搜档网
当前位置:搜档网 › 液相化学还原法制备纳米银颗粒

液相化学还原法制备纳米银颗粒

液相化学还原法制备纳米银颗粒
液相化学还原法制备纳米银颗粒

液相化学还原法制备纳米银颗粒

化学还原法:运用化学试剂通过得失离子的方法进行化学反应的方法

分散剂(Dispersant)是一种在分子内同时具有亲油性和亲水性两种相反性质的界面活性剂。可均一分散那些难于溶解于液体的无机,有机颜料的固体颗粒,同时也能防止固体颗粒的沉降和凝聚,形成安定悬浮液所需的药剂

纳米银作为一种贵金属纳米材料,具有比表面积大,表面活性高,导电性优异,催化性能良好等优点[1],在物理、化学、生物等方面具有显著的优势,包括表面增强拉曼散射[2]、导电[3]、催化[4]、传感[5]以及广谱抗菌活性[6]等。近年来,纳米银的特殊性质被日益深入地了解,并在微电子材料[7]、催化材料、低温超导材料、电子浆料、电极材料[8]、光学材料、传感器等工业领域得到广泛应用,此外,其优良的抗菌性愈发受到人们的重视[9],成为新型功能材料的研究热点。

国内外关于纳米银的制备和可控性研究已经有了大量的报道[10],常用的制备方法包括水热法[11]、凝胶溶胶法、微乳液法[12]、模板法[13]、电还原法[14]、光还原法[15]、超声还原法[16]等化学还原法,以及球磨法、磁控溅射法等物理方法。化学还原法由于其操作方便、设备简单、投入较少、可控性好,是实验室条件下主要的纳米银的制备方法。然而,化学法制备纳米银也存在着一定的缺陷,热力学性质不稳定如比表面积大、表面能高等,从而影响纳米银的物理特性和功能。本文拟利用聚乙烯吡咯烷酮(PVP)作为银的水相分散剂,在水热化学还原环境中,控制银晶体的生长,使之形成尺寸稳定的纳米微晶,通过改变PVP 的添加量与反应过程产物监控,研究PVP 对纳米银晶体成核生长的影响。

实验部分

1.1.2 实验仪器

T-1000 型电子天平,恒温磁力搅拌水浴,CQX25-06 型超声清洗仪,TGL-16 型高速离心机,DZF-6020 真空干燥箱,VIS-723 型分光光度计,产品形貌观察使用透射电子显微镜,D8 DISCOVER GADDS 型X 射线衍射

仪。

1.2 实验步骤

室温下,将31.5 g·L-1 的PVP 溶液加入17 g·L-1 的AgNO3 溶液中,磁力搅拌均匀,配制20mL的0.5mol·L-1 的甲酸铵溶液,并将甲酸铵溶液在搅拌状态下以平均55 滴·min-1 的速度先快后慢滴加至AgNO3 与PVP 的混合溶液中,30℃恒温磁力搅拌( 速度300 r·min-1) 下反应1 h,陈化24 h 后,以8000 r·min-1 的速度离心15 min,将反应所得产物用去离子水、无水乙醇分别洗涤 3 次后真空干燥。

分析

X 射线衍射(XRD)分析

图 1 为所得产物的X 射线衍射图谱,可以看出,在2θ为38.1°、44.25°、64.45°、77.25°、81.5°处有明显的衍射峰,与JCPDS(No 04-0783) 标准卡片数据一致,分别与(111)、(200)、(220)、(311)、(222)晶面相对应,由此可知所制备的单质银呈面心立方晶相。图中衍射峰尖锐表明制备的纳米银具有较好的结晶性。图 2 为所制备纳米银的透射电子显微镜照片,本方法所制备的为纳米银立方块和纳米银棱柱的混合物。

紫外-可见光光谱(UV-vis)分析

价带电子与电磁场相互作用而产生连续振动,从而导致某些尺寸范围内的金属纳米颗粒在紫外可见光区吸收带的产生,这是纳米颗粒的量子尺寸效应的体现[17]。介电环境、颗粒间偶极子之间的相互作用、银颗粒的形状和团聚程度等诸多因素影响着表面等离子共振吸收带的峰值[18]。

图 3 为不同反应时间的紫外- 可见光吸收光谱图。图3(a)~(d) 分别为反应15min、30min、45min、60min 的吸收光谱,图3(e) 为陈化后的纳米银的吸收光谱。可以发现,随着反应时间的增长,所制样品的吸收峰强度逐渐增大,说明随着反应的进行,Ag+ 被不断还原成单质Ag,生成的纳米银颗粒增多。不同尺寸的纳米颗粒吸收峰中心波长位置不同,由球形势阱模型[19] 可知粒子半径越大,能量级间隔越小,对应的吸收峰中心波长越长。吸收峰在前50min 有

较明显红移,在此之后红移程度相对变小,这反映了纳米银由反应前期银颗粒迅速长大到后期尺寸趋于稳定的过程,随着反应时间的增长,初始生成小尺寸的银粒子逐渐长大,并且银颗粒在前期生长较快,银颗粒数量迅速增加,粒径迅速增大。随着反应时间的增长,吸收峰逐渐变窄,说明银粒径分布逐渐变窄,即颗粒均匀度逐渐提高。

表面等离子共振带随着反应时间增长发生红移,反应10 min 后,纳米银的吸收峰位于425 nm 处,这和球形纳米银面外偶极共振相一致,说明反应的开始阶段,大量小尺寸球形纳米银生成,随着反应时间的增长,吸收带发生红移,最终吸收带的中心波长在480 nm 处,是偶极电荷分布引起的等离子共振引起的。在340 nm、400 nm 处都有弱的肩峰出现,银颗粒的形状变化在吸收峰中有所体现,球形纳米银有一个吸收峰,而各向异性的纳米银由于形状的不同有 2 个甚至更多的吸收峰[20]。Wiley B. 等制备的80 nm 的立方银的等离子共振吸收峰出现在470nm,在350 nm、400 nm 处有两处肩峰[21],本文制备的样品由于粒径的差异和棱柱纳米银的共存,导致吸收峰出现略微红移的现象。不同反应条件的纳米银的TEM 图像

