搜档网
当前位置:搜档网 › 圆筒形拉深件工序件尺寸计算

圆筒形拉深件工序件尺寸计算

圆筒形拉深件工序件尺寸计算
圆筒形拉深件工序件尺寸计算

例:试对图所示圆筒形件进行拉深工艺计算,材料为L3,壁厚0.5mm 。

圆筒形拉深件

解:1.确定修边余量Δh

该件H =90mm ,H/d =1.8,查表2-37得Δh =5mm 。则拉深高度H =90+5=95mm 。

2.计算毛坯直径

由于板厚t 小于1mm ,故计算毛坯直径可直接用工件图所注尺寸计算,不需按中心层尺寸计算。

D =2222256.072.14r rd H d d --+=225.056.0505.072.19550450?-??-??+

=146.5

3.确定拉深次数

按毛坯相对厚度t/D =0.5/146.5=0.34%和工件相对高度H/d =95/50=1.9,查表4-15得拉深次数n =3。初步确定需要三次拉深。考虑到工件圆角半径为0.5mm ,故需增加一次整形工序。

4.计算各次工序件直径

考虑到板料为软铝l3,拉深系数按表4-11中值减小1.5%计算,初步确定三次拉深的拉深系数分别为:m 1=0.54,m 2=0.77,m 3=0.79,初步计算各次拉深工序件直径为:

1

.489.6079.09.601.7977.01

.795.14654.023312211=?===?===?==d m d d m d D m d

第三次拉深直径已小于工件的直径,需调整各次的拉深系数,取m 1=0.55,m 2=0.78,

m 3=796.078

.055.05.1465021=?=m m D d

因此得各次拉深工序件直径为:

50

8.62796.08.626.8078.06

.805.14655.023312211=?===?===?==d m d d m d D m d

5.选取凸模与凹模的圆角半径

An Tn Ai Ai A r r r r t d D r )8.0~7.0()8.0~7.0(5

.55.0)505.146(8.0)(8.01

1===?-=-=-

计算各次拉深凸模与凹模的圆角半径并取整结果为:

mm r mm

r mm

r mm

r mm

r mm

r T T T A A A 345456321321======

6.计算各次工序件的高度

将D =146.5;d 1=80.6、r 1=5;d 2=62.8、r 2=4;d 3=50、r 3=3分别代入如下公式:

)56.072.1(4122

n

n n n n n d r r d d D H ++-= 可计算出:

H 1=48.6mm

H 2=71.5mm

H 3=96.1mm

计算拉深工序件的高度是为了设计再拉深模时确定压边圈的高度,再拉深模压边圈的高度应大于前道工序件的高度。

当末次拉深的凸模圆角半径大于拉深件底角半径时,将出现所计算的末次拉深高度H n 大于拉深件高度H ,这是正常的,通过整形,减小底角半径后,高度将减小至拉深件高度H 。

工序尺寸及其公差的确定与加工余量大小

工序尺寸及其公差的确定与加工余量大小

工序尺寸及其公差的确定与加工余量大小,工序尺寸标注方法及定位基准的选择和变换有密切的关系。下面阐述几种常见情况的工序尺寸及其公差的确定方法。 (一)从同一基准对同一表面多次加工时工序尺寸及公差的确定 属于这种情况的有内外圆柱面和某些平面加工,计算时只需考虑各工序的余量和该种加工方法所能达到的经济精度,其计算顺序是从最后一道工序开始向前推算,计算步骤为: 1 .确定各工序余量和毛坯总余量。 2 .确定各工序尺寸公差及表面粗糙度。 最终工序尺寸公差等于设计公差,表面粗糙度为设计表面粗糙度。其它工序公差和表面粗糙度按此工序加工方法的经济精度和经济粗糙度确定。 3 .求工序基本尺寸。

从零件图的设计尺寸开始,一直往前推算到毛坯尺寸,某工序基本尺寸等于后道工序基本尺寸加上或减去后道工序余量。 4 .标注工序尺寸公差。 最后一道工序按设计尺寸公差标注,其余工序尺寸按“单向入体”原则标注。 例如,某法兰盘零件上有一个孔,孔径为 ,表面粗糙度值为R a0.8 μ m (图3-83 ),毛坯为铸钢件,需淬火处理。其工艺路线如表3-19 所示。 解题步骤如下:

( 1 )根据各工序的加工性质,查表得它们的工序余量(见表3-19 中的第 2 列)。 ( 2 )确定各工序的尺寸公差及表面粗糙度。由各工序的加工性质查有关经济加工精度和经济粗糙度(见表3-19 中的第 3 列)。 ( 3 )根据查得的余量计算各工序尺寸(见表3-19 中的第四列)。 ( 4 )确定各工序尺寸的上下偏差。按“单向入体”原则,对于孔,基本尺寸值为公差带的下偏差,上偏差取正值;对于毛坯尺寸偏差应取双向对称偏差(见表3-19 中的第 5 列)。

盒形件拉深模具设计内容知道

目录 题目盒型件拉深模设计 (2) 前言 (2) 第一章审图 (5) 第二章拉深工艺性分析 (6) 2.1对拉深件形状尺寸的要求 (6) 2.2拉深件圆角半径的要求 (6) 2.3 形拉深件壁间圆角半径rpy (7) 2.4 拉深件的精度等级要求不宜过高 (7) 2.5 拉深件的材料 (7) 2.6 拉深件工序安排的一般原则 (8) 第三章拉深工艺方案的制定 (8) 第四章毛坯尺寸的计算 (9) 4.1 修边余量 (9) 4.2毛坯尺寸 (9) 第五章拉深次数确定 (10) 第六章冲压力及压力中心计算 (11) 6.1 冲压力计算 (11) 6.2 压力中心计算 (12) 第七章冲压设备选择 (12) 第八章凸凹模结构设计 (13)

