搜档网
当前位置:搜档网 › 实验二-时域采样与频域采样及MATLAB程序

实验二-时域采样与频域采样及MATLAB程序

实验二-时域采样与频域采样及MATLAB程序
实验二-时域采样与频域采样及MATLAB程序

实验二 时域采样与频域采样

一 实验目的

1 掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解

2 理解频率域采样定理,掌握频率域采样点数的选取原则

二 实验原理

1 时域采样定理

对模拟信号()a

x t 以T 进行时域等间隔采样,形成的采样信号的频谱?()a X j Ω会以采样角频率2()s s T

πΩΩ=为周期进行周期延拓,公式为:

利用计算机计算上式并不容易,下面导出另外一个公式。

理想采样信号?()a x

t 和模拟信号()a x t 之间的关系为: ?()()()a a n x

t x t t nT δ+∞

=-∞=-∑ 对上式进行傅里叶变换,得到:

?()[()()()()j t j t a a a n n X j x t t nT e dt x t t nT e dt δδ+∞+∞+∞+∞-Ω-Ω-∞-∞=-∞=-∞Ω=-=-∑∑??

在上式的积分号内只有当t nT =时,才有非零值,因此:

?()()jn T a

a n X j x nT e +∞-Ω=-∞Ω=∑

上式中,在数值上()()a x nT x n =,再将T ω=Ω代入,得到:

?()()()jn j a

a T T n X j x n e X e ωωωω+∞-=Ω=Ω=-∞Ω==∑

上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变

量ω用T Ω代替即可。

2 频域采样定理

对信号()x n 的频谱函数()j X e ω在[0,2π]上等间隔采样N 点,得到 2()()j k N X k X e ωπω== 0,1,2,

,1k N =-

则有: ()[()][

()]()N N N i x n IDFT X k x n iN R n +∞=-∞==+∑

即N 点[()]IDFT X k 得到的序列就是原序列()x n 以N 为周期进行周期延拓后的主值序列, 因此,频率域采样要使时域不发生混叠,则频域采样点数N 必须大于等于时域离散信号的长度M (即N M ≥)。在满足频率域采样定理的条件下,()N x n 就是原序列()x n 。如果N M >,则()N x n 比原序列()x n 尾部多N M -个零点,反之,时域发生混叠,()N x n 与()x n 不等。

对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。在数字信号处理中,都必须服从这二个定理。

三 实验内容

1 时域采样定理的验证

给定模拟信号0()sin()()t a x t Ae t u t α-=Ω,式中,A=444.128

,α=

,0/rad s Ω=,其幅频特性曲线如下图示:

f/Hz |x a (j f )|x a (t)的幅频特性曲线

选取三种采样频率,即1s F kHz =,300Hz ,200Hz ,对()a x t 进行理想采样,得到采

样序列:0()()sin()()nT a x n x nT Ae nT u nT α-==Ω。观测时间长度为64p T ms =。分别绘出三种采样频率得到的序列的幅频特性曲线图,并进行比较。

2 频域采样定理的验证

给定信号:1013()2714260n n x n n

n others

+≤≤??=-≤≤???,对()x n 的频谱函数()j X e ω在 [0,2π]上分别等间隔采样16点和32点,得到16()X k 和32()X k ,再分别对16()X k 和32()X k 进行IDFT ,得到16()x n 和32()x n 。分别画出()j X e ω、16()X k 和32()X k 的幅度谱,并绘图显示()x n 、16()x n 和32()x n 的波形,进行对比和分析。

四 思考题

如果序列()x n 的长度为M ,希望得到其频谱()j X e ω

在[0,2π]上N 点等间隔采样,当N M <时,如何用一次最少点数的DFT 得到该频谱采样?

