搜档网
当前位置:搜档网 › 第五章电极过程和电极过程动力学

第五章电极过程和电极过程动力学

第五章电极过程和电极过程动力学
第五章电极过程和电极过程动力学

5.电极过程和电极过程动力学

5.1电化学装置的可逆性:化学反应可逆性;热力学上可逆性

5.2电极的极化

5.3电极过程的控制步骤:电极反应的特点;电极反应的控制步骤5.4电荷转移动力学方程

5.5交换电流密度与电极反应速度常数

5.6稳态极化时的电极动力学方程

5.7浓差极化及其电机动力学方程

5.8化学极化

分解电压E分:在可逆情况下使电解质有效组元分解的最低电压,称为理论分解电压(V e)。理论分解电压是阳极平衡电极电位(εe(A))与阴极平衡电极电位(εe(K))之差。

Ve=εe(A)- εe(K)(10 - 5)

当电流通过电解槽,电极反应以明显的速度进行时,电极反应将会明显偏离平衡状态,而成为一种不可逆状态,这时的电极电位就是不平衡电位,阳极电位偏正,阴极电位偏负。这时,能使电解质熔体连续不断地发生电解反应所必需的最小电压叫作电解质的实际分解电压。显然,实际分解电压比理论分解电压大,有时甚至大很多。

实际分解电压简称分解电压(V),是阳极实际析出电位(ε(A))和阴极析出电位(ε(K))之差。

V=ε(A)- ε(K)(10 - 6)

当得知阴、阳极在实际电解时的偏离值(称为超电位)就可以算出某一电解质的实际分解电压。

分解电压符合能斯特方程,可以表示为如下形式:

式中 E i,E0分别表示实际和标准状态下组元i的分解电压;

a i__组元的活度;

n i __组元在熔盐中的化合价;

F __ 法拉弟常数;

可以看出,温度和电解质组成均会影响分解电压

电极极化

电解时的实际分解电压比理论分解电压要大很多,这是由于电流通过

电解槽时,电极反应偏离了平衡状态。通常将这种偏离平衡电极电位的现象称为极化现象。电解过程实际分解电压和理论分解电压之差称为超电压。

?电解电极反应一般包含1:

?(1)反应离子由熔体向双电层移动并继续经双电层向电极表面靠近。这一阶段在很大程度上靠扩散实现,扩散则

是由于导电离子在熔体和双电层外界的浓度差别引起的。

?(2)反应离子在电极表面进行电极反应前的转化过程,如表面吸附等;

?(3)在电极上的电子传递 - - 电化学氧化或电化学还原反应;

?(4)反应产物在电极表面进行反应后的转化过程,例如自电极表面的脱附,反应产物的复合、分解和其它化学反

应;

?(5)反应产物形成新相,或反应产物自电极表面向电解质熔体的传递。

电极反应O+ne≒R的电极过程1

超电位概念

在电极反应过程中,总存在一个最慢的限制性环节,决定着整个电极反应过程的动力学。

极化现象是由电化学极化和浓差极化而引起的。

为了定量表述极化的程度,引入超电位Δε的概念。和超电压对应,超电位是指实际电极电位ε和理论电极电位εe之差。

对阳极过程,有

Δε(A)=ε(A)- εe(A)(10 - 8)

对阴极过程,有

Δε(K)=ε(K)- εe(K)(10 - 9)

Δε习惯上常常写成η。超电位越大,表明电极偏离平衡状态越远,即极化程度越大。

超电压(ΔV),就是实际分解电压(V)与理论分解电压(V e)之差值:

ΔV=V - V e

=ε(A)- ε(K)+εe(A)- εe(K)

=ε(A)- εe(A)+ε(K)- εe(K)

=Δε(A)+Δε(K)

=η(A)+η(K)(10 - 10)

电解实践表明,超电位与电流密度有关。电流密度越高,即电流强度越大,其超电位越大。

5.4极化曲线

当电流密度较小时,电极上被氧化或还原的离子消耗不大,扩散能保证向电极表面供应反应物质,反应生成物也能及时排开,这时,电极反应速度决定于电化学速度,过程处于电化学动力学区。当电流密度增大时,电极反应速度随之增大,电流密度越大,电极反应速度增加越多。若电流密度增加到一定值时,会致使扩散速度不能保证向电极表面供应相应数量的反应物质,这时传质因素就限制着电极反应速度,也就是说电极反应反应速度决定于扩散速度,过程处于扩散动力学区。这个最大电流密度叫作极限电流密度。描述电极过程单个电极上电流密度与电极电位关系的曲线称为极化曲线。

电极反应化学动力学曲线大致以图10 - 11中AA线为界,纯扩散动力学区则以BB线为界。在AA线和BB线之间存在混合动力学区。阳极极化曲线原理和阴极极化曲线相同,不同之处是随着电流密度的增高而向正值方向偏离。当电流密度较小时,电极电位偏离平衡电位也较小,电极过程处于电化学动力学区,随电流密度增大,阴极极化值增大,反应速度也增大。当电流密度增加到某一值后,由于扩散不能在单位时间向电极表面供应足够数量的阳离子而开始使电极反应速度变慢。这种阻碍作用随着阴极极化的增大而愈加强烈,电极反应速度也越来越受到扩散的限制。当达到极限电流密度时,扩散速度已达到可能的最大值,极化曲线与横轴平行。这时,再用增大极化的方法已不可能再增大电极反应速度,只能靠采取强化扩散的措施。