图3(e) 为陈化后的吸收光谱图,可见共振吸收的频带变宽,吸收峰稍微红移,这是陈化后纳米颗粒小规模的聚集所导致的,吸收峰由 3 个变为 2 个,可能的原因是纳米银形状发生改变。图 4 为陈化后的纳米银颗粒形貌,可以发现更加规则,主要为立方块、六棱柱型,尺寸较均一。陈化有助于形成银的较为完整的晶态,同时陈化过程也有助于银晶态颗粒表面吸附的杂质离子脱离开来,而银颗粒生长是动力学受控的复杂过程,受表面活性剂的诱导、还原剂还原能力的影响,银颗粒形状有可能发生变化[22]

纳米银经历成核长大的过程,由于甲酸铵的还原性较弱,晶核长大速率相对较慢,此外,各晶面的表面活性能的差异,表面活性剂吸附晶核的某些晶面时,诱导未吸附的晶面生长几率增大,使得银生长成为各向异性的纳米材料[23]。Xia 认为当晶种是单晶结构时,可以形成诸如八面体、棱柱、立方体结构的纳米晶粒,晶体沿<100> 和<111> 方向的生长速率比值不同,得到的晶体形状不同[24]。图4(a)~(c) 分别为不同PVP 与AgNO3质量比下制备纳米银的TEM 照片。可以发现,PVP 与AgNO3质量比对颗粒形状有很大的影响。当质量比

较小时,即溶液中PVP 浓度较小,银颗粒形貌不均一,呈现出棒状、不规则片状、块状银颗粒共存的状态[ 如图4(a)];当PVP 浓度较大时,较多的PVP 会抑制优先生长晶面如<111> 面的生长,使各个晶面生长较平衡,最终趋于形成球状银颗粒,当PVP 与AgNO3 物质的量适中时,即PVP 浓度适宜,可得到立方块和棱柱型的纳米银混合物[ 如图4(b)]。

结论

1) 以甲酸铵为还原剂,以PVP 为表面活性剂,在30 ℃AgNO3 溶液中高速搅拌制备纳米银颗粒,XRD 和TEM 物相表征显示所制备的纳米银结晶性能良好,纯度较高。

2) PVP 与AgNO3 的质量比影响着银颗粒的形貌均一性,PVP 浓度的不同导致其对晶面的包覆程度的差异,从而影响银颗粒生长的取向;浓度较大的PVP 制备的银颗粒尺寸更加均匀。

3) 陈化能够使制备的单质银外型更接近立方形,当PVP 与AgNO3 的质量比为2.2 时,陈化24 h得到相貌相对均一的银立方块和六棱柱型银的混合物质。

液相法制备纳米颗粒的机制.

液相法制备纳米颗粒的机制 液相法是在液体状态下通过化学反应制备纳米材料方法的总称,又称为湿化学法或溶液法。纳米材料的液相制备方法分为:沉淀法、溶胶-凝胶(Sol-Gel)法、水热法、化学还原法、化学热分解法、微乳液法、声化学法、电化学法和水中放电法等9种。用液相化学法合成纳米颗粒能够较好地控制颗粒大小、形状和粒径分布。为了充分利用化学法的优点,需要充分了解这种方法制备纳米颗粒的形成机制,这涉及到:晶体化学、热力学、相平衡以及反应动力学的基本原理。从液相中生成固相颗粒,要经过成核、生长、凝结、团聚等过程。 1 液相中生成固相颗粒的机理 1.1 成核 为了从液相中析出大小均匀一致的固相颗粒,必须使成核和长大这两个过程分开,以便使已成核的晶核同步地长大,并在生长过程中不再有新核形成。在纳米颗粒形成的最初阶段,都需要有新相的核心形成。新相的形核过程可以被分为两种类型,即自发形核与非自发形核过程。所谓自发形核指的是整个形核过程完全是在相变自由能的推过下进行的,而非自发形核则指的是除了有相变自由能作推动力之外,还有其他的因素起到了帮助新相核心生成的作用。 图1 析出固体时液相中溶质浓度随时间的变化情况 如图1所示,在整个成核和生长过程中液相内与析出物相应的物质的量浓 度是变化的。在阶段Ⅰ浓度尚未达到成核所要求的最低过饱和浓度*min c ,因此 无晶核形成。当液相中溶液浓度超过*min c 后即进入成核阶段Ⅱ。 作为自发形核的例子,我们考虑一个从过饱和溶液中析出一个球形的固相核心的过程。设新相核心的半径为r ,因而形成一个新相核心时体自由能将变化3 43C r G π?,其中C G ?为从溶液中析出单位体积晶核时伴随的自由能变化。