五 实验报告及要求

1 编写程序,实现上述要求,打印要求显示的图形

2 分析比较实验结果,简述由实验得到的主要结论

3 简要回答思考题

4 附上程序清单和有关曲线

%时域采样

Tp=128/1000;%观测时间128ms

Fs=1000; T=1/Fs; %采样频率1KHz

M=Tp*Fs;%取样点数128点

n=0:M-1;t=n*T;

A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;

xnt=A*exp(-alph*t).*sin(omega*t);

Xk=T*fft(xnt,M); %M=128点FFT[xnt]

subplot(4,2,1); plot(n,xnt); xlabel('t');ylabel('xa(t)'); title('原信号波形');

k=0:M-1; wk=k/(Tp*Fs); %归一化处理

subplot(4,2,2);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=1KHz幅频特性');

xlabel('w/\pi');ylabel('幅度(H1(jf))');

Tp=64/1000;%观测时间64ms

Fs=1000; T=1/Fs; %采样频率1KHz

M=Tp*Fs;%取样点数64点

n=0:M-1;t=n*T;

A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;

xnt=A*exp(-alph*t).*sin(omega*t);

Xk=T*fft(xnt,M); %M=64点FFT[xnt]

subplot(4,2,3); stem(n,xnt,'.'); xlabel('n');ylabel('xa(nT)'); title('Fs=1KHz采样序列');

k=0:M-1; wk=k/(Tp*Fs);

subplot(4,2,4);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=1KHz幅频特性');

xlabel('w/\pi');ylabel('幅度(H1(jf))');

Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;

A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;

xnt=A*exp(-alph*t).*sin(omega*t);

Xk=T*fft(xnt,M);

subplot(4,2,5); stem(n,xnt,'.'); xlabel('n');ylabel('x2(n)'); title('Fs=300Hz 采样序列');

k=0:M-1; wk=k/(Tp*Fs);

subplot(4,2,6);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=300Hz幅频特性');

xlabel('w/\pi');ylabel('(H2(jf))');

Fs=200;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;

A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;

xnt=A*exp(-alph*t).*sin(omega*t);

Xk=T*fft(xnt,M);

subplot(4,2,7); stem(n,xnt,'.'); xlabel('n');ylabel('x3(n)'); title('Fs=200Hz采样序列');

k=0:M-1; wk=k/(Tp*Fs);

subplot(4,2,8);plot(wk,abs(Xk));title('T*FT[xa(nT)],Fs=200Hz幅频特性');

xlabel('w/\pi');ylabel('(H3(jf))');

%频域采样

M=27;N=32;n=0:M;

xn=(n>=0&n<=13).*(n+1)+(n>=14&n<=26).*(27-n); %产生x(n)

Xk=fft(xn,1024); %1024点FFT[x(n)]

X32k=fft(xn,32); %32点FFT[x(n)]

x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)

X16k=X32k(1:2:N); %隔点抽取X32(k)得到X16(k)

x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)

k=0:1023;

wk=2*k/1024; %连续频谱图的横坐标取值

subplot(3,2,1); plot(wk,abs(Xk)); title('FT[x(n)]');

xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200]);

subplot(3,2,2); stem(n,xn,'.'); title('三角波序列x(n)');

xlabel('n');ylabel('x(n)');axis([0,32,0,20])

k=0:N/2-1; %离散频谱图的横坐标取值

subplot(3,2,3);stem(k,abs(X16k),'.');title('16点频域采样');

xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])

n1=0:N/2-1;

subplot(3,2,4);stem(n1,x16n,'.');title('16IDFT[X_1_6(k)]');

xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])

k=0:N-1; %离散频谱图的横坐标取值

subplot(3,2,5);stem(k,abs(X32k),'.');title('32点频域采样');

xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])

n1=0:N-1;

subplot(3,2,6);stem(n1,x32n,'.');title('32IDFT[X_3_2(k)]');

xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])

matlab验证时域采样定理

目录 第1章摘要 (1) 第2章基本原理 (2) 第3章实验步骤.....................................................................5第4章 MATLAB实现编程 (5) 第5章实验结果与分析 (8) 5、1程序分析………………………………………………………………8 5、2信号得波形及幅度频谱 (8) 5、3 结果分析 (9) 第6章总结...........................................................................12参考文献 (13)

