搜档网
当前位置:搜档网 › CATIA V5 Start Model车身建模规范

CATIA V5 Start Model车身建模规范

CATIA V5 Start Model车身建模规范
CATIA V5 Start Model车身建模规范

CATIA V5 Start Model车身建模规范

CATIA V5 Start Model的使用方法

下面着重介绍CATIA-V5 Start Model的结构形式和其在车身设计中的具体应用方法。

首先,CATIA-V5 Start Model模板根据车身零件3D数据的结构特征,将历史树分成如下组成部分:

1、零件名称(PART NUMBER)

2、车身坐标系(Axis Systems)

3、零件实体数据(PartBody)

4、外部数据(external geometry)

5、最终结果(final part)

6、零件设计过程(part definition)

7、关键截面(section)

整体结构树形式如图1所示

图1

其次,详细介绍各个组成部分在CATIA-V5 Start Model的具体应用方法。

1、零件名称(PART NUMBER)

零件名称定义的规范性和准确性对一个汽车主机厂来说在整个汽车产品生命周期内对产品的采购、生产、销售都具有重要意义。所以首先要确定零件的准确件号和尽量简单且详尽的名称。具体的命名方法见下图2所示:

XXX_XXXXXXX-X00_000_REINF_ROOFSIDEGRABHANDLE_LH_CHZK_20060510

设计完成日期

零件的英文名称

零件的版本号(数据冻结时的版本为第一版)

零件的件号

车型代号

图2

2、车身坐标系(Axis Systems)

该坐标原点为车身坐标原点即是世界坐标原点,定义该坐标系以后后期设计过程中的几何元素的空间坐标都以该坐标系为基准。

3、零件实体数据(#Part Body)

Part Body内是用来存放零件实体数据,一般是设计的最终结果实体数据。如果需要更改Part Body 的名称,可以在Part Body右键属性内更改,如果要反映该零件设计的不同阶段或不同状态的实体数据,或者是周边相关零件的实体数据(周遍相关零件的Parent信息来自#external geometry),可以在零件内插入多个Part Body来分别定义。

图3

如图3所示插入了多个Part Body来分别存放定义不同状态实体数据。Part Body的名称可根据需要

做对应更改。

4、外部引用数据(#external geometry)

图4

如图4所示,#external geometry openbody内包括两个openbody分别为#design surfaces和

#imported geometry,在做零件设计时需引用外部几何元素作为边界条件,而这些外部元素根据其性质不同可以分为如下两中类型。

4、1 #design surfaces

该openbody用来存放做零件设计所需要的造型A级曲面数据。

图5

如上图5所示,如果需要引用的A级曲面较大,可根据设计步骤需要分解为很多局部区域来进行管理,这样方便后期设计过程中参考元素的准确借用,可以节省时间并提高准确性而且也方便后期的数据修改。图中将所引用的A级曲面分为两个大的区域分别为#ASURF- 060215和#pre-work on A-surfs,其中每个openbody内再分解为多个几何特征。

#ASURF- 060215中包括#ASURF- rr door和#ASURF- glass两个openbody

#pre-work on A-surfs中包括#top flange\#upper frame等11个openbody。

#design surfaces内的造型A级曲面是相对固定不变的,在零件工程化阶段要以造型A级面为基准进行结构设计。故A级曲面的Parents/Children关系多数是一父多子的关联关系。每个A级曲面与后面设计步骤中的多个同时保持关联关系,在这种情况下,我们提倡这些步骤中的上一级关系直接为A级,尽量避免关联A级面子元素的中间借用情况出现。与后面#part definition中父子相承的关联关系有所不同,在后期设计更改的时候应注意。

4、2#imported geometry

该openbody用来存放与所设计零件有边界约束关系的几何元素

图6

如图6所示#imported geometry内定义了#surfaces from concept studies等7个边界条件,每个openbody内存放了用来做边界约束的点、线、面等几何元素。这些几何元素用非参数化的形式存放。尽量做到让这些参考几何元素之间无Parents/Children关系。便于后期这些参考元素的更新替换。

5、最终结果(#final part)

该openboy用来存放零件的最终设计曲面数据、材料的矢量方向、材料厚度、零件MLP信息、搭接面零件上的螺母、螺栓以及对部件的设计修改信息。如图7所示。

图7

5、1#final geometry

该openbody用来存放零件的最终设计结果,仅仅用一个面片来表示,这个结果可以

用Invert Orientation命令将零件设计过程(#part definition)数据的最后一步结果保存在#final geometry openbody内。另外,当数据冻结后,要用copy as result命令将零件设计过程(#part definition)数据的最后一步结果保存在#final geometry openbody内。用Invert Orientation 命令的优点是可以使最终结果始终与设计修改保持参数化的关联关系,设计过程更改后系统自动更新最终结果。当数据冻结后,需要保存非参数化的最终设计结果。如图8所示采用Invert Orientation 命令。

图8

5、2 #last changes

表示数据冻结后的设计更改结果存放在此openbody 内,其表示方法与#final geometry

类似,用

Invert Orientation 命令将零件设计过程(#part definition )数据的最后一步结果保存在# last changes openbody 内。此时,#last changes 内保存的零件设计过程(#part definition )数据的最后一步结果与#final geometry 内的结果相比已经发生了设计更改。 5、3 #tooling info

该openbody 内用来存放表示材料料厚和材料矢量方向信息的料厚线,料厚线用0.7mm 的点划线表示,料厚线的长度为实际料厚尺寸的100倍,料厚线的方向由材料的适量方向决定。 5、 4 #MLP

该openbody 内用来存放零件工程化设计后期的许多MLP 相关信息。主要有主次定位孔和夹持面信息。每个主次定位孔及夹持面信息在CATIA V5参数化建模过程中主要由如下元素构成:一个点、一条线、一个平面、一个草绘(夹持面有两个草绘)。如图9所示。

图9

主次定位孔及夹持面的参数化元素构建方式如下:

1)定位点,采用以车身坐标原点为参考点的X 、Y 、Z 三坐标表示,并且定位点要位于零件上,在X 、Y 、

主定位孔a

夹持面S1

主定位孔a 参

数化元素 夹持面S1参数化元素

Z三个坐标值中视零件在车身坐标中的位置,为方便工艺功能的实现,要保证最少圆整一个坐标值。如下图10所示。

图10

2)第一条定位轴线,过定位点做垂直于零件曲面的线段,长度为20mm,如图11

图11

3)定位平面,过定位点做垂直于第一条轴线的Plane 面

4)另外两个定位轴线,在定位平面上做Sketcher Positioning,另外两定位轴线方向尽量保持与车身坐标轴平行。

5)夹持面,在定位平面上做Sketcher Positioning,具体做法见《MLP基础知识》,如图12所示。

以上五个元素构建完成后,在第二次构建定位孔或夹持面时,可复制,粘贴已经构建好的五个元素,此时只须更改相应的定位点即可。

图12

5、5 #matching areas

零件上搭接区域的标注信息存放于此。用0.5mm宽的紫色双点划线表示搭接区域,该线条在零件表面上以实际搭接边界为准向内偏移1mm。一个封闭区域用一条打断关联的曲线表示(如图14所示)。与不同零件的搭接区域在结构树上命名方式如图13所示。

