,产品的杀虫

生物农药的分类

生物农药的分类 农化新世纪编辑视点 译者按:近年见到一些文章,内容涉及生物农药与化学农药的界定,观点不一. 窃以为国际上已取得的共识,应该作为我们的供鉴. 故将手头一本联合国亚太地区经济和社会委员会编印书籍有关内容节译出供参阅. 其内容略显陈旧,但基本概念 不会大变. 生物农药是天然存在的或者经过基因修饰的药剂, 它们与常规农药的区别在于独特的作用方式, 低使用剂 它们可以区分为两个主要类量和靶标种类的专一性. 别:生物化学农药,如激素和生长调节剂;微生物农药, 如细菌制剂,病毒制剂和真菌制剂. 1 生物化学农药 生物化学农药必须符合下面两个标准, 也必须符合这类化合物的性能要求. 其一, 该类杀虫剂品种必须显示出与对靶标生物直接毒杀不同的作用方式(如 生长调节,觅偶干扰). 植物源杀虫剂和烟碱和除虫菊素能毒杀靶标生物, 所以不被 认为属于生物化学农药. 其二, 生物化学农药必须是天然存在的, 或者如果它是由人工合成,则在化学结 构上必须与天然存在的化合物完全相同.这里的"完全相同", 意指合成化合物成分的分子结构必须与天然存在的模式化合物分子结构 样. 有时出现不能确定的情况.例如, 假使该天然存在化合物的确切分子结构是未知的, 或者假使其对靶标生物与非靶标生物的作用方式是不同的, 某个国家的管理

机构应该根据各种情况规定 , 或者将这样的化合物归类 为常规农药 . 生物化学农药按照一般生物学机制分为四类 . 1,1 行为.包括外激素 (pheromones), 异源外激素 (allomones) 和种问外激素 (kairomones). 外激素是一种群中个体释放的化学物质 , 它能改变 同一种群中其他个体的行为 . 甚至在非常低的浓度下 , 这些化学信息素导致聚集 , 帮助觅偶, 形成报警信号或 者 引导至食物源 . 最常见的外激素是由雌虫腹腺分泌的 诱素诱使雄虫前来交配 ; 还有 聚集外激素 , 它由一个昆 虫种群中一种性别或两种性别昆虫所产生 , 它能促使两 种 性别昆虫聚集在一起进行取食或繁殖 . 性外激素在蛾 类和蝶类中常见 ,聚集外激素 则在甲虫类中常见 . 异源外激素是由一种昆虫释放的化学物质 , 它能改 变另种昆虫 的行为而对释放外激素的昆虫有利 . 多种植 物产生的次生物质能驱避昆虫和阻止它 们取食, 这些物 圃 质也被归类为异源外激素 . 人们长期以来利用香茅 (Citronellagrass) 油作为 一种昆虫驱避剂涂抹在皮肤 上. 种问外激素是由一种动物释放的化学物质 , 它能改 变另种动物个体的行为 , 对 释放外激素的动物无益 , 而 对受纳物种有利 . 例如, 动物寄生昆虫可以由它导向找 到寄主. 种问外激素与外激素一样 , 能用以把昆虫引至 诱阱以达到虫情测报或 捕获 它们的目的 . 1,2 激素 激素是生物化学物质 , 其在生物体的一个部位被合 成并输导到另一部位 , 在那 里它们具有控制 ,调节或改 变行为的效能 . 昆虫激素可区分为以下两个主要类别 . 其一,蜕皮激素(moltinghormones 或 ecdystetoids). 它们是由昆虫体内一组化学结构上彼此十分相近的水 溶性甾族化合物所组成 , 在植物体内也找到其中几种活 性类似物.到本文为止 ,无论用天然的蜕皮激素或者 用 植物中产生的蜕皮激素类似物 , 通过饲喂或局部施药 , 都不能有效地防治昆虫 . 另外, 因为它们的合成十分昂 贵,蜕皮激素的商品化产品仍然处于研究阶段 . 其二, 保幼激为生物化学农药 , 或者归类 化学信息素 这是植物或动物释放的化合物 , 它们能改变相同种 类或不同种类受纳生物体的