第1章摘要 一、数字信号处理 数字信号处理就是将信号以数字方式表示并处理得理论与技术。数字信号处理与模拟信号处理就是信号处理得子集. 数字信号处理得目得就是对真实世界得连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理得输出经常也要变换到模拟域,这就是通过数模转换器实现得。 数字信号处理得算法需要利用计算机或专用处理设备。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都就是模拟信号处理技术与设备所无法比拟得。 数字信号处理得核心算法就是离散傅立叶变换(DFT),就是DFT使信号在数字域与频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用得就是快速傅立叶变换(FFT),FFT得出现大大减少了DFT得运算量,使实时得数字信号处理成为可能、极大促进了该学科得发展。 随着大规模集成电路以及数字计算机得飞速发展,加之从60年代末以来数字信号处理理论与技术得成熟与完善,用数字方法来处理信号,即数字信号处理,已逐渐取代模拟信号处理。 随着信息时代、数字世界得到来,数字信号处理已成为一门极其重要得学科与技术领域. 二、实验目得 本次课程设计应用MATLAB验证时域采样定理。了解MATLAB软件,学习应用MATLAB软件得仿真技术。它主要侧重于某些理论知识得灵活运用,以及一些关键命令得掌握,理解,分析等.初步掌握线性系统得设计方法,培养独立工作能力。 加深理解时域采样定理得概念,掌握利用MATLAB分析系统频率响应得方

时域采样理论的验证

时域采样理论的验证 一、实验目的 1时域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 时域采样定理的要点是: (a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱( )a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式 为: )](?[)(?t x FT j X a a =Ω )(1∑∞-∞ =Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞-∞-∞ =?∑-=Ω])()([)(?δ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑? -)()( δ= 在上式的积分号内只有当nT t =时,才有非零值,因此: ∑∞-∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑∞-∞=-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即

利用MATLAB实现连续信号的采样与重构仿真课程设计

目录 1、摘要 (1) 2、正文 (2) 2.1、设计目的 (2) 2.2、设计原理 (2) (1)、MTLAB简介 (2) (2)、连续时间信号 (2) (3)、采样定理 (3) (4)、信号重构 (5) 2.3、信号采样和恢复的程序 (5) (1)设计连续信号 (6) (2)设计连续信号的频谱 (7) (3)设计采样信号 ........................................错误!未定义书签。 (4)设计采样信号的频谱图 (9) (5)设计低通滤波器 (10) (6)恢复原信号 (12) 3、总结和致谢........................... 错误!未定义书签。

4、参考文献 (15) 1.摘要 本次课程设计使用MATLAB实现连续信号的采样和重构仿真,了解MATLAB软件,学习使用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。初步掌握线性系统的设计方法,培养独立工作能力。 加深理解采样和重构的概念,掌握利用MATLAB分析系统频率响应的方法和掌握利用MATLAB实现连续信号采用和重构的方法。计算在临界采样、过采样、欠采样三种不同条件下重构信号的误差,并由此总结采样频率对信号重构误差的影响。 要做到以下基本要求: 1. 掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。 2. 掌握利用MATLAB实现连续信号采用和重构的方法,加深理解采样和重构的概念。 3 . 初步掌握线性系统的设计方法,培养独立工作能力。 4. 学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。 5. 加深理解采样对信号的时域和频域特性的影响;验证信号和系统的基本概念、基本理论,掌握信号和系统的分析方法。 6. 加深对采样定理的理解和掌握,以及对信号恢复的必要性;掌握对连续信号在时域的采样和重构的方法。

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

时域抽样与频域抽样

实验三时域抽样与频域抽样 一、实验目的 1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。 2.加深对时域取样后信号频谱变化的认识。掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。 3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。 二、实验原理 1.时域抽样。 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。 2.频域抽样。 非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。

三、实验内容 1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。 (1)当T=0.01s 时,采样得到x(n),所用程序为: %产生连续信号x (t ) t=0:0.001:1; x=sin(20*pi*t); subplot(4,1,1) plot(t,x,'r') hold on title('原信号及抽样信号') %信号最高频率fm 为10 Hz %按100 Hz 抽样得到序列 fs=100; n=0:1/fs:1; y=sin(20*pi*n); subplot(4,1,2) stem(n,y) 对应的图形为: ()sin(20),01a x t t t =π≤≤