图13

图14

5、6 #nut&bolt

零件上的凸焊螺栓、螺母放于此openbody内,在历史树上的表示方式如图15所示,

首先将要用到的各规格螺栓、螺母导入到#external geometry内,再分别在目标螺栓、螺母上用Axis

System命令创建坐标系,在零件上螺栓、螺母焊接点创建对应的坐标系。对应坐标系创建成功后

用Axis To Axis命令复制移动螺栓、螺母到指定位置即可。

以上MLP,搭接面,螺母、螺栓的工作在工程化设计后期完成,即在下面将要介绍的零件设计过程

(#part definition)完成后来完成的。

6、零件设计过程(#part definition)

在结构树上的这一部分是零件设计的主体工作,也是工作量最大,最关键的部分。这部分#part definition的构成如图16所示。

图16

#part definition包括参考点(#reference point)、基础面(#basic surface)、压筋结构

(#depressions)、翻边结构(#flanges)、裁剪结构(#trimmed_part)和孔(#holes)特征。

6、1 参考点(#reference point)

该openbody内有一个点,该点为车身坐标原点(0、0、0),在后面的零件设计过程中,几何元素的构建大多数情况下要以该点为参考点。我们也建议几何元素的参数化尽量以该点为基准。

6、2 基础面(#basic surface)

在零件设计过程中要有大局观,整体意识。即由整体到局部,由简单到复杂的过程,Start Model 就是遵循这样一个思路来进行零件设计的。当接到一个设计任务时,首先考虑构成该零件的主要型面是怎样的,即该零件的形状是怎样的。在该型面的基础上怎样来很好的实现零件的功能,就是接下来要考虑零件的结构设计,即增加必要的压筋结构(#depressions)、翻边结构(#flanges)和孔(#holes)特征。当然基础面和零件结构这两者是相互影响的,要综合考虑。

首先看基础面的设计。基础面是零件结构的基础,零件形状由基础面的形状来决定。

图17

如图17所示,基础面(#basic surface)内只包含#reference_structure和basic surface两部分,#reference_structure内有Start Model模板内给定的其个元素,一个参考点(坐标值可任意给定)、三个plane面(分别平行与三个系统平面)、三个基于plane绘制的草绘(Sketch with Absolute

Axis Definition相对于Sketcher更便于参数化控制其空间位置和草绘形状)。基础面的制定没有MLP一样严谨的设计规范,由于零件形状的不同,设计人员的不同,基础面有着不同的设计思路和方法。以下面的零件为例来说明。

图18

如图18所示,决定该零件形状的基础面可由如上四个子基础面组成,四个主要子基础面相互倒角

得到大的基础面,在子基础面设计过程中要注意不同结构的命名和它们之间的相互历史层次关系。往往每个子基础面又由许多面元素构成,这些面元素同样要求用清晰的命名和历史层次关系体现在结构树上。如图19所示。

图19

子基础面#Main surface 3由七个面片通过依次倒角Shape Fillet得到(在通常情况下较少采

用 Edge Fillet和Variable Radius Fillet命令倒角,因其不利于参数化控制)。

通过以上介绍,我们了解了基础面(#basic surface)的设计思路,下面再看具体到一个单面片的设计方法。

上面讲到在基础面(#basic surface)内只包含#reference_structure和basic surface两部分。其中#reference_structure内的几何元素是被套用来设计单面片的固定格式。

图20

如图20所示,要构建# Main surface 1内# Back 1面片,先将#reference_structure内的元素全部复制粘贴到# Back 1内,调整reference_point的坐标值以确定其空间位置,随后Update更新三个基准平面和三个草绘的位置(因为三个基准平面和三个草绘与reference_point有参数关联关系),此时,在其中的两个草绘上分别做出引导线(guide curve)和轮廓线(profile),再用Sweep 或Extrude拉伸生成直纹面(直纹面在参数化设计中更便于控制面的参数)。

6、3压筋结构(#depressions)

在零件结构中可以归结为局部压筋特征的部位,例如凸台、加强筋等,就将其设计参数放在

#depressions openbody内,如图21所示零件的压筋部位。根据压筋形状得到压筋面片后,再与上一步#basic surface的最终结果共同作用生成压筋结果。

Depression angle

图21

6、4 翻边结构(#flanges)

在零件结构中可以归结为局部压筋特征的部位,例如凸台、加强筋等,就将其设计参数放在

#flanges openbody内,根据翻边形状得到翻边面片后(翻边面片可能是多个面片通过倒角或相加命令共同作用形成),再与上一步# depressions的最终结果共同作用生成翻边结果。如图22所示零件的翻边部位是多个面片通过倒角共同作用形成。

图22

6、5 裁剪结构(#trimmed_part )

裁剪结构(#trimmed_part

)用来放置裁剪零件边界的几何元素。在此建议用面元素做裁剪元素 Split ,裁剪面是多个面片绕零件边界通过倒角或相加命令共同作用结果,利用面做裁剪元素便于后期零件边界形状的控制,更利于控制裁剪边界的质量,控制边界的相切连续性。如图23所示裁剪面设计结果。

23

One side flange

Result of flange

Trime surface 顺次倒角得到

翻边结果

6、6 孔(#holes )

在零件上,可以归为孔特征的结构元素放在此openbody 内。在设计孔的时候,要注意孔的冲孔方向,特别要注意安装、定位孔的工作方向。所有孔特征按照空间位置、大小、形状、方向等特征构建后,用

Split 命令与上一步裁剪(#trim )结果做裁剪后得到冲孔结果。如图24所示。还有另外一

种常见孔是带翻边结构的孔,这种结构特征在Start Model 设计过程中可以将其归入翻边(#flange )或孔(#holes)均可。如图25所示。

24

Hole assembly 1 Hole assembly 2

Hole assembly 3 Hole 4 Hole 5

图25

7、 关键截面(#Sections )

此openbody 内存放了显示零件关键部位信息的截面数据,如安装孔、定位孔、搭接面、零件局部结构形式等数据。这些数据信息可以反映零件周边的装配、搭接关系,可以很好的指导零件结构设计。如图26所示。

图26

带翻边的孔

三结论

综上所述,参数化设计在现代汽车产品开发中具有重要的意义,参数化设计可以大大提高汽车开发设计的工作效率,适合在同平台上系列产品的演变,大大缩短产品开发周期。汽车各个零件相互间有着紧密的联系和协调性。部分设计质量好不等于产品质量也好。为此,重要的是各零件的设计人员应具备(自己专业之外的)其他零件的知识,懂得对整体的影响。CATIA V5 Start Model在零件设计过程中可以很好的体现CATIA V5的参数化设计优势,培养设计人员在汽车开发设计中的整体设计理念,设计人员通过对零件结构特征的分析理解,可以很好的吃透零件,把握零件的要素特征和关键结构形式,举一反三。

