搜档网
当前位置:搜档网 › 圆筒形拉深件毛坯尺寸计算

圆筒形拉深件毛坯尺寸计算

圆筒形拉深件毛坯尺寸计算
圆筒形拉深件毛坯尺寸计算

圆筒形拉深件毛坯尺寸计算

2007-10-24 15:39:04| 分类:专业知识| 标签:|字号大中小订阅

4 . 2 直壁旋转体零件拉深工艺的设计

圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。

4.2.1 圆筒形拉深件毛坯尺寸计算 1.拉深件毛坯尺寸计算的原则

(1)面积相等原则

由于拉深前和拉深后材料的体积不变,对于不变薄拉深,假设材料厚度拉深前后不变,拉深毛坯的尺寸按“拉深前毛坯表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则)。

(2)形状相似原则

拉深毛坯的形状一般与拉深件的横截面形状相似。即零件的横截面是圆形、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。

拉深件毛坯形状的确定和尺寸计算是否正确,不仅直接影响生产过程,而且对冲压件生产有很大的经济意义,因为在冲压零件的总成本中,材料费用一般占到60 %以上。

由于拉深材料厚度有公差,板料具有各向异性;模具间隙和摩擦阻力的不一致以及毛坯的定位不准确等原因,拉深后零件的口部将出现凸耳(口部不平)。为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2)。

表4.2.1无凸缘零件切边余量Δh(mm)

拉深件高度h

拉深相对高度h/d或h/B

附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4

≤10

>10~20 >20~50 >50~100 >100~150 >150~200 >200~250

>250 1.0

1.2

2

3

4

5

6

7

1.2

1.6

2.5

3.8

5

6.3

7.5

8.5

1.5

2

2.5

3.8

5

6.3

7.5

8.5

2

2.5

4

6

8

10

11

12

[img=118,139]mhtml:file://F:\

冲压\4 _ 2 直壁旋转体零件拉

深工艺的设

计.mht![/img] 表4.2.2有凸缘零件切边余量ΔR(mm)

凸缘直径dt或Bt

相对凸缘直径dt/d或Bt/B

附图< 1.5 1.5~2 2~2.5 2.5~3

< 25 >25~50 >50~100 1.8

2.5

3.5

1.6

2.0

3.0

1.4

1.8

2.5

1.2

1.6

2.2

[img=125,125]mhtml:file://F:\

冲压\4 _ 2 直壁旋转体零件拉

深工艺的设

>100~150 >150~200 >200~250

>250 4.3

5.0

5.5

6.0

3.6

4.2

4.6

5.0

3.0

3.5

3.8

4.0

2.5

2.7

2.8

3.0 计.mht![/img]

2.简单形状的旋转体拉深零件毛坯尺寸的确定(图4.2.1)

对于简单形状的旋转体拉深零件求其毛坯尺寸时,一般可将拉深零件分解为若干简单的几何体,分别求出它们的表面积后再相加(含切边余量在) 。由于旋转体拉深零件的毛坯为圆形,根据面积相等原则,可计算出拉深零件的毛坯直径。即:圆筒直壁部分的表面积:[img=103,23]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img](4.2.1)

圆角球台部分的表面积:[img=172,41]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img](4.2.2)

底部表面积为:[img=111,41]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img] (4.2.3)

[img=112,199]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]

图4.2.1毛坯尺寸的确定

工件的总面积:[img=176,41]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

则毛坯直径为:[img=85,47]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img](4.2.4)

[img=309,31]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img](4.2.5)

式中D为毛坯直径(mm);∑Ai为拉深零件各分解部分表面积的代数和(mm 2),对于各种简单形状的旋转体拉深零件毛

坯直径D,可以直接按表4.2.3所列公式计算。

表4.2.3常用的旋转体拉深零件毛坯直径D计算公式序号

零件形状坯料直径D

1 [img=109,81]mhtml:file://F:\冲压\4 _

2 直壁旋转体零件拉深工艺的设

计.mht![/img]

[img=184,26]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

或:?? [img=207,26]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺

的设计.mht![/img]