时域采样理论与频域采样定理验证

实验4时域采样理论与频域采样定理验证 一 一、实验目的 1时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 时域采样定理的要点是: (a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公 式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为: ∑∞ -∞ =-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞ -∞ -∞ =?∑ -=Ω])()([)(?δ dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑? -)()( δ= 在上式的积分号内只有当nT t =时,才有非零值,因此: 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑ ∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变 量ω用T Ω代替即可。 频域采样定理的要点是: a) 对信号x(n)的频谱函数X(e j ω )在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()IDFT[()][ ()]()N N N N i x n X k x n iN R n ∞ =-∞ ==+∑ (b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N

Matlab环境下采样定理的验证

学号1170010 5 天津城建大学 数字信号处理 指导教师(签字) 计算机与信息工程学院 2014年1月3日

天津城建大学 课程设计任务书 2012 —2013 学年第 1 学期 计算机与信息工程 学院 电子信息工程 专业 11电信1班 班级 编写1.2. 3.4.5.32点和16 点,得到3216()()X k X k 和,再分别对3216()()X k X k 和进行32点和16点IFFT 得到3216()()x n x n 和,分别画出()j X e ω ,3216()()X k X k 和的频谱图,并画出x(n),3216()()x n x n 和的波形,进行对比。 三.课程设计要求 1. 要求独立完成设计任务。 2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4. 运行程序,观察并保存程序运行结果,能够对运行结果进行结果分析。

5.课设说明书要求: 1)说明题目的设计原理和思路、采用方法及程序。 2)详细说明调试方法和调试过程,并给程序加注释。 3)给出程序运行结果,并对其进行说明和分析。 指导教师(签字): 系/教研室主任(签字): 批准日期:2013年12 月19日

目录 第1章数字信号处理介绍 (1) 1.1 背景知识 (1) 1.2 MATLAB软件介绍 (1) 第2章设计目的及要求 (2) 2.1 设计目的 (2) 2.2 设计要求 (2) 第3章设计原理 (3) 3.1整体设计原理 (3) 3.2时域采样定理 (3) 3.2.1时域采样定理公式的推导 (3) 3 4 4第4 5 5第5 6 8 8 8总结 附录

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理

开课学期 2016-2017 学年第 2 学期 实验课程信号与系统仿真实验 实验项目常用信号的频谱分析及时域采样定理 班级学号学生姓名 实验时间实验台号A11 操作成绩报告成绩 一、实验目的 1.掌握常用信号的频域分析方法; 2.掌握时域采样定理; 3.掌握时域采样信号恢复为原来连续信号的方法及过程。 二、实验性质 验证性 三、预习内容 1.时域采样定理的内容及信号时域采样过程; 2.连续信号经时域采样后,信号的频谱发生的变化; 3.时域采样信号恢复为原来连续信号的方法及过程。 四、实验内容(编写程序,绘制实验结果) 1.实现周期信号的频谱 f(t)=sin( 2*80t) 程序: fa='sin(2.*pi.*80.*t)';%原信号 fs0=10000; %采样频率 tp=0.1;%时间范围 t=[-tp:1/fs0:tp];%信号持续时间范围 k1=0:999;k2=-999:-1; m1=length(k1);m2=length(k2); f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围 w=[-2*pi*k2/m2,2*pi*k1/m1]; fx1=eval(fa);%把文本fa赋值给信号fx1 FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换 figure subplot(2,1,1),plot(t,fx1,'r'); title('原信号');xlabel('时间t(s)');%原信号的时域波形图 axis([min(t),max(t),min(fx1),max(fx1)]); subplot(212),plot(f,abs(FX1),'r'); title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图 axis([-100,100,0,max(abs(FX1))+5]);