CATIAV5StartModel车身建模规范

CATIA V5 Start Model车身建模规范 CATIA V5 Start Model的使用方法 下面着重介绍CATIA-V5 Start Model的结构形式和其在车身设计中的具体应用方法。 首先,CATIA-V5 Start Model模板根据车身零件3D数据的结构特征,将历史树分成如下组成部分: 1、零件名称(PART NUMBER) 2、车身坐标系(Axis Systems) 3、零件实体数据(PartBody) 4、外部数据(external geometry) 5、最终结果(final part) 6、零件设计过程(part definition) 7、关键截面(section) 整体结构树形式如图1所示 图1 其次,详细介绍各个组成部分在CATIA-V5 Start Model的具体应用方法。 1、零件名称(PART NUMBER) 零件名称定义的规范性和准确性对一个汽车主机厂来说在整个汽车产品生命周期内对产品的采购、生产、销售都具有重要意义。所以首先要确定零件的准确件号和尽量简单且详尽的名称。具体的命名方法见下图2所示:

XXX_XXXXXXX-X00_000_REINF_ROOFSIDEGRABHANDLE_LH_CHZK_20060510 设计完成日期 设计者名字简称 零件的英文名称 零件的版本号(数据冻结时的版本为第一版) 零件的件号 车型代号 图2 2、车身坐标系(Axis Systems) 该坐标原点为车身坐标原点即是世界坐标原点,定义该坐标系以后后期设计过程中的几何元素的空间坐标都以该坐标系为基准。 3、零件实体数据(#Part Body) Part Body内是用来存放零件实体数据,一般是设计的最终结果实体数据。如果需要更改Part Body 的名称,可以在Part Body右键属性内更改,如果要反映该零件设计的不同阶段或不同状态的实体数据,或者是周边相关零件的实体数据(周遍相关零件的Parent信息来自#external geometry),可以在零件内插入多个Part Body来分别定义。 图3 如图3所示插入了多个Part Body来分别存放定义不同状态实体数据。Part Body的名称可根据需要

CATIA_V5人机培训应用

CATIA V5人机培训与应用 1.Human Builder(人体模型建立) 人体模型的建立是基于最佳人体模型分类系统的。人体模型能够非常精确地模拟人体以及人如何与产品互动,这样确保能够像真人一样在工作间自然地操作并完成各种作业。“人体模型建立”模块侧重于建立一个用于互动分析的数字化人体模型。 此模块包含一些高级工具来创建、操作、分析一个人体模型(基于5th、50th、95th的人体百分比)是如何与产品发生互动的。人体模型用来评估人与产品关于外形、相配、功能的适应性。人体模型可以直观地创建和操作并结合DMU来检查诸如伸及范围、视野等特征。简便易学的互动可以通过一个非人类学家来操作人体上面的各类参数。 工具栏中包括人体模型的生成、性别、百分位、正/反运动学操作、动画生成、单眼/双眼视野仿真以及视野圆锥。 1.1.Human Builder Menu Bar 1.1.1.Standard Manikin Creation 点击Manikin Creation图 标,出现New Manikin对话框 : 1.1.1.1.Manikin Tab:

Father Product:人体模型必须附加在左边树形图的一个Product内,这个Product可以是任何级别的,但不可以是其他任何人体模型。 Manikin name: 在这里为新建的人体模型命名,如:驾驶员、乘客、机械工等。多个人体模型可以有同一个名字,如果将这栏空白,系统默认命名为Manikin1 (2, 3, etc.),并且保存为Manikin1.CATProduct。 Gender: 在这里选择人体模型的性别。 Percentile: 可以选择从1%至99%的人体百分位。 1.1.1. 2.Optional Tab Population:这里选择人体模型的国籍,系统默认有:美国、加拿大、法国、日本、韩国。 Model: 这里选择希望得到的人体模型的类别,系统提供三种:全身、只有左臂、只有右臂。 Referential:这里选择人体模型上面的参考点,有:眼点、H点(默认)、左脚、右脚、脚底、胯部。 Set Referential to Compass Location:如果这个参数是激活的,就可以使用罗盘指定人体模型的初始位置,如:一个平整的地板。如果这个参数没有被激活,人体模型就会被放置在系统默认的位置中(坐标原点)。 1.1. 2.Changing Manikin Display Attributes 点击Display Attributes图标,里面包含: 1.1. 2.1.Manikin 这个栏是空的直到鼠标选择了一个人体模型,选择后,人体模型的名字就会显示在这里。在这个命令打开后,可以不断地选择其他人体模型,但是选择了新的模型后,前一个就被新的模型替代掉了,并更新相应的名字。 1.1. 2.2.显示方式:segments, ellipses, and surfaces。三种显示方式同时选择至少一种。 1.1. 2. 3.Center of gravity 这里的重心是不可以被做任何操作的。重心会随着人体各部分的变化而变化, 1.1. 2.4.Line of sight 视线是用来方便处理人体模型的视野的,这条蓝色的线像其他部分一样可以被点选。

在CATIA V5中建立零部件库的方法

在CATIA V5中建立零部件库的方法 CATIA作为当前一种主流的CAD三维设计软件,广泛应用于航空、汽车、船舶及其他制造业。它之所以如此多地受到越来越多企业的青睐,除了其所具备的强大的三维建模功能外,很大程度上由于其提供给用户的友好的二次开发接口,用户可以根据自己的需求开发出自身需要的界面,以及建立随时可以调用的模型库,方便设计者进行设计。在当前竞争日益加剧的形势下,谁先推出新的符合大众需求的产品,谁就占据了商机。对于设计者来说,从产品概念设计到产品的批量生产的过程中,经历了不断的设计、测试、更改;再设计、再测试、再更改的过程。而这种更改经常只是一些小的方面的更正,例如尺寸上的稍加改动,而总的产品外形是不变的,如果重复性地做这种更改,会带来设计时间上的浪费。为了减少这种时间上的浪费,提高设计效率,同时节约投入上的成本,对于一些标准件、常用件以及企业的一些同类型、尺寸不同的产品,有必要将其参数化,建立相应的零部件库,待到需要时,只需从库中调出所需的参数化零件,或者在定制的界面中输入用户所需的参数,就可以快速在CATIA环境中生成模型,这样很大程度上缩短了建模时间,提高了建模效率,而且方便了模型的更改。 基于当前为了提高建模效率,降低重复性建模次数的要求,本文讨论了关于CATIA 中建立参数化零件库的方法,以及它们相应的建立步骤。 一、CATIA中建立零件库的方法简介 作为一款成熟的CAD软件,CATIA拥有强大的建模功能,友好的界面,同时它也嵌入了装配建模时所需的一些标准件,如螺栓、螺母和垫圈等的参数化标准件库。但这些都不能满足不同企业生产过程中的要求,因为这些自带的标准件是CATIA软件开发公司根据通用零件标准建立的,不具备特殊性。一般的企业都有自己的一些常用件,这些常用件又是设计过程中经常用到的,并且很多情况下这些零件是同类不同尺寸,若反复建立这些模型,会导致时间上的浪费,因此CATIA提供了参数化零件库的二次开发功能。 目前,在CATIA中建立参数化零件库的方法主要有以下两种:①运用CATIA软件本身自带的智能工程模块建立零部件库;②运用编程的方式建立参数化零件库。第二种方法需要用户具备一定的计算机编程方面的知识,使用的方法可分为进程内和进程外的编程。进程内的开发主要是使用宏命令录制或编写,使用到的语言有VBScript、CATScript和

CATIA假人摆放技术分享

. CATIA假人摆放 潘俊真作者:江铃控股有限公司范围1 本规范规定了江铃控股有限公司开发中心产品开发设计时利用CATIA软件布置人机假人的规范。本规范适用于江铃控股有限公司开发中心的产品开发。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的.凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 SAE J 826-2008 H点机械和设计工具规程和规格 SAE J 1100 汽车尺寸 3 术语和定义 人机尺寸:SAE J 1100中规定的与人机布置相关的尺寸,详见数据输入表 4 数据输入 4.1 在整车数据中提取顶棚、地毯、仪表台、三踏板、座椅; 4.2 假人布置参数 主驾假人参数及说明

参数说 R点X坐标L31-1 R点Y坐标W20-1 座椅参数踵点至R点高度H30-1 资料Word

.