图10-11电化学动力学区和扩散动力学区的阴极极化曲线

描述阳离子还原速度与电极电位的示性阴极极化曲线。

第七章电解和极化

一、电解

●是将电能转变为化学能的过程。

●在电极上有新的物质产生。(一般为单质)

●如果不考虑电解过程中,电流损失的现象,那么在熔盐电解时,

也遵循法拉第定律。

●电化当量:在工业上用通过1安培小时电量在电极上析出物质

的克数来表示该物质的电化当量。

电流效率

●定义;在电极上通过一定的电量,实际的金属产量与理论金属

产量之比。或:在电极上析出一定的金属,理论上所需用电量

与实际用电量之比。

●在实际电解过程中,电流效率一般都低于 100%,有的甚至只

有 50~70%。为什会出现这种偏差呢?原因大约有三个方面:

●(1)电解产物的逆溶解损失;

● (2)电流空耗;

● (3)几种离子共同放电。

●在这三种损失中,第一种形式的电流损失是主要的。

电流效率降低的原因

1.电解产物的溶解与损失:阴极上析出的铝一部分溶解在电解质

里,转移到阳极附近,被阳极气体氧化,引起电流效率降低。

2.电流空耗:

●①离子不完全放电;例如,Al3++2e→A1+和Mg2++e→Mg+低价离子

仍然存在于电解质中,由于挥发或歧化等原因而造成电流空耗。

电极过程动力学 电化学

吸附对电极/溶液界面性质的影响: ①在电极/溶液界面上不但有静电吸附,而且有特性吸附,只有当电极表面剩余电荷足够多时,静电吸附足够大时,特性吸附才消失; ②当电极表面发生吸附时,电毛细管曲线和微分电容发生变化; ③由于静电吸附和特性吸附共同存在,会出现超载吸附与三电层结构; ④无特性吸附时,分散层电位与紧密层电位方向相同,当有阴离子特性吸附时,紧密层与分散层方向相反。

电极过程——电极表面附近薄液层中进行的过程与电极表面上发生的过程的总称。 电极过程单元步骤: ①液相传质——反应粒子向电极表面传递; ②表面转化(前置)——反应粒子在电极表面或附近液层发生某些转化; ③电化学——反应粒子在电极/溶液界面得到电子或失去电子; ④表面转化(后置)——反应产物在电极表面或附近液层发生某些转化; ⑤a、新相生成——反应产物不溶时,反应产物生成新相; b、液相传质——反应产物可溶时,产物粒子从电极表面向溶液中或溶液电极内部迁移。电极极化——电流通过电极时,电极电势偏离平衡电极电势的现象。 过电势——表示某一电流密度下极化电势与平衡电势之差。 ①阳极过电势: ②阴极过电势: 控制步骤——电极过程中最慢的单元步骤。 极化曲线——电极上电势随电流密度变化的关系曲线。 传质过程(溶液): ①对流——物质粒子随液体流动而移动。 A、自然对流——液体各部分之间由于存在浓度差或温度差产生的密度差或密度梯度而产生的对流; B、强制对流——通过搅拌而引起的对流。 ②扩散——溶液中某一组分由于存在浓度梯度(或化学势梯度)而发生该组分向减少这种梯度的方向转移的过程。 ③电迁移——带电粒子在电场梯度或电势梯度的作用下而引起的迁移过程。 扩散层——通过电流时,由于物质迁移缓慢而引起浓度发生扩散的液层。 稳态扩散——溶液中任意一点的浓度不再随时间变化的扩散过程。 (扩散速度与时间无关,反应粒子浓度分布只与空间有关,扩散层厚度一定) 非稳态扩散——溶液中任意一点的浓度随时间变化的扩散过程。 (反应粒子浓度同时是空间和时间的函数,扩散层厚度随时间变化) 扩散电流密度——由带电粒子的扩散引起的电流。 极限扩散电流密度——电极反应所能达到的最大电流密度。