8.1凸模圆角半径 (13) 8.2 凸凹模间隙 (13) 8.3 凸凹模尺寸及公差 (14) 第九章总体结构设计 (14) 9.1 模架的选取 (14) 9.2 模柄 (15) 9.3拉深凸模的通气孔尺寸 (15) 9.4导柱和导套 (16) 9.5 推杆 (17) 9.6卸料螺钉 (17) 9.7螺钉和销钉 (17) 第十章拉深模装配图绘制和校核 (18) 10.1拉深模装配图绘制 (18) 10.2 拉深模装配图的校核 (20) 第十一章非标准件零件图绘制 (21) 11.1冲压凸模 (21) 11.2 冲压凹模 (22) 11.3 压边圈 (22) 11.4 凸模垫板 (23) 第十二章结论 (24) 参考文献 (25)

题目盒型件拉深模设计 其目的在于巩固所学知识,熟悉有关资料,树立正确的设计思想,掌握设计方法,培养学生的实际工作能力。通过模具结构设计,学生在工艺性分析、工艺方案论证、工艺计算、模具零件结构设计、编写技术文件和查阅文献方面受到一次综合训练,增强学生的实际工作能力 前言 从几何形状特点看,矩形盒状零件可划分成2 个长度为(A-2r) 和2 个长度为(B-2r) 的直边加上4 个半径为r 的1/4 圆筒部分(图4.4.1) 。若将圆角

矩形件拉深展开计算

一.拉深矩形件的变形特点 A长边、B短边、H高度,长边与短边连接处的圆角半径称为转角半径,以r c 表示,直 边与盒底连接处的圆角半径称为底角半径,以r p 表示,盒形件有4个直边区,分别为2个 长直边区A-2r c ,2个短直边区B-2r c ,有4个圆角区,即r c 区,相当于以2r c 为直径的圆筒 形件的1/4,r c /B越小,越能反映矩形件的变形特点,r c /B等于0.5时,工件形状为长圆 形,比值A/B越接近于1,变形将越接近圆筒形件。 网格试验结果:在平板毛坯上有规律地划出网格,在直边区单元网格为矩形,横向间 距a与纵向间距b各自都处处相等,在圆角区单元网格为扇形,纵向间距b处处相等,横 向间距a则越远离r c 中心越大。拉深后,两种网格均产生了不均匀的变形。 1.直边区不是简单的弯曲,横向受到压缩,纵向受到拉伸,越靠近圆角区变形越大。 拉深后横向间距a缩短了,越靠近圆角区、越靠近边缘缩短得越多。纵向间距b伸长了,越靠近圆角区伸长的越多。在直边中间纵向间距基本没有变化,仍保持相等的初始间距。 2.圆角区变形得到了减轻,横向的压缩变形要比相应的圆筒形件减轻,纵向的拉伸变形也比相应的圆筒形件减轻。 圆角区的辐射线未变成平行线,横向间距仍保持上大下小。纵向间距的变化没有圆筒形件的变化程度大。 3.应力分布不均匀,圆角区中间最大,向两侧直边区逐渐减小。 拉深矩形件的变形区主要在圆角区,其应力与应变状态与圆筒形件是相同的,由变形的不均匀性可以推断应力的分布是很不均匀的。径向拉应力、切向压应力沿凹模口的分布是

圆角区较大,直边区很小,最大值在角平分线处。 结论:在圆筒形件的直径d等于矩形件转角半径r c 的两倍的可比条件下,矩形件拉破的危险性比圆筒形件要小得多,因此允许的变形程度可比圆筒形件更大些。 矩形件拉深时同样存在起皱与拉破问题,且发生在圆角区。在直边区还有一个特殊的直边缓松工艺问题,这时由于拉深过程中圆角区材料从横向挤向直边区,使直边区材料沿横向显得偏多,造成工件的刚性不好,严重时可造成工件的形状不规则,出现扭曲现象。 二.矩形件的变形程度表示方法 矩形件的假想拉深系数m r : 表4-19:由平板毛坯一次拉成矩形件的极限拉深系数m r 。 表4-20:由平板毛坯一次拉成矩形件所能达到的圆角区最大相对高度H/r c 。 表4-21:由平板毛坯一次拉成矩形件所能达到的以高度H与宽度B之比表示的最大相对高度H/B。 三.矩形件再拉深变形分析 矩形件的再拉深是指以前道工序拉成的具有直立侧壁的空心件为工序件再拉深成矩形件或方形件。 矩形件的再拉深与圆筒形件有很大的不同。拉深矩形件时径向应变与切向应变不具有均匀性,工序件不相似,截面不为矩形。 矩形件顺利再拉深的过程:在高度以h 2 表示的直壁不断增加且不产生塑性变形的同时, 前次工序件高度以h 1表示的直壁应平稳地减小,而处于两直壁之间的扇形变形区在h 1 减小

盒形件拉深设计

华中科技大学材料学院 盒形件加工工艺及模具设计 班级:XXXXXXX 学生姓名:X X X 学号:XXXXXXX 时间:2015年1月

1、零件工艺性分析 (1) 2、工艺方案的确定 (1) 3、工艺计算 (3) 3.1拉深部分工艺计算 (3) 3.2落料时冲裁工艺计算 (8) 4、冲压设备的选用 (12) 5、落料拉深模主要零部件计算 (13) 5.1落料凹模设计计算 (13) 5.2拉深凸模设计计算 (14) 5.3固定板设计计算 (15) 5.4卸料结构计算 (16) 5.5压边圈设计计算 (17) 5.6凸凹模设计计算 (18) 5.7其它零件设计和选用 (18) 5.8模具闭合高度计算 (23) 6、模具总装图的绘制 (24) 7、结束语 (24) 8、参考文献 (25)