座椅导轨角度A19 见图示TL2 见图示TL18 坐垫角A27-1 靠背角A40-1 说明参数数值 踵点至方向盘中心X L11 向距离 W7 方向盘参数踵点至方向盘中心Z 向距离H17 方向盘直径W9 方向盘倾角A18 说数参RAX 油门踏板旋转中RAY RAZ 油门踏板参L1 踏W1 H1 L8 踵 W8

资料Word . H8 说明数值参数 L98-1 休息踏板参数W98-1 休息踏板踵点及角度H98-1 A48-1

后排假人参数及说明 说明数值参数 坐标点L31-2 XR Y坐标R 点W20-2 R点高度H30-2 踵点至 L98-2 后排假踵W98-2 H98-2 鞋底角A48-2 坐垫A27-2 靠背A40-2

Catia技巧(自己汇总超全实用)

1:如何快速知道当前的CATIA作图区上的零件的放大比例? 答:选中TOOLS----->OPTIONS----->VISUALIZATION----> DISPLAY CURRENT SCALE IN PARALLEL, MODE 的选项. 在屏幕的右下方的数值表示当前作图区内的几何体的显示比例. 2:如何快速定义草图方向? 答:按CTRL键点选在草图中做为X轴的边,再选择草图平面, 然后选择草图功能.草图自动转到所需的方向. 3:如何再SKETCHER 中动态调整尺寸? 答:选中已标注的实体,再按住SHIFT键,,然后拖动实体, 则实体上标注的尺寸值会动态变化. 4:当启动CATIA时,总是会产生一个新的CATPRODUCT 档, 怎样才可以避难? 答:可以在START--->ALL PROGRAMES--->TOOLS---> ENVIRONMENT EDITOR V5R** 中创建一个新的环境变数, NAME:CATNOSTARTDOCUMENTV ALUE:YES 就可以改变这种问题了. 5:从CATIA来的有些MODEL 档,在读取时出现 PROJICTCONFLICT 的信息,要怎样才能读取? 答: 在$HOME 的目录下,修改USRENV.DCLS 这个档案, 在其中加入ATSITE,PRJMODEL=TRUE;这一行就可. (UNIX环境) 6:如何在进入CATIA sketcher workbench 的时候,跳过动画,以加速显示速度? 答:TOOLS--->OPTIONS--->DESPLAY---->NA VIGATION---> NA VIGATION, UNCHECK "ANIMATION DURINGVIEWPOINT MODIFICATION". 就可禁止动画. 7:如何改变系统默认的坐标平面的大小以及颜色? 答:TOOLS--->OPTIONS--->INFRASTRUCTURE------>PART INFRASTRUCRE---->DISPLAY---->DISPLAY IN GEOMETRY AREA---->AXISSYSTEM DISPLAY SIZE (IN MM),把默认值从10改为40.60等等,就可改变基准面的尺寸大小,但颜色只能在界面上GRAPHIC PROPERTIES 工具上直接改了. 8:如何在特征树和实体之间进行切换? 答:大家所知的可能就是在特征树上点击或在屏幕右下角的坐标系上点击.在这里小弟介绍一种方法前提是你的鼠标是三键的) 按住CTRL然后滑动鼠标上的滚轮就OK了. 9:如果你的三键鼠标突然坏了,家里又只有两键的,那怎么办? 我有好办法,其实就是CATIA 的功能. 答:打开 TOOLS--->OPTION--->DEVICES AND VIRTUAL REALITY ;然后在TABEL SUPPORT 里进行编辑就行了. 怎样,看到在你的界面上那些功能表了,这样你就可以继续学习工作了. 10:当你的CATIA里打开多个文档时,有没有快速转换窗口? 答:按住CTRL键,然后按动TAB键就可快速转换窗口了.

汽车车身基于CATIA软件的参数化建模

参数化建模 1.零件名称(PART NUMBER) XXX-XXXXX-X00-000-REINF- ROOFSIDE GRAB-ZSLS-20110705 分别是:车型代号、零件的序号、版本号、英文名、设计者、日期 具体格式可以不按照此例 2.车身坐标系(Axis Systems) 3.参数(Parameters) 4.零件实体数据(Part Body) 用来存放实体数据,名称可根据实际修改 5.外部数据(External geometry) 6.最终结果(Final part) A:独立零件 B:左右完全对称或局部不对称的左右零件,须注明 7.零件设计过程(Part Definition)

8.关键截面(Section) 开孔方式,易修改的钣金开孔。

注意事项: 1,Main part >>>> reference structure >>>> reference point与ENG_TOOL_DERECTION >>>> reference point 关联相合,这样之后的参数化不依赖于插件,连接有序且紧密 2,模板草图XZ方向是否正确, 3,各草图内部,虚线符号不要被激活,否则后期工作量增加。 4,注意隐藏的部位,这样的方式做参数化的时候退出草图就不会“乱了”,进入草图也是“有路可循”的。 5,不依赖于插件的快速逆向参数化方法——三点确定平面。reference point前的部分可以删掉,OK。不懂并不表示不存在。