电极过程动力学

电极过程动力学 一、实验目的 通过对铜电极的阳极极化曲线和阴极极化曲线的测定,绘制出极化曲线图,从而进一步加深对电极极化原理以及有关极公曲线理论知识的理解。通过本实验,熟悉用恒电流法测定极化曲线。 二、实验原理 当电池中由某金属和其金属离子组成的电极处于平衡状态时,金属原子失去电子变成离子获得电子变成原子的速度是相等的,在这种情况下的电极称为平衡电极电位。 电解时,由于外电源的作用,电极上有电流通过,电极电位偏高了平衡位,反应以一定的速度进行,以铜电极Cu|Cu2+为例,它的标准平衡电极电位是+0.337V,若电位比这个数值更负一些,就会使Cu2+获得电子的速度速度增加,Cu失去电子的速度减小,平衡被破坏,电极上总的反应是Cu2+析出; 反之,若电位比这个数值更正一些,就会使Cu失去电子的速度增加,Cu2+获得电子的速度减小,电极上总的反应是Cu溶解。这种由于电极上有电流通过而导致电极离开其平衡状态,电极电位偏离其平衡的现象称为极化,如果电位比平衡值更负,因而电极进行还原反应,这种极化称为阴极极化,反之,若电位比平衡值更正,因而电极进行氧化反应,这种极化称为阳极极化。 对于电极过程,常用电流密度来表示反应速度,电流密度愈大,反应速度愈快。电流密度的单位常用安培/厘米2,安培/米2。 由于电极电位是影响影响电流密度的主要因素,故通常用测定极化曲线的方法来研究电极的极化与电流密度的关系。 一、实验方法及装置 本实验电解液为CuSO4溶液(溶液中CuSO4.5H2O浓度为165g/l,H2SO4 180g/l);电极用φ=0.5mm铜丝作为工作电极,铂片电极作为辅助电极。为了测得不同电流密度下的电极电位,以一个甘汞电极与被测电极组成电池,甘汞电极通过盐桥与被测电极相通,用CHI660B电化学工作站测得不同电流密度下对应的阴极或阳极极化曲线。

过程控制系统论文关于过程控制的论文

过程控制系统论文关于过程控制的论文 高炉TRT过程控制系统的研究与应用 摘要:TRT为高炉煤气余压能量回收透平发电装置的简称,它是把高炉出口煤气中所蕴含的压力能和热能,通过透平膨胀机作功,驱动发电机发电的一种能量回收装置。从而达到节能、降噪、环保的目的,具有很好的经济效益和社会效益,是目前现代国际、国内钢铁企业公的节能环保装置。TRT机组运行的关键是:在任何时刻,都不能影响高炉的炉顶压力。 关键词:PLC;可靠性;PID;自动控制 1 概述 TRT为高炉煤气余压能量回收透平发电装置的简称,它是把高炉出口煤气中所蕴含的压力能和热能,通过透平膨胀机作功,驱动发电机发电的一种能量回收装置。从而达到节能、降噪、环保的目的,具有很好的经济效益和社会效益,是目前现代国际、国内钢铁企业公认的节能环保装置。 2 高炉TRT过程控制系统工艺简介 目前,作为我国高炉节能、降噪、环保的能量回收装置TRT,不可避免在运行过程中出现紧急停机现象。特别是目前高炉普遍的塌料现象,如果对于系统的过程控制方案采取不当,将会导致高炉炉顶压力迅间增大,以至“憋压”。当压力超上限,就迫使TRT紧急跳车,使机组及时的退出静叶对高炉顶压的自动调节。当快切阀门关闭以后,调节高炉顶压的控制权就交给两个液压伺服控制的旁通阀(快开阀)。在国内TRT的发展历史上,由于所选择的控制系统方案不当而导致了多次事故的发生,一般情况下很容易将透平止推瓦损坏,更为严重的是由于炉顶压力的迅间增大,给高炉造成了极大的危险和危害,以至被迫停炉,影响了生产。 3 关键技术 通过参照TRT工艺的要求,对机组紧急停机时的高炉顶压调节采取了前馈-反馈(FFC-FBC)控制方案。该控制方案综合了前馈控制与反馈控制的优点,将反馈控制不易克服的干扰(高炉煤气流量)进行前馈控制,快速打开旁通阀,使高炉煤气形成畅通。但是由于前馈控制属于开环控制,尽管可以消除这一不安全因素,但不能完全保证顶压稳定,如果顶压波动较大,势必影响高炉生产,因此就对该过程采取了前馈-反馈控制(也称为复合控制)。机组发电运行阶段,高炉顶压的控制权交给了透平静叶,具有一定的干扰。如果不选择合适的控制方案,则也将影响高炉炉顶压力。为了提高系统的抗干扰能力,我们对这一过程采取了串级控制通过静叶来调节高炉顶压,目前,在国内很多公司TRT控制设备通常在TRT自动投入的时候,通常采取顶压功率复合控制,他们把功率PID调节器输出与顶压PID调节器输出的最小值作为顶压功率复合调节的输出。这种控制方案的实施在抗干扰能力方面稍逊于串级控制思想方案的调节。因为一般在设备运行过程中,高炉煤气发生量随时变化,除此之外,煤气的温度及透平入口的压力也时刻在发生变化,这将会造成静叶的开度时刻的改变,这就是调节过程中产生的干扰因素。为此要克服对高炉顶压调节的干扰,采取串级控制回路调节是山东莱钢银前1000m3高炉TRT系统控制的一大亮点。这种调节方案的实施稳定的调节高炉的炉顶压力,设备运行稳定,也给操作人员带来了便利。从高炉TRT串级调节系统方框途中可以看出,该系统有两个环路,一个内环(副环)和一个外环(主环)。PID调节器是主调节器,伺服控制器是副调节器。主被控变量为高炉炉顶压力,透平静叶的开度为副变量。主控制器的输出是副控制器的给定,而副控制器的输出直接送到电液伺服阀。在该串级控制系统中,主环是一个定值控制系统,而副回路是一个随动系统。对于本系统采取串级控制思路有如下好处:首先,从TRT系统的串级调节方框图上可以看出,由于副回路的存在,改善了对象(高炉炉