1、零件工艺性分析 1.1零件结构图示 图1.1:加工零件图 1.2零件结构分析 工件为矩形盒形件,零件形状简单,要求为外形尺寸;尺寸为长、宽、高分别为45mm ,27mm ,20mm ;料后t=0.4mm ,没有厚度方向上不变的要求;底部圆角半径p r =3mm ,矩形四个角处圆角半径为r =4mm ,满足拉深工艺对形状和圆角半径的要求。 1.3材料性能分析 零件所用材料为H68M ,拉伸性能好,易于成形。 1.4精度等级分析 公等级定为IT14级。满足普通冲压工艺对精度等级的要求。 2、工艺方案的确定 由上分析,该零件为矩形盒形件,可采用拉深成形。为确定拉深工艺方案,先计算拉深次数及相关工艺尺寸。 2.1修边余量 工件相对高度 0h 20 ==5r 4 ,则依据下表可知修边余量 0h=~h =0.0420=0.8mm ??(0.030.05)。 工件相对高度△h 2.5~6 7~17 18~44 45~100

圆筒形件拉深尺寸计算和成形过程模拟

圆筒形件拉深尺寸计算和成形过程模拟 摘要:在冲压生产中,拉深是广泛使用的工序。通过拉深可获得筒形、阶梯形、锥形、球形等零件。平板毛坯拉深成筒状开口零件时口部出现飞边卷口现象,对 此进行切边设计。 关键词:筒形件;模具结构;拉深间隙 Dynaform作为近年来板料成形数值模拟技术中常用的软件,可以预测成形过 程中板料的破裂、起皱、回弹等,从而帮助设计人员显著减少模具开发设计时间 及试模周期。在利用该软件进行模拟分析时,应该采用理论计算和软件模拟共用,以找出合适的成形工艺。带凸缘的圆筒形件是日常生活中常用的零件,如不锈钢 的面盆、压力锅的锅盖等物品,均属于带凸缘的圆筒形件。本文利用所给的拉深件,首先计算了拉深过程中的部分尺寸,而后在理论计算的基础上,结合Dynaform软件对零件的拉伸过程进行模拟,找出了较为合适的压边力,从而为后 续拉深模具设计提供依据。 1、带凸缘圆筒形件拉深尺寸计算 图1是带凸缘圆筒形件的零件图,其壁厚为2mm,材料为304不锈钢,精度 为IT14级。本文计算的拉深尺寸包括拉深毛坯的尺寸、拉深次数的计算、压边装 置的使用与否以及压边力的计算。 1.1带凸缘圆筒形件毛坯尺寸的计算 由图1,零件的厚度t=2mm,因此在计算毛坯尺寸时应采用中线尺寸计算。 该零件的相对直径dt/d=380/320=1.18,其中dt为凸缘直径,d为圆筒件底部直径,取修边余量δ=6mm。由拉深毛坯尺寸的计算公式可知: 根据图1,d4=380+2δ=392mm,r=6mm,d2=d+2r=332mm,H=98mm 由此计算出防尘盖毛坯尺寸: 1.2是否需要压边装置和拉深次数的计算 本零件采用普通平面凹模拉深,毛坯不起皱条件为: t/D≥(0.09~0.17)(1-m) 由图1和D可计算出:t/D=2/527=0.38%,总拉深系数m=d2/D=332/527=0.63。 因此(0.09~0.17)(1-m)=0.0333~0.0629,则t/D<(0.09~0.17)(1-m),因此该零件拉深时需使用压边圈。 查表得出,该零件总拉深系数大于其极限拉深系数0.55,因此可一次拉深成形。 1.3压边力的计算 一次拉深成形时的压边力:FY=Ap,查表可知,根据零件的复杂程度,p可以 取值为2.5、3和3.7MPa。因本文中零件为简单的带凸缘圆筒形件,因此取P值 为2.5Mpa。压边圈的面积应与凸模相配合,其最大直径考虑与毛坯重合,由此计算出: FY=Ap≈π(263.52-1722)×2.5≈312809N 综上所计算的结果,该零件拉深毛坯的尺寸D=527mm,可一次拉深成形,拉 深过程中需要使用压边圈防止起皱,压边力FY=312809N。 为验证理论计算的正确性及在此压边力下是否可以得到合格的零件,利用Dynaform软件对其成形过程进行模拟。

矩形件拉深展开计算

矩形件的拉深 一. 拉深矩形件的变形特点 A 长边、 B 短边、H 高度,长边与短边连接处的圆角半径称为转角半径,以r c 表示,直边与盒底连接处的圆角半径称为底角半径,以r p 表示,盒形件有4个直边区,分别为2个长直边区A-2r c ,2个短直边区B-2r c ,有4个圆角区,即r c 区,相当于以2r c 为直径的圆筒形件的1/4,r c /B 越小,越能反映矩形件的变形特点,r c /B 等于时,工件形状为长圆形,比值A/B 越接近于1,变形将越接近圆筒形件。 网格试验结果:在平板毛坯上有规律地划出网格,在直边区单元网格为矩形,横向间距a 与纵向间距b 各自都处处相等,在圆角区单元网格为扇形,纵向间距b 处处相等,横向间距a 则越远离r c 中心越大。拉深后,两种网格均产生了不均匀的变形。 1. 直边区不是简单的弯曲,横向受到压缩,纵向受到拉伸,越靠近圆角区变形越大。 拉深后横向间距a 缩短了,越靠近圆角区、越靠近边缘缩短得越多。纵向间距b 伸长了,越靠近圆角区伸长的越多。在直边中间纵向间距基本没有变化,仍保持相等的初始间距。 2. 圆角区变形得到了减轻,横向的压缩变形要比相应的圆筒形件减轻,纵向的拉伸变 形也比相应的圆筒形件减轻。 圆角区的辐射线未变成平行线,横向间距仍保持上大下小。纵向间距的变化没有圆筒形件的变化程度大。 3. 应力分布不均匀,圆角区中间最大,向两侧直边区逐渐减小。 拉深矩形件的变形区主要在圆角区,其应力与应变状态与圆筒形件是相同的,由变形的不均匀性可以推断应力的分布是很不均匀的。径向拉应力、切向压应力沿凹模口的分布是圆角区较大,直边区很小,最大值在角平分线处。 结论:在圆筒形件的直径d 等于矩形件转角半径r c 的两倍的可比条件下,矩形件拉破的危险性比圆筒形件要小得多,因此允许的变形程度可比圆筒形件更大些。 矩形件拉深时同样存在起皱与拉破问题,且发生在圆角区。在直边区还有一个特殊的直边缓松工艺问题,这时由于拉深过程中圆角区材料从横向挤向直边区,使直边区材料沿横向显得偏多,造成工件的刚性不好,严重时可造成工件的形状不规则,出现扭曲现象。 二. 矩形件的变形程度表示方法 矩形件的假想拉深系数m r : r H rH r m rH R r r r r r r H r r R r rd dh d D R r m r p c p p c c c c r /21 2214.086.0256.072.1402202 20 =====--+=--+== 表4-19:由平板毛坯一次拉成矩形件的极限拉深系数m r 。 表4-20:由平板毛坯一次拉成矩形件所能达到的圆角区最大相对高度H/r c 。 表4-21:由平板毛坯一次拉成矩形件所能达到的以高度H 与宽度B 之比表示的最大相对高度H/B 。 三. 矩形件再拉深变形分析 矩形件的再拉深是指以前道工序拉成的具有直立侧壁的空心件为工序件再拉深成矩形