6,这样的结局。1+2=?+3=?+4=?……=结果

7,点云上点数不够多不均匀怎么办,(征对零件导出的点云) Mesh smoothing 点云有破洞用mesh cleaner

catia减震器建模

第3章双向作用筒式减震器的CATIA建模 (12) 3.1CATIA软件介绍 (9) 3.2 减振器各零件的CATIA三维建模 (9) 3.3减震器的组装过程 (10) 3.4 本章总结 (10) 3.1CATIA软件介绍 CATIA V5R20继续在所有领域和产业里向客户提供生产支持并提高产品质量, CATIA是汽车工业的事实标准,是欧洲、北美和亚洲顶尖汽车制造商所用的 核心系统。CATIA 在造型风格、车身及引擎设计等方面具有独特的长处,为各 种车辆的设计和制造提供了端对端(end to end )的解决方案。CATIA 涉及产品、 加工和人三个关键领域。CATIA 的可伸缩性和并行工程能力可显著缩短产品上 市时间。 一级方程式赛车、跑车、轿车、卡车、商用车、有轨电车、地铁列车、高速 列车,各种车辆在CATIA 上都可以作为数字化产品,在数字化工厂内,通过数 字化流程,进行数字化工程实施。CATIA 的技术在汽车工业领域内是无人可及的,并且被各国的汽车零部件供应商所认可。从近来一些著名汽车制造商所做的 采购决定,如Renault、Toyota、Karman 、V olvo、Chrysler 等,足以证明数字 化车辆的发展动态。Scania 是居于世界领先地位的卡车制造商,总部位于瑞典。 其卡车年产量超过50,000辆。当其他竞争对手的卡车零部件还在25,000个左 右时,Scania公司借助于CATIA系统,已经将卡车零部件减少了一半。现在,Scania 公司在整个卡车研制开发过程中,使用更多的分析仿真,以缩短开发周 期,提高卡车的性能和维护性。CATIA 系统是Scania 公司的主要CAD/CAM 系统,全部用于卡车系统和零部件的设计。通过应用这些新的设计工具,如发动机 和车身底盘部门CATIA 系统创成式零部件应力分析的应用,支持开发过程中的 重复使用等应用,公司已取得了良好的投资回报。现在,为了进一步提高产品的 性能,Scania 公司在整个开发过程中,正在推广设计师、分析师和检验部门更 加紧密地协同工作方式。这种协调工作方式可使Scania 公司更具市场应变能力, 同时又能从物理样机和虚拟数字化样机中不断积累产品知识。 基于CATIA上述的那种强悍的三维建模功能,加上我对此软件的学习了解 程度,因此我就采取CATIA对减震器的各个零件进行建模,以致组装的全部过程。 3.2 减振器各零件的CATIA三维建模 由于减震器建模零件较多,所以我以其中下套筒及整个连接部分 的零件为例介绍CA TIA减震器零件三维建模,其他零件类似。

CATIA V5常用模块简介

CATIA V5常用模块简介 CATIA V5零件设计(PDG:CATIA Part Design)提供了3D机械零件设计的强大的设计工具。应用“智能实体”设计思想,广泛使用混合建模、关联特征和灵活的布尔运算相结合的方法,允许设计者灵活使用多种设计手法:可以在设计过程中或设计完成以后,进行参数化处理;可以在可控制关联性的装配环境下进行草图设计和零件设计,在局部3D参数化环境下添加设计约束;由于支持零件的多实体操作,还可以轻松管理零件更改,如进行灵活的设计后期修改操作。此外,PDG图形化的结构树可表示出模型特征的组织层次结构,以便更清晰地了解影响设计更改的因素。设计人员可以对整个特征组进行管理操作,以加快设计更改。 CATIA V5装配设计(ASD:CATIA Assembly Design)可以帮助设计师用自顶向下(Top-down)或自底向上(Bottom-up)的方法定义和管理多层次的大型装配结构,可真正实现装配设计和单个零件设计之间的并行工程。通过简单地移动鼠标或选取图标,设计人员就能将零件拖动到或快速移动到指定的装配位置;选择各种形式的机械约束,用来调整零件的位置并建立起约束关系;选择手动或自动的方式进行更新,可以重新排列产品的结构,并进行干涉和缝隙检查;无需复制相同零件或子装配数据,就可以在同一个装配件或不同装配件中重复使用。ASD建立标准零件或装配件的目录库,爆炸图的自动生成使用对设计的理解非常容易,分析功能可检查是否发生干涉以及是否超过了定义的间隙限制。无论多么复杂的装配,BOM(Bill of Material)表自动生成功能可得到所有零部件的准确信息。柔性子装配功能可以动态地切断产品结构和机械行为之间的联系,这一独特的命令能够在父装配中移动子装配的单独部件,或者管理实例化子部件不同的内部位置……ASD提供的这些高效的工作方式,使得装配设计者可以大幅减少设计时间和提高设计质量。CATIA V5创成式曲面设计(GSD:CATIA Generative Shape Design)可根据基础线架与多个曲面特征组合,设计复杂的满足要求的轿车车身。它提供了一套涵盖面广泛的工具集,用以建立并修改用于复杂车身或混合造型设计中的曲面。它基于特征的设计方法,提供了高效、直观的设计环境,包括的智能化工具和定律(law)功能,允许用户对设计方法和技术规范进行捕捉并再用。 CATIA V5数字化外形编辑(DSE:CATIA Digitized Shape Editor)可以方便快捷的导入多种格式的点云文件,如:Ascii free、Atos、Cgo等十余种,还提供了数字化数据的输入、整理、组合、坏点剔除、截面生成、特征线提取、实时外形质量分析等功能,对点云进行处理,根据处理后的点云直接生成车身覆盖件的曲面。 CATIA V5自由曲面设计(FSS:CATIA Freestyle Shape)提供了大量基于曲面的实用工具,允许设计师快速生成具有特定风格的外形及曲面。交互式外形修形功能甚至可使设计师更为方便地修改、光顺和修剪曲线和曲面。借助于多种面向汽车行业的曲线曲面诊断工具、可以实时检查曲线曲面的质量。由于系统提供了一个可自由匹配的几何描述,支持NURBS和Bezier数学表达,因而设计师可直接地处理修剪后的曲面,同时保持同其基础外形的相关性。这就大大提高了从最初2D造型图的平面型线构思到最终的3D模型生成这一过程的效率。 CATIA V5管路设计(PIP:CATIA Piping Design)提供完整的工具用于创建、修改和分析管路设计,并进行建档和管理,该工具主要用于创建能捕获所有适当设计信息和意图的智能化管路布置,自动放置弯管、弯头、三通和减压阀等标准部件,这种智能化的管路设计功能可使设计人员更高效地实现设计过程并对设计内容进行验证。PIP功能驱动的设计可确保设计意图在任何修改中得到贯彻,与设计规则引擎的集成可实现设计过程的自动化,并可确保企业的标准在整个设计过程中得到很好地贯彻。 CATIA V5电气导线布线设计(EWR:CATIA Electrical Wire Routing)根据电气信号的功能定义,在数字化样机中进行电缆布局的定义和管理,专门用于电气系统的物理形状设计,允许设计人员在虚拟环境下

CATIA建模规定

1 范围 本文件规定了CATIA三维建模的通用要求。 本文件适用于飞机产品零件、组件和部件的三维设计。 2 术语和定义 本文件采用下列术语和定义。 2.1 三维建模(three dimension design) 应用三维造型软件(如:CATIA、UG等)进行三维零件、组件及部件设计的过程。 2.2 三维数字模型(three dimensional digital model) 是指三维实体在计算机内部的以1:1的比例来几何描述,它记录了实体的点、线、面、体等几何要素及其之间的关系。 2.3 CATIA文件(CATIA document) 用CATIA软件对产品及其零部件进行数字化描述而形成的各类文件,包括后缀名,如:CATPart、CATProduct、CATDrawing、CAtlog、CATMaterial、CATAnalysis等。 2.4 外形数模(lofting/shape digital model) 飞机外形的数字化描述,表达了飞机外形设计所有的信息,作为气动、结构、工装等设计的依据。 2.5 实体(solid/body) 由CAD软件所生成的三维几何体在CATIA V4中为Solid,在CATIA V5中为Body或partbody。 2.6 非实体元素(open body) 非实体元素是指不占有空间的几何元素(也可称为开放性元素),如:点、线、面等。 2.7 零件实体(partbody) 由body和openbody组成的实体。 2.8 参考形体(reference geometry) 指建模中所需参考的其它模型中的几何图形。使用CATIA建模时,参考形体的获得可通过发布和引用来实现,且参考形体是参与模型建立的,当相关选项打开时,特别是在关联设计中,他会在结构树上有一个单独的分支(External Reference)。 2.9 零件特征树 specification/part feature tree 体现零件设计过程及其特征(如:点、线、面、体等)组成的树状表达形式,反映模型特征之间的相互逻辑关系。 零件特征树包含两部分,一部分是几何特征(如:点、线、面、体等),另一部分是知识特征,也就是生成零件时,应用的关系、参数(Relation、Parameter)这是CATIA V5特有的。