2 [img=124,112]mhtml:file://F:\冲压\4

_ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

当r≠R时

[img=342,24]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

当r=R时

[img=153,26]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

3 [img=113,86]mhtml:file://F:\冲压\

4 _

2 直壁旋转体零件拉深工艺的设

计.mht![/img]

[img=128,26]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

4 [img=125,90]mhtml:file://F:\冲压\4 _

2 直壁旋转体零件拉深工艺的设

计.mht![/img]

[img=104,24]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

5 [img=131,76]mhtml:file://F:\冲压\4 _

2 直壁旋转体零件拉深工艺的设

计.mht![/img]

[img=39,22]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

或:[img=56,22]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的

设计.mht![/img]

6 [img=100,85]mhtml:file://F:\冲压\4 _

2 直壁旋转体零件拉深工艺的设[img=120,26]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]

计.mht![/img]

其它形状的旋转体拉深零件毛坯尺寸的计算可查阅有关设计资料。

无凸缘圆筒形件的拉深工艺计算

4.2.2无凸缘圆筒形件的拉深工艺计算

1.拉深系数

拉深系数是表示拉深后圆筒形件的直径与拉深前毛坯(或半成品)的直径之比。图4.2.2 所示是用直径为D 的毛坯拉成直径为dn、高度为hn工件的工序顺序。第一次拉成d1和h1的尺寸,第二次半成品尺寸为d2和h2,依此最后一次即得工件的尺寸dn和hn。其各次的拉深系数为:

[img=107,120]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]

(4.2.6)

? 工件的直径dn与毛坯直径D 之比称为总拉深系数,即工件总的变形程度系数。

[img=307,45]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

拉深系数的倒数称为拉深比,其值为:

[img=133,24]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img](4.2.7)

[img=385,233]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

图4.2.2 拉深工序示意图

拉深系数是拉深工艺的重要参数,它表示拉深变形过程中坯料的变形程度,m值愈小,拉深时坯料的变形程度愈大。在工艺计算中,只要知道每次拉深工序的拉深系数值,就可以计算出各次拉深工序的半成品件的尺寸,并确定出该拉深件工序次数。从降低生产成本出发,希望拉深次数越少越好,即采用较小的拉深系数。但根据前述力学分析知,拉深系数的减少有一个限度,这个限度称为极限拉深系数,超过这一限度,会使变形区的危险断面产生破裂。因此,每次拉深选择使拉深件不破裂的最小拉深系数,才能保证拉深工艺的顺利实现。

2. 影响极限拉深系数的因素

极限拉深系数mmin与下列的因素有关:

(1)材料方面

①材料的力学性能和组织材料的塑性好、组织均匀、晶粒大小适当、屈强比σs/σb小、塑性应变比值大时,板料的拉深成形性能好,可以采用较小的极限拉深系数。

②毛坯的相对厚度t/D相对厚度t/D小时,拉深变形区易起皱,防皱压边圈的压边力加大而引起摩擦阻力也增大,因此变形抗力加大,使极限拉深系数提高。反之,t/D大时,可不用压边圈,变形抗力减小,有利于拉深,故极限拉深系数可减少。

③材料的表面质量材料的表面光滑,拉深时摩擦力小而容易流动,所以极限拉深系数可减小。

(2)模具方面

①拉深模的凸模圆角半径rp和凹模圆角半径rd凸模圆角半径rp过小时,筒壁和底部的过渡区弯曲变形大,使危险断面的强度受到削弱,极限拉深系数应取较大值;凹模圆角过小时,毛坯沿凹模口部滑动的阻力增加,筒壁的拉应力相应增大,极限拉深系数也应取较大值。

②凹模表面粗糙度凹模工作表面(尤其是圆角)光滑,可以减小摩擦阻力和改善金属的流动情况,可选择较小的极限拉深系数值。

③模具间隙c 模具间隙小时,材料进入间隙后的挤压力增大,摩擦力增加,拉深力大,故极限拉深系数提高。

④凹模形状图4.2.3所示的锥形凹模,因其支撑材料变形区的面是锥形而不是平面,防皱效果好,可以减小包角α,从而减少材料流过凹模圆角时的摩擦阻力和弯曲变形力,因而极限拉深系数降低。