热工过程控制系统

热工过程控制系统 第一章 过程控制系统概述 1.1过程控制定义及认识 1.2过程控制目的 *1.3过程控制系统的组成 1.4过程控制系统的特点 *1.5过程控制系统的分类 *1.6过程控制性能指标 1.7 过程控制仪表的发展 1.8 过程控制的地位 1.9 过程控制的任务 1.1过程控制定义及认识 过程控制定义 所谓过程控制(Process Control )是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。 1.3 过程控制系统组成 被控过程(Process ), 指运行中的多种多样的工艺生产设备; 过程检测控制仪表(Instrumentation ), 包括: 测量变送元件(Measurement ); 控制器(Controller ); 执行机构(Control Element ); 显示记录仪表 1.5 过程控制系统的分类 按系统的结构特点来分::反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统) 按给定值信号的特点来分: 定值控制系统,随动控制系统,程序控制系统 性能指标: 对自动控制系统性能指标的要求主要是稳、快、准。 最大超调量σ%反映系统的相对稳定性,稳态误差ess 反映系统的准确性,调整时间ts 反映系统的快速性。 第三章 过程执行器 主要内容 执行器 电动执行器 气动执行器 调节阀及其流量特性 变频器原理及应用 本节内容在本课程中的地位 执行器用于控制流入 或流出被控过程的物 料或能量,从而实现 对过程参数的自动控 制。 3.1 调节阀(调节机构)结构 调节阀是一个局部阻力可以改变的节流元件。由于阀芯在阀体内移动,改变了阀芯与阀座之 间的流通面积,即改变了阀的阻力系数,被调介质的流量也就相应地改变,从而达到调节工艺参数的目的。 3.1 调节阀 功能:接受控制器输出的控制信号,转换成直线位移或角位移,来改变调节阀的流通截面积。 3.1.1 调节阀的组成 要求观察 思考调节变换 显示记录调节给定值执行机构检测 仪表记录仪显示器调节器控制器测量变送被控过程 执行器r(t)e(t)u(t)q(t)f(t)y(t)z(t)-控制器 测量变送 被控过程 执行器 r ( t ) e ( t ) u ( t ) q ( t ) f ( t ) y ( t ) z ( t ) -

第五章电极过程和电极过程动力学讲解学习

第五章电极过程和电极过程动力学

5.电极过程和电极过程动力学 5.1电化学装置的可逆性:化学反应可逆性;热力学上可逆性 5.2电极的极化 5.3电极过程的控制步骤:电极反应的特点;电极反应的控制步骤5.4电荷转移动力学方程 5.5交换电流密度与电极反应速度常数 5.6稳态极化时的电极动力学方程 5.7浓差极化及其电机动力学方程 5.8化学极化 分解电压E分:在可逆情况下使电解质有效组元分解的最低电压,称为理论分解电压(V e)。理论分解电压是阳极平衡电极电位(εe(A))与阴极平衡电极电位(εe(K))之差。 Ve=εe(A)- εe(K)(10 - 5) 当电流通过电解槽,电极反应以明显的速度进行时,电极反应将会明显偏离平衡状态,而成为一种不可逆状态,这时的电极电位就是不平衡电位,阳极电位偏正,阴极电位偏负。这时,能使电解质熔体连续不断地发生电解反应所必需的最小电压叫作电解质的实际分解电压。显然,实际分解电压比理论分解电压大,有时甚至大很多。

实际分解电压简称分解电压(V),是阳极实际析出电位(ε(A))和阴极析出电位(ε(K))之差。 V=ε(A)- ε(K)(10 - 6) 当得知阴、阳极在实际电解时的偏离值(称为超电位)就可以算出某一电解质的实际分解电压。 分解电压符合能斯特方程,可以表示为如下形式: 式中 E i,E0分别表示实际和标准状态下组元i的分解电压; a i__组元的活度; n i __组元在熔盐中的化合价; F __ 法拉弟常数; 可以看出,温度和电解质组成均会影响分解电压 电极极化

电解时的实际分解电压比理论分解电压要大很多,这是由于电流通过电解槽时,电极反应偏离了平衡状态。通常将这种偏离平衡电极电位的现象称为极化现象。电解过程实际分解电压和理论分解电压之差称为超电压。 ?电解电极反应一般包含1: ?(1)反应离子由熔体向双电层移动并继续经双电层向 电极表面靠近。这一阶段在很大程度上靠扩散实现,扩 散则是由于导电离子在熔体和双电层外界的浓度差别引 起的。 ?(2)反应离子在电极表面进行电极反应前的转化过 程,如表面吸附等; ?(3)在电极上的电子传递 - - 电化学氧化或电化学还 原反应; ?(4)反应产物在电极表面进行反应后的转化过程,例 如自电极表面的脱附,反应产物的复合、分解和其它化 学反应; ?(5)反应产物形成新相,或反应产物自电极表面向电 解质熔体的传递。