精选CATIA汽车车身设计资料

CA TIA汽车车身设计方法 汽车车身除了要有漂亮的外表和与众不同的个性特征,同时还要能安全可靠地行驶,这就需要整个设计过程融入各种相关知识,包括车身结构、制造工艺要求、空气动力学、人机工程学等。细化开发流程与同步开发手段,对于设计出消费者认可的新车型至关重要。 汽车车身设计简单理解是根据一款车型的多方面要求来设计汽车的外观及内饰,使其在充分发挥性能的基础上艺术化。汽车车身除了要有漂亮的外表和与众不同的个性特征,同时还要能安全可靠地行驶,这就需要整个设计过程融入各种相关的知识:车身结构、制造工艺要求、空气动力学、人机工程学、工程材料学、机械制图学、声学和光学知识。从一个灵感到最后实现,需要一系列的步骤。得到市场的认可,性能优良的内“芯”,再加上一袭新衣包装,才是新车待嫁时。下面,让我们看看正向设计如何为一款新车设计“嫁衣”。 项目策划 项目策划包括:项目计划、可行性分析、项目决策及组建项目组等几个方面。图1为项目策划阶段的示意图。 图1 项目策划阶段示意图 汽车企业的产品规划部门必须做好企业产品发展的近期和远期规划,具有市场的前瞻性与应变能力。项目前期需要在市场调研的基础上生成项目建议书,明确汽车形式及市场目标。可行性分析包括:政策法规分析、竞争对手和竞争车型、自身资源和研发能力的分析等。 项目论证要分析与审查论点的可行性和论据的可靠性与充分性。经过这一阶段,要开发一个什么样的车型,类似于同行什么等级的车型,其性价比方面有哪些创意与特点即展现在我们面前。 项目策划的最后阶段是组建项目组:组建新品开发项目小组、确立项目小组成员的职责、制定动态的项目实施计划、明确各阶段的项目工作目标、规定各分类项目的工作内容、计划进度和评价要求。 概念设计阶段 概念设计在新产品开发中有着重要地位,因此,新产品概念设计流程再造是新产品开发流程再造成败的关键所在。一个全新的汽车创意造型设计分为以下几部分: 1. 总体布置草图设计:绘制产品设计工程的总布置图(如图2),一方面是汽车造型的依据;另一方面它是详细总布置图确认的基础,在此基础上将产品的结构具体化,直至完成所有产品零部件的设计。 图2 某车型的总布置草图

CATIA_V5的几种建模方式及建模方法

CATIA V5的几种建模方式及建模方法 CATIA V5是由法国达索公司开发的高级CAD/CAM/CAE 软件,其强大的造型设计功能可以让设计者自由发挥你的想象空间,设计出完美的产品。 CATIA V5的建模方式: 1、基于约束的建模∶模型的几何体是从作用到定义模型几何体的一组设计规则来驱动或求解的,这种规则我们称之为约束。这些约束可以是尺寸约束(如草图尺寸或定位尺寸) 或几何约束(如平行或相切)。例如在草绘中约束两个圆同心,设计者的意图不论这两个圆的半径大小怎么改变,两个圆始终保持同心。 在CATIA 中,尺寸约束也是一种参数化, Part level 这种建模方法是通过尺寸驱动或几何位置驱动来达到设计或修改模型的目的,是CATIA 用户最常 用的一种方法 内在参数

2.参数化建模∶参数化模型是为了进一步编辑方便, 将用于模型定义的参数值随模型存贮。参数可以彼此引用以建立在模型的各个特征间的关系。例如设计者的意图是孔的深度总是等于凸垫的高度,就可以通过CATIA 命令让两个参数之间建立联系,这样不管你孔的深度如何改变,它将始终等于凸垫的高度 如下图所示: 非参数化建模∶非参数化建模,对象是相对于模型空间而不是相对于彼此建立。对一个或多个对象所做的改变不影响其它对象或最终模型 主要模块:FSS 、 Class A 该建模方法主要运用于汽车 外曲面等比较复杂的零件设 计中 4.复合建模(Hybrid Design ):是上述三种建模技术的发展与选择性

组合。复合建模支持传统的显式几何建模及基于约束的草绘和参数化特征建模。所有工具无缝地集成在单一的建模环境内 CATIA V5的基本设计方法: (一)自上而下: 1、即在装配工作台中切换到零件工作台进行的设计;在Product模块内构造骨架零件,然后将参考参数(点、线、面、控制变量等)发布(publish);同时,我们在主骨架的控制下,可以构造子装配的骨架;在进行详细设计时,我们可以选择只关联发布元素,这样可以避免过多的参考,非关键元素在关联设计时生成的是只有子关系而没有父关系的元素,在进行大装配时,不致与造成系统崩溃;同时可以使用DMU中空间分析功能,在设计的同时检查设计的合理性。这种设计方法的好处是,所有零件都是基于同一坐标系,是设计工夹具及大型具有相对位置零部件的最好方法。 2、使用零件设计模块时使用Multi_body,我们可以根据产品的结构,在同一零件中预定义不同的BODY,把产品的特征结构分在不同的Body里,这样在造型工程师在完成设计之后,结构设计工程师可以方便地进行相关零件的详细设计。 (二)自下而上: 1、即由零件到装配的设计;在CATIA中,设计是全关联的,我们可以构造自己的零件库,把产品、零件、特征、设计规则等,在设计中可以重复使用的资源,最大化集中在CATIA的CATALOG中,使用这些已经经过生产验证过的数据,应用在其他产品的设计中,加速了