[img=168,134]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

图4.2.3锥形凹模

(3) 拉深条件

①是否采用压边圈??拉深时若不用压边圈,变形区起皱的倾向增加,每次拉深时变形不能太大,故极限拉深系数应增大。

②拉深次数??第一次拉深时材料还没硬化,塑性好,极限拉深系数可小些。以后的拉深因材料已经硬化,塑性愈来愈低,变形越来越困难,故一道比一道的拉深系数大。

③润滑情况??润滑好则摩擦小,极限拉深系数可小些。但凸模不必润滑,否则会减弱凸模表面摩擦对危险断面处的有益作用(盒形件例外) 。

④工件形状工件的形状不同,则变形时应力与应变状态不同,极限变形量也就不同,因而极限拉深系数不同.

⑤拉深速度一般情况下,拉深速度对极限拉深系数的影响不太大,但对变形速度敏感的金属(如钛合金、不锈钢和耐热钢等)拉深速度大时,应选用较大的极限拉深系数。

以上分析说明,凡是能增加筒壁传力区拉应力和能减小危险断面强度的因素均使极限拉深系数加大;反之,凡是可以降低筒壁传力区拉应力及增加危险断面强度的因素都有利于毛坯变形区的塑性变形,极限拉深系数就可以减小。

但是,实际生产中,并不是所有的拉深都采用极限拉深系数mmin。因为采用极限值会引起危险断面区域过渡变簿而降低零件的质量。所以当零件质量有较高的要求时,必须采用大于极限值的拉深系数。

3.拉深系数的值与拉深次数

生产上采用的极限拉深系数是考虑了各种具体条件后用试验方法求出的。通常m1=0.46~0.60,以后各次的拉深系数在0.70~0.86之间。直壁圆筒形工件有压边圈和无压边圈时的拉深系数分别可查表4.2.4 和4.2.5 。实际生产中采用的拉深系数一般均大于表中所列数字,因采用过小的接近于极限值的拉深系数会使工件在凸模圆角部位过分变薄,在以后的拉深工序中这变薄严重的缺陷会转移到工件侧壁上去,使零件质量降低。

表4.2.4圆筒形件带压边圈的极限拉深系数

各次拉深系数

毛坯相对厚度t/D×100

2~1.5 1.5~1.0 1.0~0.6 0.6~0.3 0.3~0.15 0.15~0.08

m1 m2 m3 m4 m5 0.48~0.50

0.73~0.75

0.76~0.78

0.78~0.80

0.80~0.82

0.50~0.53

0.75~0.76

0.78~0.79

0.80~0.81

0.82~0.84

0.53~0.55

0.76~0.78

0.79~0.80

0.81~0.82

0.84~0.85

0.55~0.58

0.78~0.79

0.80~0.81

0.82~0.8

0.85~0.86

0.58~0.60

0.79~0.80

0.81~0.82

0.83~0.85

0.86~0.87

0.60~0.63

0.80~0.82

0.82~0.84

0.85~0.86

0.87~0.88

注:1.表中拉深系数适用于08、10和15Mn等普通的拉深碳钢及黄钢H62。对拉深性能较差的材料,如20、25、Q215、Q235

硬铝等应比表中数值大(1.5~2.0)%;对塑性更好的,如05、08,10等深拉深钢及软铝应比表中数值小(1.5~2.0)%。

2.表中数值适用于未经中间退火的拉深,若采用中间退火工序时,可取较表中数值小2~3%。

3.表中较小值适用于大的凹模圆角半径,rd=(8~15)t。较大值适用于小的凹模圆角半径,rd=(4~8)t。

表4.2.5圆筒形件不用压边圈的极限拉深系数

毛坯相对厚度t/D×100

各次拉深系数

m1 m2 m3 m4 m5 m6

0.8

1.0

1.5

2.0

2.5

3.0 >3 0.80

0.75

0.65

0.60

0.55

0.53

0.50

0.88

0.85

0.80

0.750.75

0.750.70

0.90

0.84

0.80

0.80

0.800.75

0.87

0.84

0.84

0.840.78

0.90

0.87

0.87

0.870.82

0.90

0.90

0.90

0.85

注:此表使用要求与表4.2.5相同。

判断拉深件能否一次拉深成形,仅需比较所需总的拉深系数m总与第一次允许的极限拉深m1的大小即可。当m 总>m1时,则该零件可一次拉深成形,否则需要多次拉深。表4.2.6为拉深相对高度H/d与拉深次数的关系。