矩形件拉深展开计算

矩形件拉深展开计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一.拉深矩形件的变形特点 A长边、B短边、H高度,长边与短边连接处的圆角半径称为转角半径,以r c 表示, 直边与盒底连接处的圆角半径称为底角半径,以r p 表示,盒形件有4个直边区,分别为2 个长直边区A-2r c ,2个短直边区B-2r c ,有4个圆角区,即r c 区,相当于以2r c 为直径的 圆筒形件的1/4,r c /B越小,越能反映矩形件的变形特点,r c /B等于时,工件形状为长圆 形,比值A/B越接近于1,变形将越接近圆筒形件。 网格试验结果:在平板毛坯上有规律地划出网格,在直边区单元网格为矩形,横向间 距a与纵向间距b各自都处处相等,在圆角区单元网格为扇形,纵向间距b处处相等,横 向间距a则越远离r c 中心越大。拉深后,两种网格均产生了不均匀的变形。 1.直边区不是简单的弯曲,横向受到压缩,纵向受到拉伸,越靠近圆角区变形越大。 拉深后横向间距a缩短了,越靠近圆角区、越靠近边缘缩短得越多。纵向间距b伸长了,越靠近圆角区伸长的越多。在直边中间纵向间距基本没有变化,仍保持相等的初始间距。 2.圆角区变形得到了减轻,横向的压缩变形要比相应的圆筒形件减轻,纵向的拉伸变形也比相应的圆筒形件减轻。 圆角区的辐射线未变成平行线,横向间距仍保持上大下小。纵向间距的变化没有圆筒形件的变化程度大。 3.应力分布不均匀,圆角区中间最大,向两侧直边区逐渐减小。 拉深矩形件的变形区主要在圆角区,其应力与应变状态与圆筒形件是相同的,由变形

的不均匀性可以推断应力的分布是很不均匀的。径向拉应力、切向压应力沿凹模口的分布是圆角区较大,直边区很小,最大值在角平分线处。 的两倍的可比条件下,矩形件拉破结论:在圆筒形件的直径d等于矩形件转角半径r c 的危险性比圆筒形件要小得多,因此允许的变形程度可比圆筒形件更大些。 矩形件拉深时同样存在起皱与拉破问题,且发生在圆角区。在直边区还有一个特殊的直边缓松工艺问题,这时由于拉深过程中圆角区材料从横向挤向直边区,使直边区材料沿横向显得偏多,造成工件的刚性不好,严重时可造成工件的形状不规则,出现扭曲现象。 二.矩形件的变形程度表示方法 : 矩形件的假想拉深系数m r 。 表4-19:由平板毛坯一次拉成矩形件的极限拉深系数m r 。 表4-20:由平板毛坯一次拉成矩形件所能达到的圆角区最大相对高度H/r c 表4-21:由平板毛坯一次拉成矩形件所能达到的以高度H与宽度B之比表示的最大相对高度H/B。 三.矩形件再拉深变形分析 矩形件的再拉深是指以前道工序拉成的具有直立侧壁的空心件为工序件再拉深成矩形件或方形件。 矩形件的再拉深与圆筒形件有很大的不同。拉深矩形件时径向应变与切向应变不具有均匀性,工序件不相似,截面不为矩形。

工艺尺寸链计算的基本公式

工艺尺寸链计算的基本公式 来源:作者:发布时间:2007-08-03 工艺尺寸链的计算方法有两种:极值法和概率法。目前生产中多采用极值法计算,下面仅介绍极值法计算的基本公式,概率法将在装配尺寸链中介绍。 图3-82 为尺寸链中各种尺寸和偏差的关系,表3-18 列出了尺寸链计算中所用的符号。 1 .封闭环基本尺寸 式中n ——增环数目;

m ——组成环数目。 2 .封闭环的中间偏差 式中Δ0——封闭环中间偏差; ——第i 组成增环的中间偏差; ——第i 组成减环的中间偏差。 中间偏差是指上偏差与下偏差的平均值:3 .封闭环公差 4 .封闭环极限偏差 上偏差 下偏差

5 .封闭环极限尺寸 最大极限尺寸A 0max=A 0+ES 0 (3-27 ) 最小极限尺寸A 0min=A 0+EI 0 (3-28 ) 6 .组成环平均公差 7 .组成环极限偏差 上偏差 下偏差 8 .组成环极限尺寸 最大极限尺寸A imax=A i+ES I (3-32 )最小极限尺寸A imin=A i+EI I (3-33 )工序尺寸及公差的确定方法及示例