catia在汽车车身设计方面的应用

catia在汽车车身设计方面的应用 摘要:目前,中国汽车工业发生了翻天覆地的变化。尤其是汽车车身的设计好坏直接影响到汽车产品的质量和销售状况。车身的更新速度较快,因此车身设计对新车的开发具有十分重要的作用。目前,计算机辅助技术已渗透到汽车生存周期的各个阶段,尤其是CAD技术已成为汽车造型设计的常规手段。文中以网上某轿车数据为设计为对象,运用catia三维造型软件进行轿车车身造型,着重研究曲线构造、曲面构造、曲面过渡连接以及轿车车身曲面的分块、内饰设计和整车的虚拟装配造型等进行研究。 关键词:车身设计、曲面构造、内饰设计、catiaV5R18 catia design in automotive body applications Abstract:At present, China's auto industry has undergone enormous changes. In particular, the design of the car body to the car a direct impact on product quality and sales. Body of the update speed, so the body design of the new car's development has a very important role. Currently, computer-aided technology has penetrated into the car life cycle stages, in particular, CAD technology has become a routine means of automobile design. In this paper, online data for the design of a car as an object, use catia 3D modeling software for car styling, focused on the curve structure, surface structure, surface blending car body connection and block surfaces, interior design and virtual assembly model vehicle were studied. Key words:Body design;surface construction,;interior design,;catiaV5R18 0引言 我国的汽车工业从无到有、由小到大、从引进到自主创新,已获得很大发展,并已成为我国重要的支柱性产业。各国发展的历史与实践证明,汽车整车生产能力的提升主要取决于车身的生产能力,汽车的更新换代、造型改装、产品促销等都取决于车身。特别是轿车,其发展取决于车身技术水平。 汽车车身应为驾驶员提供良好、舒适的乘坐和工作环境,使其免受震动、噪声、废气以及恶劣气候的影响。 故汽车车身及内饰的设计就显得尤为重要。本文对汽车车身及内饰的一些大体环节进行设计,运用二维、三维软件进行制图并结合《车身设计学》、《汽车设计》、《造型设计》等知识所作。 汽车车身设计涉及面广,远远超出一般机械产品的范围,因此车身设计人员需要有坚实的理论基础和丰富的实践经验。汽车车身设计要考虑节能、环保、安全三大主题,也要考虑车身外观的美观性;还要考虑所设计的加工可能性。所以汽车车身设计并不是某一个人能够单独完成的,但是大学生有需要进行此类方面的训练,所以本文以大学生的角度结合大学所学知识并且细化建模方法,为大学生以及汽车catia爱好者提供一个参考。 1车身的catia建模 catia是法国达索公司开发的CAD/CAE/CAM一体化软件。现在的catia软件分为V4和V5两个系列,V4版本应用于UNIX平台,V5版本应用于UNIX和WINDOWS两种平台。V5版本界面更友好、易学、易用、功能强大。catia软件广泛应用于多种行业,软件集成解决方案

catia车身设计流程

基于CATIA平台的车身数字化设计应用 作者:王新宇 车身设计流程 一辆新车从前期调研到后期的批量生产,需要耗费大量的时间和成本,而车身的开发占据整个车型开发的70%,所以车身的开发在整车开发的过程中尤为重要。图1所示为一般的车身开发流程。 图1 车身开发流程 CATIA V5在车身设计流程中的应用 1.车身总布置阶段 汽车车身总布置是其他设计阶段的前提和基础,是汽车设计的最初始的步骤,车身总布置的好坏,在很大程度上决定着车身设计的成败。 车身总布置可以初步确定驾驶室长宽高尺寸、前后风窗位置和角度、发动机罩高度、地板平面高度、前围板位置、座椅布置、内部空间尺寸、方向盘位置角度与操作机构和踏板的相互位置等,对车身的结构设计起控制和指导作用。

图2 CAITA 2D Layou车身应用 在这个过程中,使用CATIA中的2D Layou(LO1)模块进行车身总布置设计,专门用于加速3D概念设计流程,它能够使设计师工作在内置2D绘图功能的3D环境中,使设计师能够工作在一个多视图功能的绘图工作台上。在这里我们可以直接使用2D的人体模型模板,也可以将其转换到三维的设计中。2D人体模板利用CATIA的模板化功能进行定制,并把SAE或其他人体标准规范嵌入到模板中,使其更加符合现实的人体设计。该模块能够调用一切的二维或三维资源到我们的布置中,可以最大程度上利用资源,大大提高效率。如图2所示,图中直接调用目标车型的断面线,利用模板调用二维人体模型,调用三维的座椅模型等进行布置工作。利用2D概念集合图形设计3D模型,利用完整的图纸功能规划3D模型布局,利用遗留图纸启动新项目。 2.产品开发阶段 首先根据所设计车型的规划方向、实现生产车所需的要点及概念,绘制出能使第三者充分认识这些概念的内容和特点的表达设计的草图。 在外观概念草图阶段,可以直接利用FSK模块将造型师的作品(JPG、BMP等格式)直接集成到3D格式中,提供了一个直观工具箱,帮助我们将二维数据直接转化为三维数据。该功能可直接将JPG等图片按照实际尺寸大小摆放到三维空间,使用CATIA的自由曲面和创成式外形设计,绘制出参考线框,生成曲面,直接转换到加工模块对其进行数控编程,以用于后期的油泥制作等阶段的数控加工模型等功能。该功能快捷、方便、直观,不用数

catia实体建模的方法

catia实体建模的方法 发表时间:2013-01-18 08:05 来源:mfcad 作者:daomi 点击:5次 1 引言 随着CAD软件应用的推广,设计人员操作CAD软件的熟练程度也不断提高。但如何高效设计开发产品仍是当前设计人员考虑的问题。使用一种软件进行高效设计是有点难度的,比如复杂的渐开线齿轮齿型建模,目前大多数三维建模系统都不能直接生成齿轮的三维齿廓,一些低端的CAD软件在生成齿形齿廓这一关键步骤时,都是根据给定的齿轮参数,通过β样条曲线等来拟合渐开线。β样条曲线等是由函数关系式所生成的点来控制的,因此这样的样条曲线只是近似的渐开线。但如果利用辅助设计软件CAXA中的高级曲线进行齿轮的二维图形设计,给CATIA实体建模软件提供了精确的二维草图,就可以快速生成齿轮实体模型。本文将以往制作齿轮方法与同时使用两种软件结合设计的方法进行对比,来说明结合使用多种软件设计制作的优越性。 2 齿轮的重要参数 普通的渐开线齿轮有7个基本参数影响齿轮的形状和尺寸:模数m、齿数z、分 度圆压力角d、齿顶高系数h a 、齿根高系数h f 、齿顶系数c;、变位系数x、分 度圆螺旋角β(参数之间的关系如图1)。这些参数中m、z可任意变化;调整x、 h f 、β参数可得到变位齿轮和斜齿轮;如果改变h a 、c可以得到短齿、长齿齿轮; 压力角α的改变可以满足某些特殊齿轮的要求。总之,为了达到齿轮的各项技术要求,就要考虑齿轮各个参数的改变,这些参数与齿轮尺寸、形状、位置之间以各种方程式关联,每个参数的改变都会引起齿轮的改变。

3 渐开线齿轮的生成 3.1 方案1 第一步,生成渐开线齿轮样板在CAXA中选择菜单栏的绘制→高级曲线→选择齿轮,进入渐开线齿轮齿形参数对话框,如图2。 在对话框中键入设计参数:直齿圆柱齿轮齿数z=25,模数m=4,压力角仅=20°,变位系数x=0,由于设计的齿轮为标准齿轮,因此参数一中选择默认。点击下一步进入图3,选择默认,点击完成。齿轮的渐开线样板生成图4。 第二步,CATIA中生成齿轮实体