表4.2.6拉深相对高度H/d与拉深次数的关系(无凸缘圆筒形件)

相对高度???? H/d 拉深次数

毛坯相对厚度(t/D)×100

2~1.5 1.5~1.0 1.0~0.6 0.6~0.3 0.3~0.15 0.15~0.06

1 0.94~0.77 0.84~0.65 0.77~0.57 0.62~0.65 0.52~0.45 0.46~0.38

2 1.88~1.54 1.60~1.32 1.36~1.1 1.13~0.94 0.96~0.8

3 0.9~0.7

3 3.5~2.7 2.8~2.2 2.3~1.8 1.9~1.5 1.6~1.3 1.3~1.1

4 5.6~4.3 4.3~3.

5 3.6~2.9 2.9~2.4 2.4~2.0 2.0~1.5

5 8.9~6.

6 6.6~5.1 5.2~4.1 4.1~3.3 3.3~2.

7 2.7~2.0

注:本表适于08、10等软钢。

4.后续各次拉深的特点

后续各次拉深所用的毛坯与首次拉深时不同,不是平板而是筒形件。因此,它与首次拉深比,有许多不同之处:(1)首次拉深时,平板毛坯的厚度和力学性能都是均匀的,而后续各次拉深时筒形毛坯的壁厚及力学性能都不均匀。(2)首次拉深时,凸缘变形区是逐渐缩小的,而后续各次拉深时,其变形区保持不变,只是在拉深终了以后才逐渐缩小。

无凸缘圆筒形拉深件的拉深次数和工序件尺寸的计算

(3)首次拉深时,拉深力的变化是变形抗力增加与变形区减小两个相反的因素互相消长的过程,因而在开始阶段较快的达到最大的拉深力,然后逐渐减小到零。而后续各次拉深变形区保持不变,但材料的硬化及厚度增加都是沿筒的高度方向进行的,所以其拉深力在整个拉深过程中一直都在增加,直到拉深的最后阶段才由最大值下降至零(图4.2.4)。

[img=204,136]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]

1-首次拉深;2-二次拉深

图4.2.4 首次拉深与二次拉深的拉深力

(4)后续各次拉深时的危险断面与首次拉深时一样,都是在凸模的圆角处,但首次拉深的最大拉深立发生在初始阶段,所以破裂也发生在初始阶段,而后续各次拉深的最大拉深立发生在拉深的终了阶段,所以破裂往往发生在结尾阶段。

(5)后续各次拉深变形区的外缘有筒壁的刚性支持,所以稳定性较首次拉深为好。只是在拉深的最后阶段,筒壁边缘进入变形区以后,变形区的外缘失去了刚性支持,这时才易起皱。

(6) 后续各次拉深时由于材料已冷作硬化, 加上变形复杂( 毛坯的筒壁必须经过两次弯曲才被凸模拉入凹模) ,所以它的极限拉深系数要比首次拉深大得多,而且通常后一次都大于前一次。

4.2.3 无凸缘圆筒形拉深件的拉深次数和工序件尺寸的计算

试确定图4.2.5所示零件(材料08钢,材料厚度t=2mm)的拉深次数和各拉深工序尺寸。

计算步骤如下:

1.确定切边余量Δh

根据h=200,h/d=200/88=2.28,查表4.2.1,并取:Δh=7(mm)。? 2.按表4.2.3序号1的公式计算毛坯直径

D =[img=207,26]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设

计.mht![/img]?≈283(mm)

[img=106,192]mhtml:file://F:\冲压\4 _ 2 直壁旋转体零件拉深工艺的设计.mht![/img]