热工过程控制系统

热工过程控制系统 第一章 过程控制系统概述 1.1过程控制定义及认识 1.2过程控制目的 *1.3过程控制系统的组成 1.4过程控制系统的特点 *1.5过程控制系统的分类 *1.6过程控制性能指标 1.7 过程控制仪表的发展 1.8 过程控制的地位 1.9 过程控制的任务 1.1过程控制定义及认识 过程控制定义 所谓过程控制(Process Control )是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。 1.3 过程控制系统组成 被控过程(Process ), 指运行中的多种多样的工艺生产设备; 过程检测控制仪表(Instrumentation ), 包括: 测量变送元件(Measurement ); 控制器(Controller ); 执行机构(Control Element ); 显示记录仪表 1.5 过程控制系统的分类 按系统的结构特点来分::反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统) 要求 观察 思考 调节变换显示记录调节给定值 执行 机构检测仪表 记录仪显示器调节器 控制器 测量变送 被控过程 执行器 r(t)e(t) u(t) q(t) f(t) y(t) z(t) -

按给定值信号的特点来分: 定值控制系统,随动控制系统,程序控制系统 性能指标: 对自动控制系统性能指标的要求主要是稳、快、准。 最大超调量σ%反映系统的相对稳定性,稳态误差ess 反映系统的准确性,调整时间ts 反映系统的快速性。 第三章 过程执行器 主要内容 执行器 电动执行器 气动执行器 调节阀及其流量特性 变频器原理及应用 本节内容在本课程中的地位 执行器用于控制流入 或流出被控过程的物 料或能量,从而实现 对过程参数的自动控 制。 3.1 调节阀(调节机构)结构 调节阀是一个局部阻力可以改变的节流元件。由于阀芯在阀体内移动,改变了阀芯与阀座之间的流通面积,即改变了阀的阻力系数,被调介质的流量也就相应地改变,从而达到调节工艺参数的目的。 3.1 调节阀 功能:接受控制器输出的控制信号,转换成直线位移或角位移,来改变调节阀的流通截面积。 3.1.1 调节阀的组成 执行机构:执行机构是指根据控制器控制信号产生推力或位移的装置; 控制器 测量变送 被控过 程 执行器 r ( t ) e ( t ) u ( t ) q ( t ) f ( t ) y ( t ) z ( t ) -

电化学原理简答题

第三章电极/溶液界面的结构与性质 1.为什么电毛细曲线是具有极大值的抛物线形状? 溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。 2.标准氢电极的表面剩余电荷是否为零? 不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外, 还有吸附双电层\偶极子双电层\金属表面电位。 3.影响双电层结构的主要因素是什么?为什么? 静电作用和热运动。静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。 4.什么叫Ψ1电位?能否说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关?Ψ1电位的符号是否总是与双电层总电位的符号一致?为什么? 距离电极表面d处的电位叫Ψ1电位。不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。当发生超载吸附时Ψ1电位的符号与双电层总电位的符号不一致。 5.简要概括电极/溶液界面发展的四个阶段、优缺点及其主要内容。 ①亥姆赫兹紧密双电层模型: 主要内容:将双电层比作是平行板电容器 优点:a能够解释界面张力随电极电位变化 b能够解释微分电容曲线上所出现的平台区域 缺点:a解释不了界面电容随电极电位和溶液总浓度的变化规律 b解释不了在稀溶液中,零电荷电位下微分电容最小等实验事实 ②Gouy和Chapman分散层模型: 主要内容:溶液中的离子在静电作用和热运动作用下,按位能场中粒子的波尔兹曼分配律分布,完全忽略紧密层,只考虑分散层。 优点:a能较好解释微分电容最小值的出现 b能较好解释电容随电极电位的变化规律 缺点:a理论计算微分电容值与实验事实相差太大 b解释不了微分电容曲线上的“平台区”的出现 ③Stern模型(双电层静电模型): 主要内容:双电层由紧密层和分散层两部分组成。 优点:a说明了微分电容随电极电位绝对值和溶液总浓度增大而增加的原因 b从理论上估算表征分散层特征的某些重要参数

电极过程概述

电极过程概述 ——《电化学原理》 李荻

电极过程 ?概念:在电化学中,把发生在电极/溶液界面上的电极反应、化学转化和电极附近液层中的传质作用等一系列变化的总和称为电极过程。 ?电极过程动力学:有关电极过程的历程、速度及其影响因素的研究就称为电极过程动力学。

一、电极的极化现象 ?概念:有电流通过时电极电位偏离平衡电位的现象。 ?实验表明,在电化学体系中,发生电极极化时,阴极的电极电位总是变得比平衡电位更负,阳极的电极电位总是变得比平衡电位更正。因此,电极电位偏离平衡电位向负移为阴极极化,向正移称为阳极极化。