生物农药综述模板

生物农药工业研究综述

摘要生物农药的研究与利用在农业病虫害防控体系中占有重要地位,进入21世纪后,更备受世界各国关注。随着绿色植保战略的推进与实施,生物农药研发成为我国生物产业、农业科研与应用的热点,被列为国家中长期科技发展规划的重大研究领域与方向。本文介绍了生物农药产业的背景、发展,生物农药特征产物苏云金芽孢杆菌的生产工艺及生产条件优化,以及生物农药产业的展望。 关键词:生物农药,苏云金芽孢杆菌,生产工艺,研究进展 1 生物农药产业研究背景与进展 1.1生物农药的研究背景 1.1.1 当前人类社会发展面临的生态环境和食品安全等问题 二十一世纪人类面临诸多困境—人口、食物、环境、资源,其中作为人类赖以生存的环境是所有困境中的困境,而造成这一困境的最重要、最直接的根源是化学污染。化学污染最重要、最直接的根源是农药、化肥的不断追加和非理性施用,给生态环境造成的污染和破坏与日俱增(谢联辉,2003)。今天人类不得不自我反省,重新认识人与自然的关系、人类生存与发展的问题。 1.1.2化学农药开发的难度不断加大 随着发展中国家经济、技术水平的进步和社会对环境保护的日益重视,除少量化学杀菌剂和除草剂还有较大发展空间外,化学杀虫剂的全球用量将逐步下降。随着人类对环境的要求越来越高,各国政府对新化学农投放的管理的要求也越来越严格,使化学农药开发的难度越来越大,开发费用越来越昂贵,成功率越来越低。 与此相比,生物农药的开发费用相对要低得多。生物农药源于自然,一般而言,其与环境相容性高,对人畜比较安全,再加之微生物来源更广,人们对生物农药的开发热情越来越高。 1.1.3生物农药产业发展研究较为薄弱,有待加强 生物农药研究应用于农业生产已有半个多世纪的历史,但由于种种原因,发展一直较为缓慢。 生物农药产业发展研究是一项战略性、综合性、前沿性的研究。研究的内容既涉及农药学、生物技术学、植保学、农业生态学、化学、农产品质量安全等自然科学问题,又与产业经济学、政府经济学、环境资源经济学、战略学、农业推广学、伦理学等宏观经济、社会科学相关联。 1.2生物农药产业国内外研究进展 从国外情况看,世界生物农药公司多为中、小型公司。极少跨国植保公司拥有一专门从事生物农药生产经营的分公司(或分部)。尽管许多跨国植保公司对生物农药感兴趣,但许多公司对生物农药研发的投放亦远逊于化学农药的投入。 从国内情况看,研究者侧重于生物农药的资源发现、基础性科学研究、不仅对生物农药的产业化研究较少,对产业化发展研究也仅从定性角度,泛泛谈一些宏观方面如体制、投放、市场等问题,深入进行定量研究、系统研究的较少。有关生物农药的资源发现、微生物源的新菌株选择、作用机制、活性分析、毒力评价、分子生物学等基础性研究文章较多,但从产业政策、市场体系、社会层面、法律法规等宏观层面及企业的产品开发、资本运作、市场运作、队伍建设等微观层面为研究对象的文献较少。 生物农药的发展远远落后于社会发展与环境保护的要求,生物农药产业发展有待加强。2生物农药的概念及种类