电化学法制备纳米铜粉

文章编号:167325196(2008)0320009203 电化学法制备纳米铜粉 徐建林1,2,陈纪东1,2,张定军1,2,马应霞1,2,冉 奋1,2,龙大伟1,2 (1.兰州理工大学甘肃省有色金属新材料重点实验室,甘肃兰州 730050;2.兰州理工大学有色金属合金及加工教育部重点实验室,甘肃 兰州 730050) 摘要:在十二烷基硫酸钠、吐温80、苯、正丁醇、十二烷基硫醇和硫酸铜混合而成的乳液中,采用电化学合成的方法制备稳定的、粒径均匀的Cu 纳米颗粒.采用XRD 、TEM 及FT -IR 对所制备的Cu 纳米颗粒的结构、形貌、粒径大小及表面键合性质进行表征.结果表明,制备的纳米铜粉为球型颗粒,分散较好,尺寸较为均匀,约为60~80nm ,并且具有立方晶型结构;得到的纳米铜颗粒表面含有一层有机物质,形成了包覆层较薄的核壳结构,这种包覆层阻止了纳米铜粉在空气中或水中的团聚和氧化,起到提高纳米铜颗粒的分散性和稳定性的作用.关键词:纳米颗粒;Cu ;乳液;电化学中图分类号:TB383 文献标识码:A Preparation of copper nano 2powder by using electrochemical method XU Jian 2lin 1,2,C H EN Ji 2dong 1,2,ZHAN G Ding 2jun 1,2 MA Y ing 2xia 1,2,RAN Fen 1,2,LON G Da 2wei 1,2 (1.State Key Lab.of Gansu Advanced Non 2ferrous Metal Materials ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ;2.Key Lab.of Non 2ferrous Metal Alloys ,The Ministry of Education ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ) Abstract :Stable and uniform Cu nanoparticles was p repared wit h electrochemical met hod in emulsio ns containing of sodium dodecyl sulfate ,tween 80,benzene ,12butanol ,dodecyl mercaptan and CuSO4?5H 2O.The morp hology and struct ure of t he resulting copper nanoparticles were investigated wit h XRD ,TEM and F T 2IR.It was found t hat t he copper nano 2powder was of sp herical st ruct ure wit h a better dis 2persity ,uniform particlesize.t he average size being 60~80nm and cubic crystalline.A layer of organic compound was absorbed on t he surface of copper nanoparticles ,forming a shell 2core st ruct ure wit h t hin surface coating film ,which could be p revent t he Cu nano 2powder f rom aggregation and oxidation in t he at 2mo sp here or water ,and increase t he dispersibility and stability of t he Cu nanoparticles as well. K ey w ords :nanoparticles ;Cu ;emulsions ;elect rochemist ry 纳米铜颗粒的比表面积大,表面活性中心数多,在石油化工和冶金中是良好的润滑剂;此外,纳米铜颗粒具有极高的活性和选择性,可以用作高分子聚合物的氢化和脱氢化反应的催化剂[1,2].1995年,Pekka [3]等指出纳米铜由于其低电阻而可用于电子 连接,引起电子界的很大兴趣.纳米铜粉也可用于制 造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化生产起重要作用. 目前,常用的制备纳米铜粉的方法有:机械化学 收稿日期:2007201207 作者简介:徐建林(19702),男,陕西岐山人,博士,副教授. 法、气相蒸汽法、化学还原法、辐照还原法等.此外,Gedanken 等人报道了一种用自还原前驱体制备纳米铜的方法[4],Pileni 等人用表面活性剂囊泡技术制备了各种形状的铜纳米颗粒[5].机械化学法制备的粉体组成不易均匀,粉末易团聚,粒径分布宽,所以缺乏现实意义;气相蒸汽法所需原料气体价格昂贵,设备复杂,成本高.目前研究最多的是液相还原法,但是液相还原又需要用到一些剧毒的还原剂,这对研究者本身或者是环境都会造成危害.电化学合成方法具有反应条件温和、仪器设备简单、无毒无污染的优点,是合成纳米材料的有效手段之一[6,7]. 本文采用电化学电解法,在十二烷基硫酸钠、吐 第34卷第3期2008年6月兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.34No.3 J un.2008

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

气相与液相法制备纳米材料

液相制备纳米材料的原理、方法、形成机理和结构 液相法实在液体状态下通过化学反应制取纳米材料方法的总称,又称为湿化学法或溶液法。现在,有各种各样的制备方法,文献中无公认一致的分类方法,相反还有些凌乱。为清晰醒目,特点明显,便于理解。这里将液相材料的纳米制备方法分为:沉淀法、溶胶-凝胶(sol-gel)法、水热法、化学还原法、化学热分解法、微乳胶法、声化学法、电化学法和水中放电法等中。 3.1 沉淀法 3.1.1 共沉淀和分步沉淀 不论溶液中有一种还是几种离子,都能够同时生成沉淀的反应,就是共沉淀。一般沉淀法的工艺流程可表示为图3.1所示。分步沉淀则是反应中有多种可能的沉淀物,依次一个个地进行沉淀,称之为分步沉淀。 Raming等人就用了共沉淀和分步沉淀两种方法制备了掺Y的四方Zr+Fe3O4纳米粉末。在共沉淀中,他们将ZrOCl2.8H2O和YCl3与FeCl3.6H2O的混合溶液,缓慢的加入到剧烈搅拌含有质量分数为25%、PH值约为14的氨水中,产生出的金属与氢氧化物混合的直接沉淀物。在分步沉淀法中,他们用了两种不同的步骤。第一种是先沉淀三氧化二铁,再沉淀氧化锆,简写成SPHZ;第二种则倒过来,