过电位 ?过电位:在一定的电流密度下,电极电位与平衡电位的差值称为该电流密度下的过电位。η=ψ-ψ平 ?过电位是表征电极极化程度的参数。习惯上取过电位为正值,因此规定阴极极化时ηc=ψ平-ψc;阳极极化时ηa=ψa-ψ平 ?把电极在没有电流通过时的电位称为静止电位ψ静,把有电流通过时的电位(极化电位)与静止电位的差值称为极化值,Δψ?Δψ=ψ-ψ静

二、电极极化的原因 ?有电流通过时,一方面,电子的流动,在电极表面积累电荷,使电极电位偏离平衡状态,即极化作用;另一方面,电极反应,吸收电子运动所传递过来的电荷,使电极电位恢复平衡状态,即去极化作用。电极性质的变化就取决于极化作用和去极化作用的对立统一。 ?实验表明,电子的运动速度往往是大于电极反应速度的,因而通常是极化作用占主导地位。 ?有电流通过时,阴极上由于电子流入电极的速度大,造成负电荷的积累;阳极上由于电子流出电极的速度大,造成正电荷的积累。因此阴极电位向负移动,阳极电位向正移动,都偏离了原来的平衡状态,产生所谓的“电极的极化” 现象。

第五章电极过程和电极过程动力学

5.电极过程和电极过程动力学 5.1电化学装置的可逆性:化学反应可逆性;热力学上可逆性 5.2电极的极化 5.3电极过程的控制步骤:电极反应的特点;电极反应的控制步骤5.4电荷转移动力学方程 5.5交换电流密度与电极反应速度常数 5.6稳态极化时的电极动力学方程 5.7浓差极化及其电机动力学方程 5.8化学极化 分解电压E分:在可逆情况下使电解质有效组元分解的最低电压,称为理论分解电压(V e)。理论分解电压是阳极平衡电极电位(εe(A))与阴极平衡电极电位(εe(K))之差。 Ve=εe(A)- εe(K)(10 - 5) 当电流通过电解槽,电极反应以明显的速度进行时,电极反应将会明显偏离平衡状态,而成为一种不可逆状态,这时的电极电位就是不平衡电位,阳极电位偏正,阴极电位偏负。这时,能使电解质熔体连续不断地发生电解反应所必需的最小电压叫作电解质的实际分解电压。显然,实际分解电压比理论分解电压大,有时甚至大很多。

实际分解电压简称分解电压(V),是阳极实际析出电位(ε(A))和阴极析出电位(ε(K))之差。 V=ε(A)- ε(K)(10 - 6) 当得知阴、阳极在实际电解时的偏离值(称为超电位)就可以算出某一电解质的实际分解电压。 分解电压符合能斯特方程,可以表示为如下形式: 式中 E i,E0分别表示实际和标准状态下组元i的分解电压; a i__组元的活度; n i __组元在熔盐中的化合价; F __ 法拉弟常数; 可以看出,温度和电解质组成均会影响分解电压 电极极化 电解时的实际分解电压比理论分解电压要大很多,这是由于电流通过

电解槽时,电极反应偏离了平衡状态。通常将这种偏离平衡电极电位的现象称为极化现象。电解过程实际分解电压和理论分解电压之差称为超电压。 ?电解电极反应一般包含1: ?(1)反应离子由熔体向双电层移动并继续经双电层向电极表面靠近。这一阶段在很大程度上靠扩散实现,扩散则 是由于导电离子在熔体和双电层外界的浓度差别引起的。 ?(2)反应离子在电极表面进行电极反应前的转化过程,如表面吸附等; ?(3)在电极上的电子传递 - - 电化学氧化或电化学还原反应; ?(4)反应产物在电极表面进行反应后的转化过程,例如自电极表面的脱附,反应产物的复合、分解和其它化学反 应; ?(5)反应产物形成新相,或反应产物自电极表面向电解质熔体的传递。

过程控制系统(1)

第一章过程控制系统概述 1.五大参量:温度、压力、流量、物位(液位)、成分 2.过程控制系统的组成:控制器,执行器,被控过程和测量变送等组成;除被控对象外都是变送单元。 过程控制系统由两大部分组成:过程仪表和被控对象 过程控制系统由三大部分组成:检测变送单元,控制器,被控对象。 系统中的名词术语: 1)被控过程:生产过程中被控制的工艺设备或装置(即从被控参数检测点至调节阀之间的管道或设备)。 2)检测变送器:检测量转换为统一标准的电信号。 3)调节器(控制器):实时地对被控系统施加控制用。 4)执行器:将控制信号进行放大以驱动调节阀。 5)被控参数:被控过程内要求保持稳定的工艺参数。 6)控制参数:使被控参数保持期望值的物料量或能量。 7)设定值:被控参数的预定值。 8)测量值:测量变送器输出的被控参数值。 9)偏差:设定值与测量值之差。 10)扰动作用:作用于被控对象并引起被控变量变化的作用。 11)控制作用:调节器的输出(控制调节阀的开度)。 控制器,执行器和检测变送环节称为过程仪表;过程控制系统由过程仪表和被控过程组成。 3.性能指标:包含了对控制系统的稳定性、准确性和快速性三方面的评价。 稳态误差ess:描述系统稳态特性的唯一指标(静态指标)。 衰减比n:n<1,表示过渡过程为发散振荡;