3.确定拉深次数

⑴判断能否一次拉出?? 判断零件能否一次拉出,仅需比较实际?? 图4.2.5零件图所需的总拉深系数m总和第一次允许的极限拉深系数m1的大小即可。当m总>m1,说明拉深该工件的实际变形程度比第一次容许的极限变形程度要小,工件可以一次拉成。若当m总<m1,则需要多次拉深才能够成形零件。对于图4.2.5的零件,由毛坯的相对厚度:

矩形件拉深展开计算

一.拉深矩形件的变形特点 A长边、B短边、H高度,长边与短边连接处的圆角半径称为转角半径,以r c 表示,直 边与盒底连接处的圆角半径称为底角半径,以r p 表示,盒形件有4个直边区,分别为2个 长直边区A-2r c ,2个短直边区B-2r c ,有4个圆角区,即r c 区,相当于以2r c 为直径的圆筒 形件的1/4,r c /B越小,越能反映矩形件的变形特点,r c /B等于0.5时,工件形状为长圆 形,比值A/B越接近于1,变形将越接近圆筒形件。 网格试验结果:在平板毛坯上有规律地划出网格,在直边区单元网格为矩形,横向间 距a与纵向间距b各自都处处相等,在圆角区单元网格为扇形,纵向间距b处处相等,横 向间距a则越远离r c 中心越大。拉深后,两种网格均产生了不均匀的变形。 1.直边区不是简单的弯曲,横向受到压缩,纵向受到拉伸,越靠近圆角区变形越大。 拉深后横向间距a缩短了,越靠近圆角区、越靠近边缘缩短得越多。纵向间距b伸长了,越靠近圆角区伸长的越多。在直边中间纵向间距基本没有变化,仍保持相等的初始间距。 2.圆角区变形得到了减轻,横向的压缩变形要比相应的圆筒形件减轻,纵向的拉伸变形也比相应的圆筒形件减轻。 圆角区的辐射线未变成平行线,横向间距仍保持上大下小。纵向间距的变化没有圆筒形件的变化程度大。 3.应力分布不均匀,圆角区中间最大,向两侧直边区逐渐减小。 拉深矩形件的变形区主要在圆角区,其应力与应变状态与圆筒形件是相同的,由变形的不均匀性可以推断应力的分布是很不均匀的。径向拉应力、切向压应力沿凹模口的分布是

圆角区较大,直边区很小,最大值在角平分线处。 结论:在圆筒形件的直径d等于矩形件转角半径r c 的两倍的可比条件下,矩形件拉破的危险性比圆筒形件要小得多,因此允许的变形程度可比圆筒形件更大些。 矩形件拉深时同样存在起皱与拉破问题,且发生在圆角区。在直边区还有一个特殊的直边缓松工艺问题,这时由于拉深过程中圆角区材料从横向挤向直边区,使直边区材料沿横向显得偏多,造成工件的刚性不好,严重时可造成工件的形状不规则,出现扭曲现象。 二.矩形件的变形程度表示方法 矩形件的假想拉深系数m r : 表4-19:由平板毛坯一次拉成矩形件的极限拉深系数m r 。 表4-20:由平板毛坯一次拉成矩形件所能达到的圆角区最大相对高度H/r c 。 表4-21:由平板毛坯一次拉成矩形件所能达到的以高度H与宽度B之比表示的最大相对高度H/B。 三.矩形件再拉深变形分析 矩形件的再拉深是指以前道工序拉成的具有直立侧壁的空心件为工序件再拉深成矩形件或方形件。 矩形件的再拉深与圆筒形件有很大的不同。拉深矩形件时径向应变与切向应变不具有均匀性,工序件不相似,截面不为矩形。 矩形件顺利再拉深的过程:在高度以h 2 表示的直壁不断增加且不产生塑性变形的同时, 前次工序件高度以h 1表示的直壁应平稳地减小,而处于两直壁之间的扇形变形区在h 1 减小