常见生物农药

常见生物农药 与化学农药相比AA级绿色水果。生物农药品种很多 Bt乳剂是常用的细菌生物农药20多种蔬菜、茶、果、烟等植物的鳞翅目害虫防治效果为80~90% 玉米螟、棉铃虫、粘虫、稻纵卷叶螟、茶毛虫等。Bt乳剂是一种胃毒剂 败血症死亡。使用时应掌握气温在15℃以上20℃为适宜 施用时间应比施用化学农药提前2~3天为宜。 青虫菌和杀螟杆菌菜青虫吃了粘有青虫菌的菜叶 虫等害虫。 白僵菌是真菌生物农药 井冈霉素防治水稻纹枯病有特效。抑制水稻纹枯病病菌菌丝15-20天 农用抗菌素和植物抗菌素这两类农药是真菌生物农药。在生产上应用的抗菌素有春雷霉素、庆丰霉素、多抗霉素、土霉素、灰黄霉素、放线菌酮链霉素等。如农抗120是一种新型的农用抗生素 的防治效果。 鱼藤酮又名施绿宝。以触杀和胃毒作用为主 对鳞翅目、半翅目、鞘翅目等多种果 2.5% 鱼藤酮乳油400600倍液喷施。 阿维菌素又名齐螨素、爱福丁、害极灭、农家乐、除虫菌素、齐墩菌素、阿巴丁、隆维康等。 1.84500 5000倍液喷施。 饥饿而死亡。用以防治梨小食心虫、苹果卷叶蛾、葡萄小卷叶蛾、松毛虫、美国白蛾等。 武大绿洲1 速复制导致幼虫染病死亡。可用于防治果树鳞翅目害虫、梨食心虫等。如防治梨食心虫等钻 般用1.1100071023次。 300倍液喷施72次。 2—施壮600 800 侵入、并使糖度提高作用。一般用1.5糖果乐水剂6007天一次

421 树黑星病等。一般用221水剂600倍液喷施。 阿米西达杀菌机理为用于防治梨黑星病、黑斑病、轮纹病、桃褐腐病、核桃黑星病、葡萄霜 25500800倍液喷雾。多氧清又名宝丽安、多克菌、多氧霉素、多效霉素、保利霉素、科生霉素、兴农606等。是一种广谱性核苷类农用抗生素。可用以防治梨黑斑病、轮纹病、葡萄黑痘病、灰霉病、白粉 用3600900712次。 克菌康又名中生霉素。对农作物细菌性病害和部分真菌性病害有很高的活性。可用于防治葡 在发病初期用31000-120034次。 根复特又名根腐110 栽期用2.5800600300毫升灌根。抑制病菌细胞

微生物降解农药

微生物降解农药 现今农业发展过程中应用最普遍,种类最多的农药是有机磷农药,虽然原有的降解有机磷农药的化学、物理方法亦收到良好效果,但随着生物技术的卓越发展,微生物对降解农药尤其是有机磷农药发挥着日益重大的作用。针对有机磷农药的微生物降解问题提出看法,希望促进农业的现代化发展。 当前,我们主要是从被污染的环境介质(例如:被污染的泥土、土壤)中来获取高效降解菌。现在人们已经分离出的对有机磷农药降解有良好效果的微生物菌群主要有真菌、细菌、放线菌及一些藻类。 真菌基于其较高的降解能力,人们十分关注,主要有:木霉属、曲霉属、酵母菌及青霉属等。颜世雷等有关人员经过长时间的摇床驯化培养从被污染的土壤里筛选得到2株曲霉菌株,其能够在高浓度氧化乐果环境下生长。当温度高达28℃时,其降解氧化乐果的比率高达70.38%及61.28%。 因为细菌具有容易引发突变菌株和生化多适应性的优点,故在微生物降解过程中它具有极高的地位。目前已经分离出的细菌有:芽

孢杆菌属、假单胞菌属、黄杆菌属、节杆菌属、不动杆菌属、沙雷氏菌属等。例如:以解秀平为代表的有关人员从污水曝气池里分离出一株可以以甲基对硫磷以及其在降解过程中产生的对硝基苯酚是仅有 的碳源的节杆菌属,其在5h内降解50mg/L的甲基对硫磷以及对硝基苯酚的比率达到85%与98%。而以金彬明为代表的有关人员主要是从受有机磷污浊后的海水样中筛选、分离出一株蜡样芽孢杆菌菌株,其在温度高达28摄氏度的情况下降解甲胺磷的比率高达48.9%。 微生物本身的降解能力是限制有机磷农药微生物降解的因素 中最重要的因素,不同种类的微生物,其代谢活动各具特色,适应性也千差万别,而且同类型的不同菌株对相同的有机底物的反应也各不相同。加之,微生物具有较强的适应环境的能力,很容易驯化,经过一阶段的适应新生化合物可以促使微生物产生与之对应的酶系降解它,且还可以借助于基因突变来构建新酶系降解它。传统主要是采用单一的微生物菌株的纯培养来降解农药的微生物,但是这一方式不如混合培养合理,前者一般情况下没有生物降解需要的整个酶的遗传合成信息,其在降解难度较高的化合物中没有充足的训话时间,继而无法进化出整个代谢途径,相反,后者则更能抵御微生物降解时产生的毒物质。