工序尺寸及其公差的确定与加 工余量大小,工序尺寸标注方法及定位基准的选择和变换有密切的关系。下面阐述几种常见情况的工序尺寸及其公差的确定方法。 (一)从同一基准对同一表面多次加工时工序尺寸及公差的确定 属于这种情况的有内外圆柱面和某些平面加工,计算时只需考虑各工序的余量和该种加工方法所能达到的经济精度,其计算顺序是从最后一道工序开始向前推算,计算步骤为: 1 .确定各工序余量和毛坯总余量。 2 .确定各工序尺寸公差及表面粗糙度。 最终工序尺寸公差等于设计公差,表面粗糙度为设计表面粗糙度。其它工序公差和表面粗糙度按此工序加工方法的经济精度和经济粗糙度确定。 3 .求工序基本尺寸。 从零件图的设计尺寸开始,一直往前推算到毛坯尺寸,某工序基本尺寸等于后道工序基本尺寸加上或减去后道工序余量。 4 .标注工序尺寸公差。 最后一道工序按设计尺寸公差标注,其余工序尺寸按“单向入体”原则标注。 例如,某法兰盘零件上有一个孔,孔径为,表面粗糙度值为R a0.8 μ m (图3-83 ),毛坯为铸钢件,需淬火处理。其工艺路线如表3-19 所示。

拉深盒型件拉深工艺

拉深盒型件拉深工艺

盒形件 盒形件属于非旋转体零件,包括方形盒、矩形盒和椭圆形盒等。与旋转体零件的拉深相比,盒形件拉深时,毛坯的变形分布要复杂得多。 盒形件拉深变形特点 从几何形状的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分组成(图4.4.1)。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深复合,有其特有的变形特点,这可通过网格试验进行验证。 图4.4.1 盒形件拉深变形特点 拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图4.4.1所示) 。这些变化主要表现在: ⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中间部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大,愈靠近盒形件口部增大愈多,即△h1<△h1′<△h2′<△h3′。可见,此处的变形不同于纯粹的弯曲。 (2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。因此该处的变形不同于纯粹的拉深。 从以上可知,由于有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r相同,高度h相等的圆筒形件比较起来要小。同时表明圆角部分的变形也是不均匀的,即圆角中心大,相邻直边处变形小。从塑性变形力学观点看,由于减轻了圆角部分材料的变形程度,需要克服的变形抗力也相应减小,危险断面破裂的可能性也减小。盒形件的拉深特点如下:

圆筒形拉深件毛坯尺寸计算

圆筒形拉深件毛坯尺寸计算 2007-10-24 15:39:04| 分类:专业知识 | 标签: |字号大中小订阅 4 . 2 直壁旋转体零件拉深工艺的设计 圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。 4.2.1 1.拉深件毛坯尺寸计算的原则 1)面积相等原则 表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则)。 2)形状相似原则 、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。 压零件的总成本中,材料费用一般占到60 %以上。 件的口部将出现凸耳(口部不平)。为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2)。 表4.2.1无凸缘零件切边余量Δh(mm) 拉深件高度h 拉深相对高度h/d或h/B 附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4 ≤10 >10~20 >20~50 >50~100 >100~150 >150~200 >200~250 >250 1.0 1.2 2 3 4 5 6 7 1.2 1.6 2.5 3.8 5 6.3 7.5 8.5 1.5 2 2.5 3.8 5 6.3 7.5 8.5 2 2.5 4 6 8 10 11 12 [img=118,139]mhtml:file:/ /F:\冲压\4 _ 2 直壁旋转体 零件拉深工艺的设 计.mht! [/img] 表4.2.2有凸缘零件切边余量ΔR(mm) 凸缘直径dt或Bt 相对凸缘直径dt/d或Bt/B 附图< 1.5 1.5~2 2~2.5 2.5~3 < 25 >25~50 >50~100 1.8 2.5 3.5 1.6 2.0 3.0 1.4 1.8 2.5 1.2 1.6 2.2 [img=125,125]mhtml:file:/ /F:\冲压\4 _ 2 直壁旋转体 零件拉深工艺的设

圆筒拉深件毛坯尺寸计算

4 . 2 直壁旋转体零件拉深工艺的设计 圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。 4.2.1 圆筒形拉深件毛坯尺寸计算 1.拉深件毛坯尺寸计算的原则 (1)面积相等原则 由于拉深前和拉深后材料的体积不变,对于不变薄拉深,假设材料厚度拉深前后不变,拉深毛坯的尺寸按“拉深前毛坯表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则)。 (2)形状相似原则 拉深毛坯的形状一般与拉深件的横截面形状相似。即零件的横截面是圆形、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。 拉深件毛坯形状的确定和尺寸计算是否正确,不仅直接影响生产过程,而且对冲压件生产有很大的经济意义,因为在冲压零件的总成本中,材料费用一般占到60 %以上。 由于拉深材料厚度有公差,板料具有各向异性;模具间隙和摩擦阻力的不一致以及毛坯的定位不准确等原因,拉深后零件的口部将出现凸耳(口部不平)。为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2)。 表4.2.1无凸缘零件切边余量Δh(mm) 拉深件高度h 拉深相对高度h/d或h/B 附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4 ≤10 >10~20 >20~50 >50~100 >100~150 >150~200 >200~250 >250 1.0 1.2 2 3 4 5 6 7 1.2 1.6 2.5 3.8 5 6.3 7.5 8.5 1.5 2 2.5 3.8 5 6.3 7.5 8.5 2 2.5 4 6 8 10 11 12 [img=118,139]mhtml:file://F:\ 冲压\4 _ 2 直壁旋转体零件 拉深工艺的设 计.mht![/img] 表4.2.2有凸缘零件切边余量ΔR(mm) 凸缘直径dt或Bt 相对凸缘直径dt/d或Bt/B 附图< 1.5 1.5~2 2~2.5 2.5~3 < 25 >25~50 >50~100 >100~150 >150~200 >200~250 >250 1.8 2.5 3.5 4.3 5.0 5.5 6.0 1.6 2.0 3.0 3.6 4.2 4.6 5.0 1.4 1.8 2.5 3.0 3.5 3.8 4.0 1.2 1.6 2.2 2.5 2.7 2.8 3.0 [img=125,125]mhtml:file://F:\ 冲压\4 _ 2 直壁旋转体零件 拉深工艺的设 计.mht![/img] 2.简单形状的旋转体拉深零件毛坯尺寸的确定(图4.2.1)