圆筒形件拉深尺寸计算和成形过程模拟

圆筒形件拉深尺寸计算和成形过程模拟 摘要:在冲压生产中,拉深是广泛使用的工序。通过拉深可获得筒形、阶梯形、锥形、球形等零件。平板毛坯拉深成筒状开口零件时口部出现飞边卷口现象,对 此进行切边设计。 关键词:筒形件;模具结构;拉深间隙 Dynaform作为近年来板料成形数值模拟技术中常用的软件,可以预测成形过 程中板料的破裂、起皱、回弹等,从而帮助设计人员显著减少模具开发设计时间 及试模周期。在利用该软件进行模拟分析时,应该采用理论计算和软件模拟共用,以找出合适的成形工艺。带凸缘的圆筒形件是日常生活中常用的零件,如不锈钢 的面盆、压力锅的锅盖等物品,均属于带凸缘的圆筒形件。本文利用所给的拉深件,首先计算了拉深过程中的部分尺寸,而后在理论计算的基础上,结合Dynaform软件对零件的拉伸过程进行模拟,找出了较为合适的压边力,从而为后 续拉深模具设计提供依据。 1、带凸缘圆筒形件拉深尺寸计算 图1是带凸缘圆筒形件的零件图,其壁厚为2mm,材料为304不锈钢,精度 为IT14级。本文计算的拉深尺寸包括拉深毛坯的尺寸、拉深次数的计算、压边装 置的使用与否以及压边力的计算。 1.1带凸缘圆筒形件毛坯尺寸的计算 由图1,零件的厚度t=2mm,因此在计算毛坯尺寸时应采用中线尺寸计算。 该零件的相对直径dt/d=380/320=1.18,其中dt为凸缘直径,d为圆筒件底部直径,取修边余量δ=6mm。由拉深毛坯尺寸的计算公式可知: 根据图1,d4=380+2δ=392mm,r=6mm,d2=d+2r=332mm,H=98mm 由此计算出防尘盖毛坯尺寸: 1.2是否需要压边装置和拉深次数的计算 本零件采用普通平面凹模拉深,毛坯不起皱条件为: t/D≥(0.09~0.17)(1-m) 由图1和D可计算出:t/D=2/527=0.38%,总拉深系数m=d2/D=332/527=0.63。 因此(0.09~0.17)(1-m)=0.0333~0.0629,则t/D<(0.09~0.17)(1-m),因此该零件拉深时需使用压边圈。 查表得出,该零件总拉深系数大于其极限拉深系数0.55,因此可一次拉深成形。 1.3压边力的计算 一次拉深成形时的压边力:FY=Ap,查表可知,根据零件的复杂程度,p可以 取值为2.5、3和3.7MPa。因本文中零件为简单的带凸缘圆筒形件,因此取P值 为2.5Mpa。压边圈的面积应与凸模相配合,其最大直径考虑与毛坯重合,由此计算出: FY=Ap≈π(263.52-1722)×2.5≈312809N 综上所计算的结果,该零件拉深毛坯的尺寸D=527mm,可一次拉深成形,拉 深过程中需要使用压边圈防止起皱,压边力FY=312809N。 为验证理论计算的正确性及在此压边力下是否可以得到合格的零件,利用Dynaform软件对其成形过程进行模拟。

矩形件拉深展开计算

矩形件拉深展开计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

一.拉深矩形件的变形特点 A长边、B短边、H高度,长边与短边连接处的圆角半径称为转角半径,以r c 表示, 直边与盒底连接处的圆角半径称为底角半径,以r p 表示,盒形件有4个直边区,分别为2 个长直边区A-2r c ,2个短直边区B-2r c ,有4个圆角区,即r c 区,相当于以2r c 为直径的 圆筒形件的1/4,r c /B越小,越能反映矩形件的变形特点,r c /B等于时,工件形状为长圆 形,比值A/B越接近于1,变形将越接近圆筒形件。 网格试验结果:在平板毛坯上有规律地划出网格,在直边区单元网格为矩形,横向间 距a与纵向间距b各自都处处相等,在圆角区单元网格为扇形,纵向间距b处处相等,横 向间距a则越远离r c 中心越大。拉深后,两种网格均产生了不均匀的变形。 1.直边区不是简单的弯曲,横向受到压缩,纵向受到拉伸,越靠近圆角区变形越大。 拉深后横向间距a缩短了,越靠近圆角区、越靠近边缘缩短得越多。纵向间距b伸长了,越靠近圆角区伸长的越多。在直边中间纵向间距基本没有变化,仍保持相等的初始间距。 2.圆角区变形得到了减轻,横向的压缩变形要比相应的圆筒形件减轻,纵向的拉伸变形也比相应的圆筒形件减轻。 圆角区的辐射线未变成平行线,横向间距仍保持上大下小。纵向间距的变化没有圆筒形件的变化程度大。 3.应力分布不均匀,圆角区中间最大,向两侧直边区逐渐减小。 拉深矩形件的变形区主要在圆角区,其应力与应变状态与圆筒形件是相同的,由变形