微生物降解农药

摘要:综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物 降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污 染的环境是消除农药污染的一个有效方法。关键词:微生物生物降解农药降解农药 20世纪60年代出现的第一次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起 到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学

农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的工程措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、

生物农药的现状和发展趋势

生物农药的现状和发展趋势摘要生物农药的研究与开发对于满足我国无公害农产品、绿色食品和有机食品生产中病虫害防治的需要, 缓解农药残留带来的环境污染具有重要的意义, 已成为我国科技界、产业界研究的热点之一。本文阐述了我国生物农药的发展现状, 探讨了生物农药研究与应用过程中存在的主要问题,从技术和产业的角度展望了生物农药的发展趋势。 关键词(生物农药)(现状)(发展趋势) 生物农药是具有农药特性的用来防治病、虫、草等有害生物的生物活体及其产生的生理活性物质和转基因产物。与传统的化学农药相比,生物农药具有对人畜和非靶标生物安全,环境兼容性好,不易产生抗性,易于保护生物多样性,来源广泛等优点。因此,高效生物农药的开发应用对人类健康、环境保护和农业的可持续发展都有极其重要的意义[ 1]。 1我国生物农药的现状分析 1. 1 发展现状 我国生物农药的研究始于20世纪50年代初,在国家主管部门的扶持下,已逐步形成了具有良好试验条件的科研院所、高校、国家及部级重点实验室,以及其他具备一定工作条件的研究单位。在生物农药的资源筛选评价、遗传工程、发酵工程、产后加工和工程化示范验证方面已经自成体系,拥有大约400家生物农药生产企业[1]。近10年来,我国在生物农药研究的关键技术与产品开发方面已取得了一批重大成果,苏云金杆菌杀虫剂、农用抗生素、棉铃虫NPV、杀虫真菌剂等技术产品已经达到或部分超过国外同类先进水平,不但满足国内市场需求变化,而且走出国门,进入亚洲和欧美市场。 1. 2 生物农药开发与应用过程中存在的问题 近年,生物农药的开发与应用取得了可喜的研究进展,新品种不断涌现,市场份额逐年增加,应用面积持续扩大。然而,在生物农药开发与应用过程中仍存在诸多问题,这些问题严重制约着生物农药的健康发展,亟待解决。 我国生物农药发展存在的突出困难和问题主要是:仿制国外产品多,原创性拳头产品少;研究开发与生产脱节,重学术水平,轻技术创新;生产工艺落后,产品质量稳定性差;产品的产业化,市场化及应用推广难度大;缺乏有效的风险投资意识等 [ 2] 。由于目前我国生物农药品种有50余种,其发展历史长短各异,研究深度也不一致,各个产品面临的技术瓶颈也不尽相同。 2生物农药的发展趋势 2. 1 主要发展趋势

生物农药的使用禁忌

生物农药使用的五大禁忌 据调查,在我国生物农药主要应用于经济作物区和有机绿色种植项目,大田粮食作物很少有农户选择。生物农药又称天然农药,系指非化学合成,来自天然的化学物质或生命体,而具有杀菌农药和杀虫农药的作用。近些年随着绿色有机农业的发展扩大,使得生物农药的需求逐渐上扬。有关专家预测:在未来数年内,化学农药的预估市场成长率约为2%,而生物农药则为10%到15%。 生物农药是利用生物活体或其代谢产物对害虫、病菌、杂草、线虫、鼠类等有害生物进行防治的一类农药制剂,或者是通过仿生合成具有特异作用的农药制剂。 我国生物农药按照其成分和来源可分为微生物活体农药、微生物代谢产物农药、植物源农药、动物源农药四个部分。同化学农药一样,按照防治对象生物农药可分为杀虫剂、杀菌剂、除草剂、杀螨剂、杀