先沉淀氧化锆,再沉淀氧化铁,简写成SPZH。第一种具体操作是,将八水氯酸锆和YCl3的水溶液加到碱性的悬浮着氧化铁粒子的溶液中,因此是先沉淀氧化铁,再沉淀氧化锆。第二种分步沉淀则是将六水氯化铁水溶液加到悬浮有氧化锆粉末粒子的碱性溶液中,因此是先沉淀氧化锆,再沉淀氧化铁。这两种分步沉淀中,都是在剧烈搅拌中,将酸性的金属离子加入到碱性的氨水中,在悬浮液中导致金属氢氧化物的爆炸式成核。经水洗后,在100℃下干燥成胶状,再在 500-700℃温度内煅烧2h,以得到完全的晶体物质。 3.1.2 均匀沉淀 无论是在CP还是在SP中,由于沉淀剂在金属溶液中的加入,哪怕是沉淀剂加入量很少,并不断的搅拌,在局部溶液中的沉淀剂浓度都可以变得很高,于是这些地方就首先沉淀,使沉淀变得不均匀,必须在溶液中消除不均匀的沉淀,而使整个溶液中均匀的生成沉淀。原则上讲,只要能保证溶液中均匀成核,核又能够均匀的长大,就能够达到均匀沉淀的目的。应当说,目前仍然没有行之有效的办法,但已经取得了不少有价值的认识和了解。Eshuis等人在评述了以前很多作者在研究均匀沉淀ZnS纳米粒子方面取得成就以及存在的相互矛盾的解释后,在他们的实验基础上提出了一个4步模型,认为能够很好的解释实验结果,并认为可以适用于其他类似反应。他们使用硫代乙酰胺和锌酸盐溶液,发现溶液的PH值、阳离子的形式、连续相的黏度以及搅拌程度,对于粒子的形成、粒子尺寸和形貌都有影响,但是,PH值的影响最大,阳离子形式,即是什么样的阳离

两步热还原法制备太阳能级硅

SiC还原SiO2制备纯硅试验研究 摘要:通过SiC还原SiO2制备纯硅实验研究,采用X 射线衍射分析、荧光分析和化学分析方法及拉曼分析,得到在电流为200A左右温度约为2200℃时采用SiC:SiO2=1:3.5时,SiO2能被彻底还原。这为两步法制备纯硅提供了依据,为由碳热直接还原SiO2制备高纯硅提供了新的思路。 关键词:二氧化硅碳化硅热还原制备纯硅 硅材料既是人类进步的基石,又是社会现代化的物质基础与先导。硅是最重要的半导体材料,其用量占全部半导体材料的90%以上,硅有许多得天独厚的特点:如硅资源丰富,无匮乏之虞;硅中杂质的分凝系数对物理提纯非常有利,可以获得接近本征的纯度;硅工艺非常成熟,已形成一个颇具规模的大工业等特点。硅的物理化学性质及以上特点决定硅有着丰富的用途例如整流器、晶体三极管、集成电路、探测器、传感器、太阳能电池等光敏元件;金属陶瓷;光导纤维等。 以二氧化硅制备纯硅的方法很多,主要包括热还原法和熔盐电解法等,而热还原法多用碳作为还原剂,而在本研究中以碳化硅为还原剂制备纯硅;该方法是一种新的制备纯硅的工艺。有其独特的优势,可以为制备二氧化硅还原制备太阳能级纯硅 实验设备实验原料及研究方法 实验原料 利用PW2040X射线荧光光谱仪对原料硅和二氧化硅进行定性半定量分析,分析结果如下表所示: 二氧化硅矿石主要化学成分(wt%) Si O Gr 由上表数据经过计算得可能有少量的单质硅单质硅(1.3042)SiO2纯度达到98.6296% ,没有一般硅石里含有的Fe、Al、Ga等杂质,而杂质Gr的含量相对较高。

使用BT-2001型激光粒度仪对试验原料二氧化硅进行粒度分析,检测结果如下图所示,由图可得二氧化硅的粒度分布区间时2um~342um,中位径为92.23um。 实验设备及过程 本实验在钨极电弧真空熔炼炉中进行,该设备如图所示该装置由杭州大华仪器公司和中国科学院材料物理重点实验室联合研制,由真空机组、真空室、电弧枪、熔炼电源、铜坩埚、水冷设备及测量系统等组成。主要技术指标1、电极直径: 5mm;电极长度: 80mm;2、样品:ISSP-AMF1型:一次熔炼7个样品,每孔熔炼总量:5~20g;ISSP-AMF2型、ISSP-AMF3型:一次熔炼6个样品,每孔熔炼总量:30~50g;3、极限真空度:ISSP-AMF1、ISSP-AMF2型:2×10-3Pa;4、ISSP-AMF2、ISSP-AMF3型含一个吸铸工位及两个孔径的浇铸模具;5、供电电源:ISSP-AMF1型:单相AC220V,50Hz;额定工作电流: 160A;ISSP-AMF2、ISSP-AMF3型:三相AC380V,50Hz;最大熔炼电流:500A。