实验一 MATLAB验证抽样定理

实验一MATLAB验证抽样定理 一、实验目的 1、掌握脉冲编码调制(PCM)的工作原理。 2、通过MATLAB编程实现对时域抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 二、实验预习要求 1、复习《现代通信原理》中有关PCM的章节; 2、复习《现代通信原理》中有关ADPCM的章节;; 3、认真阅读本实验内容,熟悉实验步骤。 4、预习附录中的杂音计,失真度仪的使用。 三、实验环境 PC电脑,MA TLAB软件 四、实验原理 1、概述 脉冲编码(PCM)技术已经在数字通信系统中得到了广泛的应用。十多年来,由于超大规模集成技术的发展,PCM通信设备在缩小体积、减轻重量、降低功耗、简化调试以及方便维护等方面都有了显著的改进。目前,数字电话终端机的关键部件,如编译码器(Codec)和话路滤波器等都实现了集成化。本实验是以这些产品编排的PCM编译码系统实验,以期让实验者了解通信专用大规模集成电路在通信系统中应用的新技术。 PCM数字电话终端机的构成原理如图3-1所示。实验只包括虚线框内的部分,故名PCM 编译码实验。

混合装置 Voice 发滤波器 波器 收滤编 码器 器 码译 分路 路 合发 收 图3-1 PCM 数字电话终端机的结构示意图 ADPCM 是在DPCM 基础上逐步发展起来的,DPCM 的工作原理请参阅教材有关章节。它在实现上采用预测基数减少量化编码器输入信号多余度,将差值信号编码以提高效率、降低编码信号速率,这广泛应用于语音和图像信号数字化。ADPCM 中的量化器与预测器均采用自适应方式,即量化器与预测器的参数能根据输入信号的统计特性自适应于最佳式接近于最佳参数状态。通常,人们把低于64Kbps 数码率的语音编码方法称为语音压缩编码技术,语音压缩编码方法很多,ADPCM 是语音压缩编码种复杂程度较低的一种方法。它能在32Kbps 数码率上达到符合64Kbps 数码率的语音质量要求,也就是符合长途电话的质量要求。 2、 实验原理 (1) PCM 编译码原理 PCM 编译码系统由定时部分和PCM 编译码器构成,如图3-2所示 图3-2 PCM 调制原理框图 PCM 主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间 离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300Hz ~3400Hz 左右,所以预滤波会引入一定的频带失真。 在整个PCM 系统中,重建信号的失真主要来源于量化以及信道传输误码。通常,用信

时域采样与频域采样

实验二:时域采样与频域采样 一、实验目的: 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理与方法: 1、时域采样定理的要点: 1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱 )(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为 ∑∞ -∞=-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞ ∞ -∞ -∞ =?∑ -=Ω])()([)(?δ

dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑ ? -)()( δ= 在上式的积分号内只有当nT t =时,才有非零值,因此 ∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。 2、频域采样定理的要点: a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()I D F T [ ()][()]N N N N i x n X k x n i N R n ∞ =-∞==+ ∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即 N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 零点;如果N

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)

2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波 形及幅频特性曲线。 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x)

实验六-抽样定理的MATLAB仿真

综合性、设计性实验报告 姓名贺鹤学号2 专业通信工程班级2013级1班 实验课程名称抽样定理的MATLAB仿真 指导教师及职称李玲香讲师 开课学期2014 至2015 学年第二学期 上课时间2015年6 月17、27日 湖南科技学院教务处编印

(2) 编程步骤(仿真实验) ①确定f(t)的最高频率fm。对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。 ②确定Nyquist抽样间隔T N。选定两个抽样时间:T ST N。 ③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。 ④采样信号f(nTs )根据MATLAB计算表达式的向量表示。 ⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。 根据原理和公式,MATLAB计算为: ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); (3)电路连接原理(硬件实验) 5.实验数据处理方法 ①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3) ②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析: (1)频率sf