鼠剂、植物生长调节剂等。 在使用时一定要格外注意几点,温度、湿度、光照、雨水以及一些化学药剂。 温度。生物农药使用温度建议在20℃以上。有实验证明在20到30℃的条件下,生物农药的防治效果比在10到15℃的时候高出1到2倍 湿度。农田环境湿度越大,药效越明显,特别是粉状生物农药更是如此。因此,生物农药在雨后阴天或早晚露水未干的时候使用效果好,在蔬菜、瓜果等食用农产品上使用时,务必使药剂能很好地粘附在茎叶上,使芽孢快速繁殖,害虫只要一食到叶子,立即产生药效,起到很好的防治效果。

光照。尤其是微生物农药为芽孢杆菌类物质,活性物质,太阳光中的紫外线对芽孢有着致命的杀伤作用。因此,为了确保用药效果一定要避免强的太阳光,增强芽孢活力,发挥芽孢治虫效果。这点与微生物肥料的使用禁忌相同。 雨水。生物农药要避免雨天施药。尤其植物源生物农药不耐雨水冲刷,施药后遇雨应当补施。 避免与一些化学药剂混合使用。化学杀菌杀虫剂农药对生物农药真菌、细菌孢子、菌丝、芽孢生长有抑制损害作用。特别是有机磷类抑制真菌菌丝生长及孢子发育达90%。如块状耳霉菌,作为一种真菌杀虫剂,药效是通过块状耳霉菌的活孢子作用来实现的。施用后活孢子侵染蚜虫并致死,可持续传染,引起群体大量死亡。但作为一种活体真菌,如果与化学杀虫杀菌剂混用,主导作用物质被致死,自然就失去作用。 所以在使用生物农药时一定要格外注意。(河北农粮网)

生物农药的发展现状与前景

生物农药的发展现状与前景

目录 摘要.................................................................. 错误!未定义书签。 1、生物农药概述 (2) 1.1生物农药的定义 (2) 1.2生物农药的优势 (2) 1.2.1环境相容性 (2) 1.2.2不易产生抗药性 (2) 1.2.3资源丰富,开发成本较低 (3) 2生物农药的发展现状................................................... 错误!未定义书签。3生物农药存在问题..................................................... 错误!未定义书签。 3.1生物农药药效不稳定,易受环境因素影响,货架期短................. 错误!未定义书签。 3.2农民对生物农药田间高效应用技术认识不够,使用技能差 (4) 3.3生物农药产品单一,研发进程较慢................................. 错误!未定义书签。 3.4经济利益为先导,生物农药推广难................................. 错误!未定义书签。4生物农药的发展前景及建议............................................. 错误!未定义书签。 4.1制定生物农药行业标准,建立科学的药效评估体系................... 错误!未定义书签。 4.2提高农业科技投入强度,改革和完善农业推广体系................... 错误!未定义书签。 4.3加强农药研发创新和应用集成技术................................. 错误!未定义书签。 4.4提供必要的财政支持............................................. 错误!未定义书签。参考文献. (6) 致谢 (7)

生物农药

生物农药 1.生物农药的定义 1982 年 9 月 1 日发布的《农药登记规定实施细则》称生物农药系指用于防治农林牧业病虫草害或调节植物生长的微生物及植物来源的农药。《农药管理条例》和《农药管理条例实施办法》尚未给对于通常意义上的生物农药,我们从产品来源、利用形式两个方面进行分类,可以清晰地看出各类生物农药之间的相互关系。 2.生物农药的分类 2.1按产品来源分类 2.11微生物源生物农药 指利用微生物资源开发的生物农药,例如木霉菌、枯草芽孢杆菌。用来开发生物农药的微生物类群很多,涉及真菌、放线菌、细菌、病毒、线虫、原生动物等六大类群。 2.12植物源生物农药 指利用植物资源开发的生物农药,即有效成分来源于植物体的农药,例如印楝素、苦参碱。 2.13动物源生物农药 指利用动物资源开发的生物农药,例如平腹小蜂、松毛虫赤眼蜂、斑蝥素和低聚糖素等。 2.2按利用形式分类、 2.21活体型生物农药 指利用生物活体制成的生物农药,包括真菌、放线菌、细菌、病毒、线虫、原生动物等六类活体型生物农药。 2.22抗体型生物农药 指利用对生物内含物或生物代谢产物制成的生物农药 2.23载体型生物农药 即转基因生物