氧化还原法制备纳米铜研究报告

纳米铜粉制备工艺研究报告 2011年10月18日,欧盟定义纳米材料是指一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。这种材料由于量子尺寸效应,表面效应,体积效应等特性而具备特殊的性能。近些年来,随着金属及其合金制备方法的提高,越来越纯及越来越小的金属颗粒被制备出来,纳米金属的研究迅速发展。研究发现,纳米金属材料具有较好的机械性能如屈服强度、拉伸强度等[1],以及优异的电学性能,磁学性能,光学性能等等。 1铜在材料方面的应用 1.1 氧化铜的应用 铜是与人类关系非常密切的有色金属,铜是唯一能大量天然产出的金属,存在于各种矿石中;它在有色金属材料的消费中仅次于铝。其氧化物—CuO有着广泛的应用,除作为制铜盐的原料外,它还广泛应用于其他领域:如在催化领域,它对高氯酸钱的分解,一氧化碳、乙醇、乙酸乙醋以及甲苯的完全氧化都具有较高的催化活性,且对前4种反应的催化活性均排在金属氧化物之前列;在传感器方面,用CuO作传感器的包覆膜,能够大大提高传感器对CO的选择性和灵敏度;近年来,由于含铜氧化物在高温超导领域的异常特性,使CuO又成为重要的模型化合物,用于解释复杂氧化物的光谱特征。此外,它还用于玻璃、陶瓷的着色剂,油漆的防皱以及有机分析中测定化合物含碳量的助氧剂,甚至有望用作汽车尾气的净化材料[2]。 1.2纳米铜的应用 由于纳米铜粉具有小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应及介电限域效应等特点,因此它的物理化学性质也与传统材料大不相同。自1995年IBM的C K HU等指出纳米铜粉由于其低电阻可以用于电子连接后,其性质引起了电子界的很大兴趣。纳米铜粉作为重要的工业原料,代替贵金属粉末在制作高级润滑油、导电浆料、高效催化剂等方面可大大降低工业成本,有着广阔的应用前景。 在镍氢电池的负极中添加3-10wt.%型号VK-Cu01纳米氧化铜,就可以有效提高电池的比能量和比功率,提高电池的负极性能,还降低了负极电池的质量。纳米氧化铜(VK-Cu01,99.9%)可作为常温脱硫剂的唯一组分。纳米氧化铜在常温25-30℃条件下脱硫精度高,硫容高达18.3%-28.7%。比同等条件下的分析纯氧化铜硫容的4.65倍,是纳米氧化锌硫容的4-8倍,是首选的常温脱硫剂。美国国家标准与技术研究院(NIST)的研究人员马克肯在润滑剂和制冷剂的标准混合物中加入适量的不同纳米粒子,发现在普通聚酯润滑剂上充分分散直径为30nm的氧化铜VK-Cu01粒子,并与普通的制冷剂(R134a)混合,可把制冷器的热传递提高50-275%。。M.M. Rashad等人[4]利用工业废料,采用水热法制得立方铁酸铜合金(CuFe2O4),结果表明在特定的温度条件下,其催化效率达到了95.9%,

柠檬酸钠还原法制备金纳米粒子

柠檬酸钠还原法制备金纳米粒子实验 一、试剂和材料 1) 柠檬酸钠(Na3C6H507?2H2O,AR) 天津市化学试剂三厂 2) 氯金酸溶液(HAu Cl4?4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。 3) 所用水均为超纯水(电阻值大于15 MΩ) 4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。 5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等. 实验方法 (一)小粒径金纳米粒子(约15 nm)的制备 1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。 注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。 注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通

风橱中清洗。王水用后回收作为最后清洗器具使用。 2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。 3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。 4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。 注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。冷凝管充满水后,将冷却水水量调小,以节省用水。 5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

纳米铜微粒制备实验

纳米铜微粒制备 (物教101林晗) 摘要 纳米科技正是指在纳米尺度上研究物质的特性和相互作用以及利用这些特性的科学技术。经过近十几年的急速发展,纳米科技已经形成纳米物理学、纳米化学、纳米生物学、纳米电子学、纳米材料学、纳米力学和纳米加工学等学科领域。 本实验用冷凝法制备纳米颗粒铜,不同压力下颗粒大小和色泽是不同的,对结果做了一些讨论分析。 关键字:纳米颗粒铜蒸汽冷凝法 引言 20世纪80年代末以来,一项令世人瞩目的纳米科学技术正在迅速发展。纳米科技将在21世纪促使许多产业领域发生革命性变化。关注纳米技术并尽快投入到与纳米科技有关的研究,是本世纪许多科技工作者的历史使命。 在物理学发展的历史上,人类对宏观领域和微观领域已经进行了长期的、不断深入的研究。然而介于宏观和微观之间的所谓介观领域,却是一块长期以来未引起人们足够重视的领域。这一领域的特征是以相干量子输运现象为主,包括团簇、纳米体系和亚微米体系,尺寸范围约为1~1000nm。 但习惯上人们将100~1000nm范围内有关现象的研究,特别是电输运现象的研究领域称为介观领域。因而1~100nm的范围就特指为纳米尺度,在此尺度范围的研究领域称为纳米体系。

目录 摘要 (1) 引言 (1) 1.纳米微粒的制备 (2) 1.1纳米微粒制备方法 (2) 1.2本实验的蒸汽冷凝法 (3) 2.实验仪器 (4) 2.1实验总设备 (4) 2.2实验仪器部件 (4) 3.实验内容 (5) 3.1准备工作 (5) 3.2制备铜纳米微粒 (5) 4实验现象的记录与分析 (6) 4.1实验现象 (6) 4.2实验现象分析 (6) 总结 (7) 参考文献 (7) 1.纳米微粒的制备 1.1纳米微粒制备方法 利用宏观材料制备微粒,通常有两条路径。一种是由大变小,即所谓粉碎法;一种是由小变大,即由原子气通过冷凝、成核、生长过程,形成原子簇进而长大为微粒,称为聚集法。由于各种化学反应过程的介入,实际上已发展了多种制备方法。 微粒制备通常有以下几种方法:(1)粉碎法(2)化学液相法(3)气相法