图1.fs=140Hz恢复后信号波形及频谱 (2)频率sf=max2fm时,为原信号的临界采样信号和恢复,从下图2恢复后信号和原信号先对比可知,只恢复了低频信号,高频信号未能恢复。如图2所示 图2.fs=160Hz恢复后信号波形及频谱 (3)频率sf>max2fm时,此时的采样是成功的,它能够恢复原信号,从时域波形可看出,比上 面采样所得的冲激脉冲串包含的细节要多,在频域中也没出现频谱的交叠,这样我们可以利用 低通滤波器得到无失真的重建。如图3所示 图3.fs=200Hz恢复后信号波形及频谱 综合以上欠采样、临界采样、过采样三种情况的分析,可以看出要使采样信号可以恢复到原信

maab验证时域采样定理实验报告

通信原理实验报告 实验名称:采样定理 实验时间: 2012年12月11日 指导老师:应娜 学院:计算机学院 班级: 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时

间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); fh=fz*sinc(fs*TMN); %由采样信号恢复原信号 (2)原信号的波形与幅度频谱: fs=80Hz时原信号离散波形及频谱 (3)结果分析: 1、频率sf

基于matlab的采样定理验证

基于Matlab 的采样定理验证 一. 实验目的 ● 了解信号恢复的方法 ● 验证采样定理 二. 实验环境 ● Matlab 应用软件 三. 实验原理 ● 时域采样定理 对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信 号的频谱以采样频率为周期进行周期延拓形成的。 设连续信号的最高频为f max ,如果采样频率f s ≥2f max ,那么采样信号可 以唯一恢复出原连续信号;否则会出现频谱混叠,信号无法完全恢复。 ● 设计原理图 ● 时域采样与频域分析 对一连续信号f (t )进行理想采样可以表示为 f s t =f t s t = f (nT )δ(t ?nT )∞n =?∞ 其中f s t 为f t 的理想采样,s (t )为周期脉冲信号,即 s t = δ(t ?nT )∞n =?∞ 由频域卷积定理,f s t 的傅立叶变换为 F s jω =1 T F j ω?nΩ ∞n =?∞ 其中Ω=2π/T ,F (jω)为f (t )的傅立叶变换。上式表明,F s jω 为F (jω)的

周期延拓。只有满足采样定理时,才不会发生频率混叠失真。 在实际计算中,常采用如下等价的公式进行计算 F s jω = f (nT )e ?jnΩT ∞n =?∞ ● 信号恢复 这里信号恢复是指由f s t 经过函数内插,恢复原始信号f (t )的过程,具体而言即 f t =f s t ?h (t ) 其中插值函数 h t =T ωc Sa (ωc t ) 其中ωc 为低通滤波器的截止频率。将f s t 和? t 代入恢复公式,即得 f t =f s t ?h t =T ωc π f nT Sa (ωc (t ?nT ))∞n =?∞ 上式即信号恢复的基本公式。 内插公式表明模拟信号f (t )等于各采样点数值乘以对应内插函数的总和,只要采样频率高于信号频率的两倍,模拟信号就可以用它的采样值表示,而不丢失任何信息。 四. 预习内容 ● 采样定理 五. 实验内容 ● 画出连续时间信号的时域波形,信号为 f t =sin 120 π t +cos 50 π t +cos?(60 π t ) ● 对信号进行采样,得到采样序列,画出采样频率分别为80Hz 、120 Hz 、150 Hz 时的采样序列波形。 ● 对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,并比较各频率下采样序列和幅频曲线的差别。 ● 对原始信号进行频谱分析,将其与序列频谱分析的结果做比较。 ● 由采样序列恢复连续信号,画出时域波形,并与原始波形进行比较。