3.微生物源生物农药

3.1微生物农药的类型和品种 3.11微生物源 / 活体型生物 农药——杀菌剂 目前用来开发成微生物源 / 活体型生物杀菌剂的微生物有真菌、放线菌、细菌等三大类群。已经获准登记的微生物源 / 活体型生物杀菌剂逾 18 种,其中真菌杀菌剂逾 6种、细菌杀菌剂逾 12 种。 3.111真菌?微生物源 / 活体型生物农药·杀菌剂 已经获准登记的逾 6 种,它们是寡雄腐霉菌、哈茨木霉菌、木霉菌、噬菌核霉、盾壳霉 ZS-1SB、小盾壳霉 GMCC8325。 3.112放线菌?微生物源 / 活体型生物农药?杀菌剂 放线菌在农药领域中应用最多的是链霉菌及其变种,但主要是利用其代谢产物(多种农用抗生素均由放线菌产生)而不是其活体。也可利用放线菌对病原微生物的颉颃作用制成活体抗生菌制剂应用,例如我国开发的“5406”抗生菌为泾阳

生物农药的研究进展.

生物农药的研究进展 随着化学农药广泛的使用,靶标生物的抗药性逐渐增强,对其控制越来越难,使得近几年的化学农药毒性更强、浓度更高,导致整个农业生态系统已经日趋恶化,严重影响了自然生态平衡和生态系统的自我调节能力。而这些化学农药的开发难度和开发成本也很大, 同时化学农药毒性大、残留量高, 长期使用会对环境和人类健康造成严重威胁。因此,生物农药得以迅速发展,并获得独立的知识产权,成为创制新农药的重要途径。开发安全性高、残留量低、无公害、生物活性高、选择性强的生 物农药成为当今农药发展的趋势和迫切需要。在今后相当长一段时间内,生物农药将有较大发展,它将成为今后农药发展的一个重要方向,并逐渐成为研究和应用的热点。 生物农药指用来防治病、虫、草等有害生物的生物活体及其代谢产物和转基因产物, 并制成商品的生物源制剂。生物农药与传统化学农药的区别在于它们通常是控制而不是消灭病虫,具有延迟的作用,更具有选择性。生物农药具备以下优点: 第一,活性高, 选择性强,对非靶标生物相对安全;第二,不易产生抗药性;第三,高效,低 残留,无污染,常常能迅速分解,不破坏生态环境;第四,种类繁多,研发、利用途径多; 第五, 作为病虫综合防治项目 IPMP 的一个组成部分,作用机理不同于常规农药,不影响作物产量。因此,生物农药具有广阔的应用前景。 1. 生物农药的研究进展 据“发展中国家生物农药国际研讨会”上的专家们介绍,目前全世界投入化学农 药的总投资平均每年 280亿美元,但生物农药的投资只有 3.8亿美元,只占总额的 4%, 在中美洲生物农药只占地区农药市场的 2-3%,亚洲和拉美的生物农药的生产能力也很弱,但是鉴于世界各国消费者对于无害农产品的需求日益增长,生物农药的发展具有广阔的天地。在拉美,目前在使用生物农药方面领先的国家有古巴、哥伦比亚和巴西等。世界上生物农药使用量最多的国家有墨西哥、美国和加拿大,三国的生物农药使用量占世界总量的 44%。欧洲的生物农药使用量占全世界的 20%, 亚洲占13%, 大洋洲占 11%; 拉美和加勒比占 9%,非洲占 3%。

相关主题