化学还原法制备银纳米颗粒

Vol.25No.2安徽工业大学学报第25卷第2期April2008J.ofAnhuiUniversityofTechnology2008年4月 文章编号:1671-7872(2008)02-0120-03 化学还原法制备银纳米颗粒 晋传贵1a,姜山1a,陈刚1b,2 (1.安徽工业大学a.材料科学与工程学院;b.冶金与资源学院,安徽马鞍山243002;2.马鞍山钢铁股份有限公司技术中心,安徽马鞍山243000) 摘要:在70℃时采用聚乙烯吡咯烷酮(PVP)和氢氧化钠的混合水溶液,利用葡萄糖还原硝酸银制备了银纳米颗粒。采用X射线衍射(XRD)、能量分散谱(EDS)和扫描电子显微镜(SEM)对所制备的银纳米颗粒进行了表征。结果表明该法制备的银颗粒为纯的银纳米颗粒,呈球形,粒径分布集中在20~50nm之间。 关键词:银;纳米颗粒;化学还原法 中图分类号:O614.122文献标识码:A PreparationofSilverNanoparticlesbyChemicalReductionMethod JINChuan-gui1a,JIANGShan1a,CHENGang1b,2 (1.AnhuiUniversityofTechnologya.SchoolofMaterialsScienceandEngineering;b.SchoolofMetallurgyandResources,Maanshan243002,China;2.TechnologyCenter,Ma'anshanIron&SteelCo.Ltd.,Ma'anshan243000,China) Abstract:SilvernanoparticlesarepreparedbyreductionofaqueoussolutionofAgNO3inthepresenceofpolyvinylpyrrolidone(PVP)andNaOHatthetemperatureof70℃,glucosewasusedforthereductionagent.ThesilvernanoparticleswerecharacterizedbyusingX-raydiffraction(XRD),energydispersivespectrometer(EDS)andscanningelectronmicroscope(SEM).Theresultsshowedthatthesilvernanoparticlesproducedbythismethodarepureandsphericalwithnarrow-dispersedsizedistributionrangingfrom20nmto40nm. Keywords:silver;nanoparticles;chemicalreductionmethod 银纳米颗粒由于其优良的传热导电性、表面活性、表面能和催化性能,在电子、催化、光学等领域具有很大的潜在应用价值[1-2],越来越受到广泛的关注。近年来,银纳米颗粒制备技术迅速发展,制备方法多种多样。按反应条件,主要包括还原剂还原[3]、光照、电极电解、超声电化学法[4]、辐射化学还原法、微乳液法[5]等。这些方法有的工艺控制难度大、产物不稳定;有的设备较为复杂,难以批量化生产。化学还原法因其设备简单、操作方便,成为制备超细银粉的主要方法。本研究采用聚乙烯吡咯烷酮(PVP)作保护剂和价格低廉、还原能力温和的葡萄糖作还原剂,用简单工艺制备银纳米颗粒。 1实验 称取15g葡萄糖和5gPVP,配制成300mL混合水溶液,利用氢氧化钠溶液调节其pH值至11;称取6g硝酸银配制成100mL水溶液。在恒温水浴锅中将上述溶液加热至70℃,将硝酸银溶液以30滴/min的速度均匀地滴加到葡萄糖混合溶液中,搅拌15min得到黑色悬浊液。将此悬浊液离心分离,所得固体沉淀用去离子水和无水醇各洗涤3遍,于50℃下真空干燥,得黑色粉末试样。采用日本理学Rigaku公司的D/Max-2500型X射线衍射仪表征样品的晶型和粒度;采用扫描电子显微镜(philips-xl-30)附属能谱仪测定样品成收稿日期:2007-09-18 基金项目:863项目资助(2006AA03Z466) 作者简介:晋传贵(1966-),男,安徽无为人,教授,博士。

化学还原沉淀法处理含铬废水的试验研究

【摘要】铬是环境中主要污染物,含铬废水如不加以有效的处理,对环境和人体都会造成极大的危害。含铬废水的处理方法很多,本文主要介绍了化学还原沉淀法处理含铬废水,结合试验,研究了原液ph值、还原剂投放量对铬离子还原的影响,获得了化学还原沉淀法处理含铬废水的最佳参数值。 【关键词】化学还原沉淀法;含铬废水;原液ph值;还原剂;去除率 铬是环境中一种主要的污染物,其化合物主要以cr(ⅱ)、cr(ⅲ)和cr(ⅵ)的形式存在,但以cr(ⅲ)和cr(ⅵ)的化合物最为常见。在环境监测中,通常以总铬和cr(ⅵ)的质量浓度来衡量环境中水质的污染程度。其毒性则以cr(ⅵ)最强。目前,对于含铬废水的处理积累了许多有效的方法,包括物理法、化学法、物理化学法及生物法。其中,主要以化学法为主,占实际工程应用的很大比重。本文结合试验,主要讨论采用化学还原沉淀法处理含铬废水,以获得了化学还原沉淀法处理含铬废水的最佳参数值,为实际应用提供实验数据。 1.实验方法 1.1 药品及仪器 分光光度计:上海奥析科学仪器有限公司,752n; ph计:贵阳学通生产,phs-25c; 电子天平:广东衡之杰公司,fa/ja系列。 丙酮(ch3coch3):分析纯; 无水亚硫酸钠(na2so3):分析纯; 氢氧化钠(naoh):分析纯; 重铬酸钾(k2cr2o7):分析纯; 焦亚硫酸钠(na2s2o5):分析纯; 高锰酸钾(kmno4):分析纯。 1.2 实验方法 (1)铬离子储备溶液的配制 配制2000mg/l的铬离子储备液。储备液需放在避光的地方,封闭严实,每次提取应当注意不能污染原液且储备液应尽快使用,不得放置过久的时间。 (2)铬浓度的测定 在酸性溶液中,铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。cr6+与显色剂的显色反应一般控制酸度在0.05~0.3mol/l(1/2h2so4)范围,以0.2mol/l时显色最好。显色前,水样应调至中性。显色温度和放置时间对显色有影响,在15℃时,5~15min颜色即可稳定。 (3)铬标准曲线的制作 使用储备液配制10mg/l的铬铬离子标准溶液1000ml,分别取0.5ml,1ml,2ml,3ml,4ml,5ml放入50ml比色管中,然后加入蒸馏水稀释至50ml,在每个比色管中加入0.5ml硫酸(1:1)和0.5ml磷酸(1:1),摇匀后加入2ml显色剂ii,经过10min显色反应后,放入紫外线分光光度计中测量其吸光度(干扰离子忽略不计)。 从中反映了在使用相同储备液的情况下,水中铬离子的浓度与其在540nm紫外线照射下吸光度之间的线性关系。可以根据标准曲线图中得到的公式计算出已测得溶液吸光度所对应的铬离子的浓度。从相关系数r2=0.9996可以看出,此标准曲线线性关系良好。 2.结果与讨论 2.1 原液ph值对还原效果的影响 (1)亚硫酸钠