盒形件拉伸成形分析

盒形件拉伸成形分析零件(盒形件) 通过SolidWorks软件绘制零件如图所示 图1 零件图2 坯料其中零件尺寸为320X200X35,坯料尺寸为480X320,单位mm。 分别另存为igs格式的文件,准备导入Dynafrom软件。 Dynafrom成形步骤 1 导入零件,修改名称 打开Dynafrom软件,在菜单栏中选择“文件”——“导入”,将两个igs格式的零件依次导入软件中,选择“零件层”——“编辑”,分别将坯料名称修改为blank,将零件名称修改为die。 2 网格划分 点击“零件层”——“显示/隐藏零件层”,选择“die”,点击确定,将die 隐藏。 点击“前处理”——“单元”,点选,将最大尺寸修改为5,如图3所示: 然后依次点击“选择曲面”,“显示曲面”,“确定”,“应 用”,“是” 图4

图3 图5 零件被划分网格 后如图4所示,点击 “退出”——“确定”。 同样,再将blank 隐藏,再点击右下角 的“当前零件层”,点 击“die”,退出,将die设为当前层。再重担blank的步骤,对die进行网格划分,网格划分后效果如图5所示。 3 创建压边圈 将blank层显示出来。点击“零件层”——“创建”,输入binder,“确定”。 点击“前处理”——“线/点”,点击“创建”,选择“点”——“工作平面上的点”,在坯料周围画出矩形,如图6所示,再点击“确定”——“确定”,因而退出。 在工具栏中选择“坯料生成器”——“边界线”,用光标,单击画出的矩形,将单元大小改为5,“确定”,接受网格?点击“是”,效果如图7所示。 图6 图7 此时,binder在零件的中间,如图8。点击“前处理”——“单元”——“变 换”,点选“输入值”,点击“选择单元”,选择binder层,选择“伸展” ,在视图内点选binder,点击“确定”,在Z轴上进行调整,输入适当值,将binder层调整到离blank层适当距离,如图9所示:

工序尺寸及其公差的确定

安徽工程科技学院教师备课教案 本章节讲稿共5 页教案第1 页备课时间:05年6月15 日教师签名:

第七章工艺规程设计 四、加工余量、工序尺寸及其公差的确定 1.加工余量的确定 对于柱面为双边余量;对于平面为单边余量。 加工总余量(毛坯余量):毛坯尺寸与零件图上的设计尺寸之差。 工序余量:相邻两工序尺寸之差。分为: ①工序基本余量Z=±(上工序基本尺寸L a-本工序基本尺寸 L b) 外表面取+;内表面取- 外表面:内表面: ②最小工序余量Z min=L amin-L bmax Z min=L bmin-L amax ③最大工序余量Z max=L amax-L bmin Z max=L bmax-L amin ④工序余量公差T z=Z max-Z min =上工序尺寸公差Ta+本工序尺寸公差Tb 工序尺寸公差的标注,按入体原则:即实体最小化,图7-9 毛坯尺寸公差,双向标注,图7-10 1)确定工序余量的原则和应考虑的因素 ①在确保加工质量的前提下,工序余量尽可能小。 ②上工序的R a及缺陷层D a图7-11和表7-2 ③T a和形位误差ρa ④本工序定位、夹紧误差误差εb 2)确定加工余量的方法 ①公式计算法,比较准确,但数据难得,用于大批量生产; 式7-5、7-6 p173 ②经验估计法,余量一般偏大,用于单件小批生产; ③查表修正法,将生产实践和试验积累的大量数据列成表格, 使用时直接查找,应根据实际情况修正。 2.工序尺寸及其公差的确定 工件某表面需多道工序加工时, 工序尺寸:各工序应保证的加工尺寸。 工序尺寸公差:工序尺寸允许的变动范围。 1)工艺基准与设计基准重合时 首先确定各工序余量,再从最后一道工序开始向前推算各工序基本尺寸,直到毛坯基本尺寸。例见表7-3 各工序尺寸公差按经济精度确定。 2)工艺基准与设计基准不重合时 需按工艺尺寸链原理分析计算。

盒形件落料拉深

计算机毕业设计https://www.sodocs.net/doc/e62543508.html,JSPJAVAVBC++DelphiPHPVFPPB网络电子毕业设计电子信息通信单片机嵌入式 机电毕业设计机械模具数控工艺夹具电气PLC机电一体汽车土木毕业设计 当前位置:主页 > 机电毕业设计 > 模具 > 盒形件落料拉深复合冲裁模具设计 摘要我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模模具设计实例等方面的资料。再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计模具中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的 摘要 我设计的是一个落料拉深复合冲裁模,在本次设计中我参考了大量有关冷冲模设计实例等方面的资料。再结合老师布置的题(设计一个工件为盒形件的复合冲裁模),我充分运用了资料上所有设计中通用的表、手册等,如修边余量的确定、拉深件毛坯直径的计算公式、盒形件用压边圈拉深系数、盒形件角部的第一次拉深系数等,然后再集结了自己平时的所学,还有通过对工件的零件、模具工作部分(凸凹模、拉深凸模、落料凹模)、模具装配图的绘制,我的绘图功底也有了一定程度地提高。 本次设计的主要内容:工件的工艺性分析;冲压工艺方案的确定;模具的技术要求及材料选用;主要设计尺寸的计算;工作部分尺寸计算;模具的总体设计;主要零部件的结构设计;模具的总装图;模具的装配等。 我觉得通过本次的毕业设计,达到了这样的目的: 1.综合运用本专业所学课程的理论和生产实际知识,进行一次冷冲压模具(落料拉深冲裁模)设计工作的实际训练,从而培养和提高我们独立工作的能力。 2.巩固与扩充所学有关冷冲模具设计课程的内容,掌握冷冲压模具设计的方法和步骤。 3.掌握冷冲压模具设计的基本技能,如计算、绘图、查阅设计资料和手册,熟悉标准和规范等。 关键词:冷冲压落料拉深