CATIA逆向工程建模实例

第1章 CATIA逆向工程建模实例 1.1概述 CATIA是法国达索公司的产品开发旗舰解决方案,它可以帮助制造厂商设计他们未来的产品,并支持从项目前阶段、具体的设计、分析、模拟、组装到维护在内的全部工业设计流程。逆向工程建模所使用的只是其中的几个模块,不管是对曲面还是实体,其表现都非常出色。 1.2主要逆向模块功能简介 1.2.1 DSE(Digitized Shape Editor数字编辑器模块)模块 根据输入的点云数据,进行采样、编辑、裁剪以达到最接近产品外形的要求,可生成高质量的三角网格曲面。 1.2.2 QSR(Quick Surface Reconstruction快速曲面重构)模块 根据输入的点云数据或者mesh以后的小三角片体,提供各种方式生成曲线,以供曲面造型,完全非参。 1.2.3 GSD(Generative Shape Design 通用曲面造型)模块 非常完整的曲线操作工具和最基础的曲面构造工具,除了可以完成所有曲线操作以外,可以完成拉伸、旋转、扫描、边界填补、桥接、修补碎片、拼接、凸点、裁剪、光顺、投影和高级投影,以及倒角等功能,连续性最高达到G2,生成封闭片体V olume,完全达到普通三维CAD软件曲面造型功能,比如Pro/E。 1.3应用实例 结合逆向工程原理以及CATIA V5软件,我们给出了两个应用实例,分别说明曲面以及实体的逆向过程。其中,以某零件的模具面作为曲面造型模型,以某工业风扇作为实体造型模型,以上两个模型在工程中均比较常见,具有一定的代表性,其逆向过程包含了大部分的逆向手段和方法,具有一定的参考价值。 1.3.1曲面造型实例 在进行曲面逆向之前,我们需要制定一定的策略对其进行逆向,根据模型自己的特点,我们将其分为以下六个部分(如图1.1所示):顶面、顶槽、凸台、侧面、凹槽和底座。其中,顶面由一张自由曲面构成,顶槽由拉伸面和平面构成,凸台由锥面和平面组成,侧面由

基于CATIA软件的人机工程设计中作业姿态分析

基于CATIA软件的人机工程设计中作业姿态分析[摘要]针对现代制造系统中的手工作业工位,应用CATIA软件的人机工程 设计模块,分析选定人体模型,进行了作业姿态分析。其中包括视野分析、双手伸展域分析、人体姿态评估、快速上肢评价等。提出了作业过程中对设备布局的要求,以及操作人员受到损伤的主要身体部位。 【关键词】CATIA;人机工程;伸展域;上肢评价 引言 随着我国工业化进程的加快,无纸设计、3D数字设计的优越性逐渐凸显。CAD软件已经成为工程技术人员必需掌握的一项技能。运用CAD软件,可很大程度地提高设计人员的工作效率,将许多繁琐的工作直接交由软件处理。CATIA 是由法国达索飞机公司于1975开发的一套三维设计软件,并且随着科学技术的进步不断完善,至今已被广泛应用于汽车制造等行业。CATIA的人机工程设计模块是一个面向对象的系统,它可以使设计者很容易地进行人因工程学方面的设计。利用此软件可以非常方便的将人机工效与厂房布局设计、机械设计等模块有效结合,使设计更加的人性化和合理化[1]。应用CATIA,可以形象模拟现代生产制造系统中操作人员的各项运动姿势和操作状态。从而易于设计人员进行各项人机工程方面的参数规划,同时,其再现和确认功能生产制造的人性化提供一种高效设计方法。 1、CATIA软件概述 CATIA的人机工程设计模块共分为四部分[2]:人体尺寸编辑(Human Measurements Editor)、人体动作分析(Human Activity Analysis)、人体模型建立(Human Model Builder)、人体姿态分析(Human Posture Analysis)。CATIA V5R20内共集成了七个地区的人体模型: American、French、Canadian、Korean、German、Japanese、Chinese(Taiwan)。人体模型创建模块是基于最佳人体模型系统建立的,为确保操作者的正常工作,添加使设计者能够在工作之前实现人体工作状况的详细研究,进行非常精确的人体仿真,虚拟人体与工作环境之间的相互关系。根据不同的设计需求,可以选择不同百分位的人体模型。论文中所设计实验,模型均采用平均尺寸;七种模型中台湾地区的人体尺寸最具有代表性;另外,大部分企业选择女工从事简单重复的轻体力作业,故而分析中选用了50%百分位数的台湾地区女性人体模型进行研究。 2、作业姿态分析 以下便应用CATIA的人机工程设计模块对操作过程中作业人员的动作和姿态进行分析。

基于CATIA-V5的汽车车身逆向设计

基于CATIA V5的汽车车身逆向设计 随着CAD/CAM系统一体化技术的不断发展和市场竞争的日益激烈,先进的设计和制造方法在制造业的地位越来越重要。其中,逆向工程作为一种先进、快捷和实用的现代设计方法在汽车行业得到了广泛的应用,为汽车产品的创新设计,生产周期的缩短和适应新的市场形势提供了基础。本文通过V5软件对汽车车身进行反求,完成了逆向设计中的数据采集及预处理和三维CAD模型的重建,并对在逆向设计过程中遇到的问题提出了相应的解决方案,为逆向设计在汽车制造业中的应用提供了参考过程。 逆向工程(RE,Reverse Engineering),也称为反求工程,即针对已有的产品或零件原型,通过3D数字化测量仪器准确、快速地测量出工件轮廓的三维坐标,把获取的工件坐标数据点存入计算机形成“点云”文件,再利用高端三维软件所提供的功能模块构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计,本质上就是一个“认识原型-再现原形-超越原型”的过程。随着计算机、数控和测量技术的飞跃发展,逆向工程在汽车工业中得到了广泛的应用。本文着重介绍了利用CATIA V5软件对汽车车身的逆向设计过程,对提高汽车外形性能、制造质量以及加工效率,降低开发成本,减轻操作者劳动强度,具有重要意义,这是传统设计和制造方法无法比拟的。 1 逆向工程的关键技术 逆向工程的关键技术主要包括:数据的采集、预处理和三维CAD模型的重建等,它们在整个设计过程中起着至关重要的作用,直接影响到所构造模型的质量以及后续模型的设计分析及其制造加工。 1.1 数据采集与预处理 1.1.1 数据采集 数据采集是数据处理、模型重建的基础。高效率、高精度地采集样件的外形数据是逆向工程的一个重要研究内容。数据采集按采集的接触方式不同分为接触式和非接触式两大类。本文采用基于海克斯康测量技术有限公司生产的GLOBA三坐标测量机,其三维空间精度可以达到1~2μm。测量机的测头沿着位置车身模型的表面连续扫描,把采集的数据存入计算机形成“点云”文件。 针对测量复杂的三维边界曲面利用CMM对待测部位进行数据测量时不能完全到达被测部位的边界。在这里采用柱形侧头单点接触式测量产品边界,保证测准三维边界一个方向(测头方向)上的数据,然后再沿测头方向投影实测边界曲线到延伸后的曲面,利用投影曲面对曲面进行裁剪获得反求模型边界。将测得的点云数据以*.asc(ASCⅡ)格式输出。在CATIA V5软件的DSE模块中,通过Insert|Import cloud导入零件的ASCⅡ文件。导入后形成的原始汽车车身点云如图1所示。 点击图片查看大图

相关主题