还原法制备超细 Pd

文章编号:025329837(2005)1020855204 研究论文:855~858 收稿日期:2005201204. 第一作者:王 寰,女,1978年生,博士研究生.联系人:李 伟.Tel :(022)23508662;E 2mail :weili @https://www.sodocs.net/doc/e49725217.html,.基金项目:国家自然科学基金(20273035)、天津市自然科学基金(033802511)和南开大学创新课题基金资助项目. KBH 4还原法制备超细Pd/γ 2Al 2O 3催化剂及其在蒽醌加氢反应中的应用 王 寰, 李 伟, 张明慧, 陶克毅 (南开大学化学学院材料化学系新催化材料科学研究所,天津300071) 摘要:通过K BH 4还原浸渍到载体上的Pd 物种制备了超细Pd/γ2Al 2O 3催化剂,并采用X 射线衍射、高倍透射电镜、能谱、能 量损失谱和电感耦合等离子体发射光谱等对其进行了表征.结果表明,催化剂中活性组分Pd 以纳米尺度的微晶形式存在,而不是Pd 2B 非晶态合金.蒽醌加氢制双氧水反应证明,与浸渍焙烧法制备的PdO/γ2Al 2O 3催化剂相比,经K BH 4还原制得的Pd/γ2Al 2O 3催化剂中钯的晶体颗粒更小,分散度更高,从而催化剂的活性更高,其氢化效率比PdO/γ2Al 2O 3提高了35%.关键词:钯,氧化铝,硼氢化钾,蒽醌,加氢中图分类号:O643 文献标识码:A Preparation of U ltraf ine Pd/γ2Al 2O 3C atalyst by KBH 4R eduction and Its Application to Anthraquinone H ydrogenation WANG Huan ,L I Wei 3 ,ZHANG Minghui ,TAO Ke yi (Institute of New Catalytic M aterials Science ,College of Chemist ry ,N ankai U niversity ,Tianjin 300071,China ) Abstract :The ultrafine Pd/γ2Al 2O 3catalyst was prepared by impregnation of alumina support with PdCl 2solu 2tion followed by K BH 4reduction.The microstructure of Pd/γ2Al 2O 3was investigated by X 2ray diffraction ,high resolution electron microscopy ,energy dispersive spectroscopy and electron energy loss spectroscopy.The results show that the Pd species exists as Pd nanocrystals in the as 2prepared catalyst ,and no Pd 2B amorphous alloy was https://www.sodocs.net/doc/e49725217.html,pared with the PdO/γ2Al 2O 3catalyst prepared by impregnation and calcination ,the ultrafine Pd/γ2Al 2O 3exhibits higher activity in the hydrogenation of 22ethylanthraquinone.This can be attributed to the unique properties of the ultrafine Pd/γ2Al 2O 3,such as smaller Pd crystals and the higher dispersion of Pd on the support. K ey w ords :palladium ,alumina ,potassium borohydride ,anthraquinone ,hydrogenation 20世纪50年代,Schlesinger 等[1]将少量钴盐或镍盐加入硼氢化钠溶液制得了具有催化活性的黑色细小颗粒,60年代初Brown 等[2]研究了该催化剂对氢化反应的催化性能,随后Linderoth 等[3]证明这些细小黑色颗粒是长程无序而短程有序的Ni 2B 非晶态合金,由此这种新材料得到越来越广泛的重视与研究,其作为催化剂在加氢反应中所显示的高比活性和优良的选择性更是日益引起人们的关 注[4~7].近几年,随着研究的不断深入,国内外研究者用不同方法制备了贵金属2硼非晶态合金催化剂[8~13].Deshpande 等[9]用K BH 4还原法制备了非负载型及负载型Ru 2Sn 2B 非晶态合金,并通过X 射线衍射(XRD )、X 射线光电子能谱(XPS )和透射电镜(TEM )等表征方法考察了二者的性质;Xie 等[11]用K BH 4还原法制备了Ru 2B 非晶态合金催化剂,通过XRD ,XPS 和扫描电镜(SEM )等表征方法确认了 第26卷第10期 催 化 学 报 2005年10月Vol.26No.10 Chi nese Journal of Catalysis October 2005