盒形件拉深模具设计说明书

目录 题目盒型件拉深模设计 (1) 前言 (2) 第一章审图 (4) 第二章拉深工艺性分析 (4) 2.1对拉深件形状尺寸的要求 (4) 2.2拉深件圆角半径的要求 (4) 2.3 形拉深件壁间圆角半径rpy (5) 2.4 拉深件的精度等级要求不宜过高 (5) 2.5 拉深件的材料 (5) 第三章拉深工艺方案的制定 (6) 第四章毛坯尺寸的计算 (6) 4.1毛坯尺寸 (6) 第五章拉深次数确定 (7) 第六章冲压力及压力中心计算 (7) 6.1 冲压力计算 (7) 6.2 压力中心计算 (7) 第七章冲压设备选择 (8) 第八章凸凹模结构设计 (8) r (8) 8.1凸模圆角半径 p 8.2 凸凹模间隙 (8) 8.3 凸凹模尺寸及公差 (9) 第九章总体结构设计 (9) 9.1 模架的选取 (9) 下模座 (10) 9.2 模柄 (10) 9.3导柱和导套 (10) 9.4 推杆 (11) 9.5螺钉和销钉 (11) 第十章拉深模装配图绘制和校核 (12) 10.1拉深模装配图绘制 (12) 10.2 拉深模装配图的校核 (13) 第十一章非标准件零件图绘制 (14) 11.1拉深凸模 (14) 11.2 拉深凹模 (15) 11.3 上垫板 (15) 11.4 压料板 (16) 第十二章结论 (16)

参考文献 (17) 题目盒型件拉深模设计

前 言 从几何形状特点看,矩形盒状零件可划分成 2 个长度为 (A-2r) 和 2 个长度为 (B-2r) 的直边加上 4 个半径为 r 的 1/4 圆筒部分(图4.4.1) 。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深,有其特有的变形特点,这可通过网格试验进行验证。 拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即321L L L ?=?=?,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图1所示) 。这些变化主要表现在: 图 1 盒形件的拉深变形特点 ⑴直边部位的变形 直边部位的横向尺寸变形后间距逐渐缩小,愈向直边中间部位缩小愈少,纵向尺寸变形后,间距逐渐增大,愈靠近盒形件口部增大愈多,可见,此处的变形不同于纯粹的弯曲。 (2) 圆角部位的变形 拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。同心圆弧的间距不再相等,而是变大,

第四章-拉深工艺及拉深模具设计--复习题答案

第四章拉深工艺及拉深模具设计复习题答案 一、填空题 1.拉深是是利用拉深模将平板毛坯压制成开口空心件或将开口空心件进一步变 形的冲压工艺。 2.拉深凸模和凹模与冲裁模不同之处在于,拉深凸、凹模都有一定的圆角而不 是锋利的刃口,其间隙一般稍大于板料的厚度。 3.拉深系数m是拉深后的工件直径和拉深前的毛坯直径的比值,m越小,则变 形程度越大。 4.拉深过程中,变形区是坯料的凸缘部分。坯料变形区在切向压应力和径向拉 应力的作用下,产生切向压缩和径向伸长的变形。 5.对于直壁类轴对称的拉深件,其主要变形特点有:(1)变形区为凸缘部分; (2)坯料变形区在切向压应力和径向拉应力的作用下,产生切向压缩与径向的伸长,即一向受压、一向收拉的变形;(3)极限变形程度主要受传力区承载能力的限制。 6.拉深时,凸缘变形区的起皱和筒壁传力区的拉裂是拉深工艺能否顺利进行的 主要障碍。 7.拉深中,产生起皱的现象是因为该区域内受较大的压应力的作用,导致材料 失稳_而引起。 8.拉深件的毛坯尺寸确定依据是面积相等的原则。 9.拉深件的壁厚不均匀。下部壁厚略有减薄,上部却有所增厚。 10.在拉深过程中,坯料各区的应力与应变是不均匀的。即使在凸缘变形区也是 这样,愈靠近外缘,变形程度愈大,板料增厚也愈大。 11.板料的相对厚度t/D越小,则抵抗失稳能力越愈弱,越容易起皱。

12.因材料性能和模具几何形状等因素的影响,会造成拉深件口部不齐,尤其是 经过多次拉深的拉深件,起口部质量更差。因此在多数情况下采用加大加大工序件高度或凸缘直径的方法,拉深后再经过切边工序以保证零件质量。13.拉深工艺顺利进行的必要条件是筒壁传力区最大拉应力小于危险断面的抗拉 强度。 14.正方形盒形件的坯料形状是圆形;矩形盒形件的坯料形状为长圆形或椭圆形。 15.用理论计算方法确定坯料尺寸不是绝对准确,因此对于形状复杂的拉深件, 通常是先做好拉深模,以理论分析方法初步确定的坯料进行试模,经反复试模,直到得到符合要求的冲件时,在将符合要求的坯料形状和尺寸作为制造落料模的依据。 16.影响极限拉深系数的因素有:材料的力学性能、板料的相对厚度、拉深条件 等。 17.一般地说,材料组织均匀、屈强比小、塑性好、板平面方向性小、板厚方向 系数大、硬化指数大的板料,极限拉深系数较小。 18.拉深凸模圆角半径太小,会增大拉应力,降低危险断面的抗拉强度,因而会 引起拉深件拉裂,降低极限变形。 19.拉深凹模圆角半径大,允许的极限拉深系数可减小,但过大的圆角半径会使 板料悬空面积增大,容易产生失稳起皱。 20.拉深凸模、凹模的间隙应适当,太小会不利于坯料在拉深时的塑性流动,增 大拉深力,而间隙太大,则会影响拉深件的精度,回弹也大。 21.确定拉深次数的方法通常是:根据工件的相对高度查表而得,或者采用推算 法,根据表格查出各次极限拉深系数,然后依次推算出各次拉深直径。 22.有凸缘圆筒件的总拉深系数m大于极限拉深系数时,或零件的相对高度h/d 小于极限相对高度时,则凸缘圆筒件可以一次拉深成形。 23.多次拉深宽凸缘件必须遵循一个原则,即第一次拉深成有凸缘的工序件时, 其凸缘的外径应等于工件的凸缘直径,在以后的拉深工序中仅仅使已拉深成