n=1,表示过渡过程为等幅振荡; n>1,表示过渡过程为衰减振荡。 一般为4:1-10:1,4:1为理想指标,也是用来调试的。 前馈,反馈控制特点 (1)反馈控制系统: 根据系统被控参数与给定值的偏差进行工作;是按照偏差进行调节,达到减小或消除偏差的目的;偏差值是系统调节的依据;可以有多个反馈信号;属于闭环控制系统。 (2)前馈控制系统: 根据扰动大小进行控制,扰动是控制的依据;控制及时; 属于开环控制系统; 实际生产中不采用 第二章过程检测仪表 控制器输出: 1.电动仪表:4-20mA,DC(远距离);1-5V,DC(短距离) 气动仪表:20-100Kpa(100m) 直流电流4-20mA,空气压力20-100Kpa为通用标准信号。 由通讯方式划分电流二线制、四线制。区别:二线制信号线和电源线在一个回路。 2.数字滤波:测量信号噪声(干扰)的滤波,消除低频干扰。 (1)算术平均值滤波:周期性等幅振荡的干扰; (2)程序判断滤波:滤除随机干扰; (3)中位值法滤波:去掉方波脉冲; (4)一阶惯性滤波:滤掉高频。 .热电偶冷端补偿: 补偿条件:只有当热电偶冷端温度保持不变时,热电势才是被测温度的单值函数:E(T,0)=E(T,T0)+E(T0,0) 只有将冷端温度保持为0℃,或者进行一定的修正才能得到准确的测量结果,并称之为热电偶冷端温度补偿。

实验八旋转圆盘电极法测定电极过程动力学参数肖时英修订版

实验八旋转圆盘电极法测定电极过程动力学参数肖时英修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

实验八旋转圆盘电极法测定电极过程动力学参数 王法星 11210220045 同组人:肖时英王春邓陶丽 一、目的要求 1.了解圆盘电极在旋转时的特点,掌握该实验的基本原理。 2.测定Fe(CN) 64-/Fe(CN) 6 3-体系中反应粒子的扩散系数(D)、交换电流密度(i )、阴极 反应传递系数(α)和阳极反应传递系数(β)。 二、实验原理 旋转圆盘电极的结构是将圆柱电极材料镶嵌在聚四氟乙烯棒中,一端呈圆盘状的平面作为反应面,,另一端则连接马达。当电极经马达带动以一定速率旋转时,在电极附近的液体必定会发生流动。在一定条件下,旋转圆盘电极附近的液体处于层流状态时,液体的流动可以分解成三个方向: 1.由于电极旋转而产生的离心力,使液体在径向以V 径 速度向外流动; 2.由于液体的粘滞性,在旋转圆盘电极的平面以一定的角速度转动时,液体就要以 V 切 速度向圆盘的切向流动; 3.由于电极附近的液体向外流动,使电极中心区的液体压力下降,从而使得电极表 面较远的液体以V 轴 速度向中心流动。 根据流体动力学的计算,可以得出液体处于层流时,上述流动速度的数学表达式为:

V r F()ωξ=径 (1) V r G()ωξ=切 (2) V )ξ=轴 (3) 上三式中,r 是离电极轴心的径向距离,ω是电极旋转的角速度(等于2πN ,N 为每秒钟的旋转数),?是液体的运动粘度(等于粘度/密度,单位是cm 2/s),ξ是一个无因次比值(等于(ω/?)1/2Z ,Z 是离电极表面的轴向距离)。F 、G 和H 三个函数值与ξ的关系可见图1。 图1 F 、G 和H 函数值与ξ的关系 从图1可知,当ξ=3.6时,F 、G 函数值已接近于零,而H 函数则接近定值(-0.866),在此情况下,V 径=V 初=0。人们通常将ξ=0.36时所对应的Z 值,定义为流体动力学层的边界厚度,用δPr 表示,即 Pr δ= (4) 当Z>δPr 时,液体基本上只作轴向流动,在Z>>δPr 时, V =-轴(5) 当Z<δPr 时,液体在径向和切向的流速都不可忽略。由于圆盘旋转时,其边缘区液体流动情况复杂,所以圆盘必须处在整个圆盘的中心,圆盘的半径也要比电极的大好几倍,以忽略边缘效应对研究电极下液体流动的影响。