氧化还原法

E E 2-E E E F

三、基本原理 通过药剂与污染物的氧化还原反应,把废水中有毒害的污染物转化为无毒或微毒物质的处理方法称为氧化还原法。 废水中的有机污染物(如色、嗅、味、COD)及还原性无机离子(如CN-、S2-、Fe2+、Mn2+等)都可通过氧化法消除其危害,而废水中的许多重金属离子(如汞、镉、铜、银、金、六价铬、镍等)都可通过还原法去除。 废水处理中最常采用的氧化剂是空气、臭氧、氯气、次氯酸钠及漂白粉;常用的还原剂有硫酸亚铁、亚硫酸氢钠、硼氢化钠、水合脏及铁屑等。在电解氧化还原法中,电解槽的阳极可作为氧化剂,阴极可作为还原剂。 投药氧化还原法的工艺过程及设备比较简单,通常只需一个反应池,若有沉淀物生成,尚需进行因液分离及泥渣处理。电解氧化还原法的工艺过程及设备均有其特殊性,将辟专节讨论。 (一)反应程度的控制 对于水溶液中的氧化还原反应,可以方便地用各电对的电极电势来衡量其氧化性(或还原性)的强弱,估计反应进行的程度。氧化剂和还原剂的电极电势差越大,反应进行得越完全。 电极电势置主要取决于物质("电对")的本性(反映为E0值),同时也和参与反应的物质浓度(或气体分压)、温度有关,其间的关系可用奈斯特公式表示: (13-1) 利用上式可估算处理程度,即求出氧化还原反应达平衡时各有关物质的残余浓度。例如,铜屑置换法处理含汞废水有如下反应:Cu+Hg2+=Cu2++Hg 当反应在室温(25℃)达平衡时,相应原电池两电极的电极电势相等: 由标准电极电势表查得:=0.34V,=0.86V,于是可求得[Cu2+]/[Hg2+]=1017.5。可见,此反应可进行得十分完全,平衡时溶液中残Hg2+极微。 (二)影响处理能力的动力学因素 由于多数氧化还原反应速度很慢,因此,在用氧化还原法处理废水时,影响水溶液中氧化还原反应速度的动力因素对实际处理能力有更为重要的意义,这些因素包括: (1)反应剂和还原剂的本性。影响很大,其影响程度通常要由实验观察或经验来决定; (2)反应物的浓度。一般讲,浓度升高,速度加快,其间定量关系与反应机理有关,可根据实验观察来确定; (3)温度。一般讲,温度升高,速度加快,其间定量关系可由阿仑尼乌斯公式表示; (4)催化剂及某些不纯物的存在。近年来异相催化剂(如活性炭、粘土、金属氧化物等)在水处理中的应用受到重视; (5)溶液的pH值。影响很大,其影响途径有三:H+或OH-直接参与氧化还原反应;OH-或H+为催化剂;溶液的pH值决定溶液中许多物质的存在状态及相对数量。 第二节化学氧化法 一、空气(及纯氢)氧化法 氧的化学氧化性是很强的,且pH值降低,氧化性增强。但是,用O2进行氧化反应的活化能很高,因而反应速度很慢,这就使得在常温、常压、无催化剂时,空气氧化法(曝气法)所需反应时间很长,使其应用受到限制。如果设法断开氧分子中的氧一氧键(如高温、高压、催化剂、γ射线辐照等),

氧化还原法制备石墨烯

创新实验课报告 题目:石墨烯的制备 专业…………………学生……… 学号……………指导教师……… 日期2014.05.09 哈尔滨工业大学

目录 1.绪论 (3) 1.1纳米技术概述 (3) 1.2碳纳米结构概述 (3) 1.3石墨烯的结构 (4) 1.4石墨烯的性能简介 (4) 2.实验目的及意义 (7) 3. 实验方案与实验步骤 (8) 3.1氧化还原法制备石墨烯概述 (8) 3.2 实验设备和实验试剂 (9) 3.3 制备氧化石墨烯 (10) 3.4 制备石墨烯 (11) 3.5 实验操作注意事项 (13) 4. 实验结果和分析 (15) 4.1 石墨烯的SEM分析 (15) 4.2 石墨烯的IR分析 (16) 4.2 石墨烯的Raman分析 (16) 5. 课程体会与建议 (18)

1.绪论 1.1纳米技术概述 纳米技术被称为第四世界的难题和21世纪的化学难题。纳米技术的重要意义在于,其技术应用尺度在0.1nm数量级至10nm数量级间,这属于量子尺度和静电尺度的模糊边界。从而导致纳米材料具有很特殊的性质,这种特殊性比较全面的表现在材料的物理性质和化学性质的各个方面。例如表面效应,在进行纳米尺度堆垛时,表面原子所占的比例越大的情况下堆垛体的直径越小。 1.2碳纳米结构概述 在石墨烯被发现后,碳纳米结构形成了一个从零维到三维的完整的体系。包括富勒烯,碳纳米管和石墨烯。 1.2.1 富勒烯 富勒烯即为,是第三种形式的单质碳。富勒烯这一名字来源于一次世博会上类 似的结构,在英文中也被称为Bucky Ball。在富勒烯被发现的过程中,有很多有趣的设想和实验。如Kroto设想红巨星附近的碳长链分子是一种碳团聚。Rice大学利用TOF-MS (飞行时间质谱仪)发现了峰。1985年《Science》上一篇文章的发表表明富勒烯的发现,但更伟大的意义在于这一事件标志着纳米技术的开端。 富勒烯由12个五边形和20个六边形构成,满足“定点数+面数-棱数=2”,D=0.7nm。这是一种完美的对称结构,在科研上具有很大的价值。例如富勒烯是一个可装入金属离子的绝缘体,有开发吵到材料的潜力,这也是笼中化学的范畴。但是富勒烯由于难以大量生产,实际应用的意义收到了很大限制。 1.2.2 碳纳米管 碳纳米管在1991年的时候由日本名城大学的S.Iijima发现,93年的时候,单壁碳纳米管被制备出来。碳纳米管是一种一维结构,在一维方向上具有非常高的强度和韧性,可以作为一种“超级纤维”使用。同时可以功能化为公家碳纳米管和非共价碳纳米管。 1.2.3 石墨烯 石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子,但实际上10层以内的石墨结构也可称作石墨烯。而10层以上的则被称为石墨薄膜。在石墨烯发现前,科学界已经有无法制备出石墨烯的结论。从传统的物理学来讲,越薄的材料越易气化;朗道物理学中的观点是:在有限温度下,任何二维晶格体系都不能稳定存在。也就是说除非绝对零度,石墨烯不会存在,然而绝对零度是不可能达到的,也就是说无法得到稳定存在的石墨烯。即使这样,依旧有科学家不断尝试制备出石墨烯:在99年的时候,

相关主题