实验三-时域及频域采样定理

广州大学学生实验报告 开课学院及实验室:电子楼317 ?2013年月日 n)以N为周期进行周期延拓后的主值区序列,

-- 三、实验用MATL AB函数介绍 1. fft 功能:一维快速傅立叶变换(FFT)。 Xk=fft(x n,N):采用FFT 算法计算序列向量x n的N点DFT ,缺省N 时,fft 函数自动按xn 的长度计算xn 的DFT 。当N 为2的整数次幂时,ff t按基2算法计算,否则用混合基算法。 2. i ff t 功能:一维快速逆傅立叶变换(IFFT)。 调用格式:与f ft 相同。 四、实验内容和步骤 (一) 时域采样定理实验 1. 给定模拟信号如下: 0()sin()() at a x t Ae t u t -=Ω 假设式中A=444.128,250π=a , 2500π=Ωrad /s ,将这些参数代入上式中,对 () a x t 进行傅立叶变换,得到()a X j Ω,画出它的幅频特性()~a X jf f ,如图3.1所示。根据该曲线可以选 择采样频率。 图3.1 () a x t 的幅频特性曲线 实验过程及原始数据: clf ; A=444.128;a=50*pi *sqrt(2);w0=50*pi *sqrt (2); fs=1000; %采样频率1000HZ T =1/fs; n=0:0.05*fs -1; %产生的长度区间n x t=A*exp(-a*n*T).*sin(w0*n*T); %产生采样序列xt(n) f =f ft(xt,l eng th(n)); %采样序列xt(n)的FFT 变换 k1=0:le ng th (f)-1; fk1=k1/0.05; %设置xt(n)的频谱的横坐标的取值 subplot (1,2,1) st em(n,xt,'.') %xt 离散图 tit le('(a)fs=1000Hz'); xlab el ('n ');ylab el('x(n )'); subplot (1,2,2) plot(fk1,ab s(f)) title('(a ) FT[x(nT)],Fs =1000Hz '); xlabel('f(H z)');ylabel('幅度') 2. 按照选定的采样频率对模拟信号进行采样,得到时域离散信号()x n : 0()()sin()() anT a x n x nT Ae nT u nT ==Ω 这里给定采样频率如下:1s f kHz =,300Hz ,200Hz 。分别用这些采样频率形成时域离散信号, 按顺序分别用 1() x n 、 2() x n 、3() x n 表示。选择观测时间 50p T ms =。 实验过程及原始数据: c lf; A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*p i; Tp=50/1000;F1=1000;F2=300;F3=200; T1=1/F1;T2=1/F 2;T3=1/F 3; n1=0:0.5: T p*F1-1;n2=0:0.5:T p*F2-1;n3=0:0.5:T p*F3-1; x1=A*exp (-a*n1*T1).*s in (w0*n 1*T 1); x2=A*exp (-a*n2*T 2).*sin(w0*n 2*T2); x3=A*exp (-a*n3*T3).*sin(w 0*n3*T3); f1=fft (x 1,length (n1)); f2=fft(x2,len gth(n2)); f3=fft(x3,l eng th(n3)); k 1=0:length (f1)-1; f k1=k1/Tp; k2=0:length(f2)-1; fk2=k2/Tp; k3=0:le ng th(f3)-1;

常用信号地频谱分析报告及时域采样定理

2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论. (1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms t x=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211); ezplot(x,[-2,2]); subplot(212); ezplot(F,[-10,10]);

程序:令tao=1,a=4 syms t x=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x); subplot(211); ezplot(x,[-2,2]); axis([-2,2,-1,2]) subplot(212); ezplot(F); axis([-5,5,-0.5,0.5]);

分析: 经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了 3.时域采样及其恢复 运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。 程序: syms t w f; %定义符号变量 f=(1-2*abs(t))*exp(-j*w*t); %计算被积函数 F=int(f, t, -1/2, 1/2); %计算傅里叶系数F(w) F=simple(F);F %化简 subplot(3, 1, 1), %绘制三角波的幅频特性曲线F(w) low=-26*pi;high=-low; %设置w的上界和下界 ezplot(abs(F), [low:0.01:high]); axis([low high -0.1 0.5]); xlabel(''); title('三角波的频谱'); subplot(3, 1, 2), %绘制经过截止频率为4*pi低通滤波器后的频谱Y1(w) ezplot(abs(F), [-4*pi:0.01:4*pi]); axis([low high -0.1 0.5]); title('低通滤波后的频谱'); %采样信号的频谱是原信号频谱的周期延拓,延拓周期为(2*pi)/Ts %利用频移特性F[f(t)*exp(-j*w0*t)]=F(w+w0)来实现 subplot(3, 1, 3); %绘制采样后的频谱Y(w)