盒形件的拉深

从几何形状特点看,矩形盒状零件可划分成 2 个长度为 (A-2r) 和 2 个长度为 (B-2r) 的直边加上 4 个半径为 r 的 1/4 圆筒部分(图4.4.1) 。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深,有其特有的变形特点,这可通过网格试验进行验证。 拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即 ,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图4.4.1所示) 。这些变化主要表现在: 图 4.4.1 盒形件的拉深变形特点 ⑴直边部位的变形直边部位的横向尺寸变形后成为间距逐渐缩小,愈向边中间部位缩小愈少,即纵向尺寸变形后成为,间距 渐增大,愈靠近盒形件口部增大愈多,即。可见,此处的变形不同于纯粹的弯曲。 (2) 圆角部位的变形拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直等距平行线。同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。因此该处的变形不同于纯粹的拉深。 根据网格的变化可知盒形件拉深有以下变形特点: (1) 盒形件拉深的变形性质与圆筒件一样,也是径向伸长,切向缩短。沿径向愈往口部伸长愈多沿切向圆角部分变形大,直边部分变形小,圆角部分的材料向直边流动。即盒形件的变形是不均匀

的。 (2) 变形的不均匀导致应力分布不均匀(图 4.4.2) 。在圆角部的中点最大,向两边逐渐减 小,到直边的中点处最小。故盒形件拉深时破坏首先发生在圆角处。又因圆角部材料在拉时容许向直边流动,所以盒形件与相应的圆筒件比较,危险断面处受力小,拉深时可采用小的拉深系数也不容起皱。 图 4.4.2 盒形件拉深时的应力分布 (3) 盒形件拉深时,由于直边部分和圆角部分实际上是联系在一起的整体,因此两部分的变形相影响,影响的结果是:直边部分除了产生弯曲变形外,还产生了径向伸长,切向压缩的拉深变形。两部分相互影响的程度随盒形件形状的不同而不同,也就是说随相对圆角半径 r/B 和相对高度 H/B 的不同而不同。r/B 愈小,圆角部分的材料向直边部分流得愈多,直边部分对圆角部分的影响愈大使得圆角部分的变形与相应圆筒件的差别就大。当 r/B=0.5 时,直边不复存在,盒形件成为圆筒件盒形件的变形与圆筒件一样。 当相对高度 H/B 大时,圆角部分对直边部分的影响就大,直边部分的变形与简单弯曲的差别就大。因此盒形件毛坯的形状和尺寸必然与 r/B 和 H/B 的值有关。对于不同的 r/B 和 H/B ,盒形件毛坯的计算方法和工序计算方法也就不同。 4.4.2 盒型零件拉深毛坯的形状与尺寸的确定 毛坯形状和尺寸的确定应根据零件的 r/B 和 H/B 的值来进行,因为这两个因素决定了圆角和直边在拉深时的影响程度。计算的原则仍然是保证毛坯的面积等于加上修边量后的工件面积,并尽可能要满足口部平齐的要求。一次拉深成形的低盒形件与多次拉深成形的高盒形件,计算毛坯的方法是不同的。下面主要介绍这两种零件毛坯的确定方法。 1〃一次拉深成形的低盒形件(, B 为盒形件的短边长度 ) 毛坯的计算低盒形件是指一次可拉深成形,或虽两次拉深,但第二次仅用来整形的零件。这种零件拉深时仅有微量材料从角部转移到直边,即圆角与直边间的相互影响很小,因此可以认为直边部分只是简单的弯曲变形,毛坯按弯曲变形展开计算。圆角部分只发生拉深变形,按圆筒形拉深展开,再用光滑曲线进行修正即得毛

盒形件落料拉深复合冲裁模设计

毕业设计 题目盒形件落料拉深复合冲裁模设计系别 专业 班级 姓名 学号 指导教师 日期

设计任务书 设计题目: 盒形件落料拉深复合冲裁模设计 设计要求: 1.盒形件工艺性分析及冲裁方案的确定; 2.有关计算及模具设计; 3.模具制造工艺编制与装配。 设计进度: 设计总体时间为一个月。 1.11月23日~11月26日收集资料 2.11月27日~12月5日主要设计计算 3.12月6日~12月15日结构设计 4.12月16日~12月22日模具的整体设计 5.12月23日~12月25日校核、修改、提交论文 6. 12月26日~12月30日论文答辩 指导教师(签名):

摘要 (1) 前言 (2) 1. 工件的工艺性分析 (3) 1.1 冲压件的工艺性分析 (3) 1.2 拉深件的工艺性分析 (3) 1.3 材料的工艺性分析 (4) 1.4 拉深变形过程的分析 (4) 2. 冲压工艺方案的确定 (7) 3. 模具的技术要求及材料选用 (9) 4. 主要设计尺寸的计算 (11) 4.1 毛坯尺寸的确定 (11) 4.2 冲压力的计算 (11) 4.3 拉深间隙的确定 (13) 4.4 冲裁件的排样 (14) 5. 工作部分尺寸计算 (17) 5.1 拉深凸凹尺寸的确定 (17) 5.2 圆角半径的确定 (18) 6. 模具的总体设计 (20) 6.1 模具的类型及定位方式的选择 (20) 6.2 推件零件的设计 (21) 7. 主要零部件的结构设计 (23) 7.1 工作零件的结构设计 (23) 7.2 其他零部件的设计与选用 (24) 8. 模具的总装图 (27) 9. 模具的装配 (28) 结束语 (29) 致谢 (30) 参考文献 (31)

相关主题