过程控制系统的简介

过程控制系统 过程控制的主要控制对象: 温度(Temperature),压力(Pressure),液位(Liquid level), 成分(Component)和物性(Physical property)等参数 控制系统首要的要求: 系统稳定性,所有参数必须保证系统能够运行正常且具有一定的稳定裕度,通常可取衰减比作为稳定指标,随动系统,常取衰减比为10:1;定值系统常取衰减比为4:1; 过程控制的任务: 在了解,掌握生产工艺和系统综合指标的要求基础上,根据安全性、稳定性、经济性的要求,应用控制理论、最优控制、系统论的理论知识对系统进行分析与设计,提出合理的控制方案,设计报警和联锁保护系统,选择最优的控制器参数及生产过程现场调试方案等! 过程控制系统的基本要求: ○1安全性:一个控制系统的必要条件,无安全性保证不谈控制系统 ○2稳定性:如何有效抑制或减小系统外部干扰,保持生产过程长期稳定运行的是设计控制系统的要求 ○3经济性:随着市场竞争力以及资源匮乏的情况下,在满足安全性及稳定性的前提下,要求控制系统低成本,高效益 过程控制系统的组成: ○1被控对象(过程):指需要控制的生产过程、设备或装置。如锅炉锅筒、水槽 ○2被控变量(被控量):被控对象中要控制的某个物理量或生产过程中的某个参数,如加热炉的温度、水槽的液位 ○3检测和变送器:用于检测被控对象的被控量,并将检测信号转换为统一标准电信号输出 ○4控制器(调节器):将检测信号与设定值信号进行比较,产生偏差信号,按一定的控制规律对偏差信号进行运算,产生控制信号输出到执行器 ○5执行器:将控制信号进行放大,转换为控制操纵变量的执行信号,以驱动控制阀。气动调节阀,电动调节阀 ○6控制阀:接受执行器的输出信号变换为控制进给量。有气开阀和气关阀○7干扰:凡是影响被控量的各种作用信号称为干扰或者扰动,内干扰,外干扰 ○8偏差:被控量的给定量与实际量之差,但能够直接得到的信号是被控量的测量值,通常把给定值与测量值之差成为偏差 ○9辅助装置:报警装置,连锁保护装置 过程控制系统的特点: 1.被控对象的多样性:过程控制设计各个工业领域(如石油,化工,冶金, 机械,电力,建材等领域) 2.对象特性的难辨性:过程控制被控对象的内在机理较为复杂,具有严重的 非线性,具有多变量过程,要想完全从机理上揭示其内在规律,几乎不可能,所以,根据过程输入、输出数据确定过程模型的结构和参数的系统辨识方法建模,构成白箱模型,黑箱模型和灰箱模型。

研究生电极过程与动力学考试试题及答案

一列举上课学过的有关电化学术语 1.1工作电极、参比电极、辅助电极、开路电势、背景极限、法拉第过程、非法拉第过程 1.2理想极化电极、双电层、电压阶跃、电流阶跃、电势扫描 1.3理想非极化电极 1.4能斯特反应 交流阻抗、循环伏安、稳态电流、支持电解质、物质传递、电荷传递、液接电势、准可逆过程、不可逆过程 二、下图是电化学测量常用的二电极体系,画出该体系的等效电路,导出该等效电路施加一个电位阶跃信号时电流-时间关系议程并作图。 What is the equivalent circuit of Fig3? What is the current response when a potential step is applied to this cell? C d和C SCE的串联电容C T=C d·C SCE/( C d +C SCE),通常C SCE》C d的所以C T≈C d,所以在此线可忽略C SCE 电荷q和施加的电压E C之间函数: 在任意时间内,总电压等于电阻上的电压E R和电容器上的电压E C 若假设电容器开始并不荷电(t=0,q=0) 微分后得到 因此,施加一个电势阶跃,电流随时间呈指数衰减 三、推导可逆反应O + ne = R 的初始浓度为零时阴极还原的稳态电流-电位方程并作图。

由 当 由于E1/2与物质的浓度无关,因而是O/R体系的特征参数 故 用lg[(i l-i)/i] 对E作图,得到一条斜率为nF/2.3RT的直线,截距为E1/2 四、根据Butler-Volmer方程导出电荷传递电阻表达式和Tafel方程。 没有物质传递影响的情况,如果溶液被充分搅拌,或电流维持在很小值时,表面浓度与本体浓度没有较大差别令f=F/RT (1)当η→0时,e x≈1+x ∴i=i0{(1-αfη)—[1+(1-α)fη]}=- i0fη -η/i有电阻的量纲,常称为电荷转移电阻Rct ∴Rct= -η/i = 1/i0f =RT/Fi0 (2)当η→∞时,在很负的过电势时e-αfη》e (1-α)fη ∴i= i0e-αfηlni=lni0 –αfη = + =a+ blgi 即Tafel方程为η=a+ blgi 五、列举三个参比电极并讲述其中一个制作过程 标准氢电极、甘汞电极、银|氯化银电极、汞|氧化汞电极、汞|硫酸汞电极 电解法制备“银|氯化银电极” 取银丝一根,用丙酮除油,再用3N HNO3溶液浸蚀,用蒸馏水洗净后放在0.1mol/L HCl溶液中进行阳极氧化,用金属铂作阴极,电解阳极电流密度为0.4mA/cm2,时间是30min,氧化后氯化银电极呈紫色,用蒸馏水洗净后便可装入参比电极管中备用。

相关主题