应用_MATLAB实现连续信号的采样与重构

抽样定理及应用 2.1课程设计的原理 2.1.1连续信号的采样定理 模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。时域采样定理从采样信号 恢复原信号 必需满足两个条件: (1) 必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求, 即只有带限信号才能适用采样定理。) (2) 取样频率不能过低,必须 >2 (或 >2)。(对取样频率的要 求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。)如果采样频率 大于或等于 ,即 ( 为连续信号 的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。一个频 谱在区间(- , )以外为零的频带有限信号,可唯一地由其在均匀 间隔 ( < )上的样点值 所确定。根据时域与频域的对称性, 可以由时域采样定理直接推出频域采样定理。一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间范围内,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的频谱)(1ωj F 可以惟一表示原信号的条件为重复周期 m t T 21≥,或频域间隔m t f 21 21≤ = πω(其中112T πω=)。采样信号 的频谱是原 信号频谱 的周期性重复,它每隔 重复出现一次。当s ω>2 时, 不会出现混叠现象,

原信号的频谱的形状不会发生变化,从而能从采样信号中恢复原信号。 >2的含义是:采样频率大于等于信号最高频率的2倍;这里的“不(注: s 混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能!) (a) (b) (c) 图* 抽样定理 a)等抽样频率时的抽样信号及频谱(不混叠) b)高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠) 2.1.2信号采样 如图1所示,给出了信号采样原理图

实验四 时域采样定理

实验内容和步骤 1、 给定模拟信号如下:)()sin()(0t u t Ae t at a x Ω=- 假设式中128.444=A ,250=α,s rad /2500π=Ω,将这些参数代入式中,对)(t x a 进行傅立叶变换,得到)(Ωj X a ,并可画出它的幅频特性f jf X a ~)(;根据该曲线可以选择采样频率。这里给定采样频率如下:f=1 kHz ,300 Hz ,200 Hz 。 分别用这些采样频率形成时域离散信号x(n),打印三种采样频率的幅度曲线|X(ej ω)|~ω,k=0,1,2,3,…,M-1;M=64。 Matlab 编程如下: %用1000Hz 采样频率 clear all; T1=1/1000; n=0:64/(1000*T1); A=444.128; a=50*sqrt(2.0);w0=50*sqrt(2.0)*pi; xn1=A*exp(-a*n*T1).*sin(w0*n*T1); Xk1=fft(xn1,1024); subplot(322);stem(n,xn1,'.'); grid on xlabel('n');ylabel('x(n)');title('1000Hz 采样 x(n)'); k=0:1023;wk=2*k/1024; subplot(321);plot(wk,abs(Xk1));grid on; xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');title('FT[x(n)]'); %用300Hz 采样频率 T2=1/300; n2=0:64/(1000*T2); A=444.128; a=50*sqrt(2.0);w0=50*sqrt(2.0)*pi; xn2=A*exp(-a*n2*T2).*sin(w0*n2*T2); Xk2=fft(xn2,1024); subplot(324);stem(n2,xn2,'.');grid on ; title(' 300Hz 采样 x(n2)');xlabel('n');ylabel('x(n2)'); k=0:1023;wk=2*k/1024;subplot(323);plot(wk,abs(Xk 2));grid on ;title('(a)FT[x(n2)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|'); %用200Hz 采样频率 T3=1/200; n3=0:64/(1000*T3); A=444.128; a=50*sqrt(2.0); w0=50*sqrt(2.0)*pi;xn3=A*exp(-a*n3*T3).*sin(w0*n3*T3); Xk3=fft(xn3,1024); subplot(326);stem(n3,xn3,'.');grid on ; title('200Hz 采样 x(n3)'); xlabel('n');ylabel('x(n3)');k=0:1023;wk=2*k/1024; subplot(325);plot(wk,abs(Xk3));grid on ; title('(a)FT[x(n3)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');

相关主题