的不均匀性可以推断应力的分布是很不均匀的。径向拉应力、切向压应力沿凹模口的分布是圆角区较大,直边区很小,最大值在角平分线处。 的两倍的可比条件下,矩形件拉破结论:在圆筒形件的直径d等于矩形件转角半径r c 的危险性比圆筒形件要小得多,因此允许的变形程度可比圆筒形件更大些。 矩形件拉深时同样存在起皱与拉破问题,且发生在圆角区。在直边区还有一个特殊的直边缓松工艺问题,这时由于拉深过程中圆角区材料从横向挤向直边区,使直边区材料沿横向显得偏多,造成工件的刚性不好,严重时可造成工件的形状不规则,出现扭曲现象。 二.矩形件的变形程度表示方法 : 矩形件的假想拉深系数m r 。 表4-19:由平板毛坯一次拉成矩形件的极限拉深系数m r 。 表4-20:由平板毛坯一次拉成矩形件所能达到的圆角区最大相对高度H/r c 表4-21:由平板毛坯一次拉成矩形件所能达到的以高度H与宽度B之比表示的最大相对高度H/B。 三.矩形件再拉深变形分析 矩形件的再拉深是指以前道工序拉成的具有直立侧壁的空心件为工序件再拉深成矩形件或方形件。 矩形件的再拉深与圆筒形件有很大的不同。拉深矩形件时径向应变与切向应变不具有均匀性,工序件不相似,截面不为矩形。

矩形件拉深展开计算

矩形件的拉深 一. 拉深矩形件的变形特点 A 长边、 B 短边、H 高度,长边与短边连接处的圆角半径称为转角半径,以r c 表示,直边与盒底连接处的圆角半径称为底角半径,以r p 表示,盒形件有4个直边区,分别为2个长直边区A-2r c ,2个短直边区B-2r c ,有4个圆角区,即r c 区,相当于以2r c 为直径的圆筒形件的1/4,r c /B 越小,越能反映矩形件的变形特点,r c /B 等于时,工件形状为长圆形,比值A/B 越接近于1,变形将越接近圆筒形件。 网格试验结果:在平板毛坯上有规律地划出网格,在直边区单元网格为矩形,横向间距a 与纵向间距b 各自都处处相等,在圆角区单元网格为扇形,纵向间距b 处处相等,横向间距a 则越远离r c 中心越大。拉深后,两种网格均产生了不均匀的变形。 1. 直边区不是简单的弯曲,横向受到压缩,纵向受到拉伸,越靠近圆角区变形越大。 拉深后横向间距a 缩短了,越靠近圆角区、越靠近边缘缩短得越多。纵向间距b 伸长了,越靠近圆角区伸长的越多。在直边中间纵向间距基本没有变化,仍保持相等的初始间距。 2. 圆角区变形得到了减轻,横向的压缩变形要比相应的圆筒形件减轻,纵向的拉伸变 形也比相应的圆筒形件减轻。 圆角区的辐射线未变成平行线,横向间距仍保持上大下小。纵向间距的变化没有圆筒形件的变化程度大。 3. 应力分布不均匀,圆角区中间最大,向两侧直边区逐渐减小。 拉深矩形件的变形区主要在圆角区,其应力与应变状态与圆筒形件是相同的,由变形的不均匀性可以推断应力的分布是很不均匀的。径向拉应力、切向压应力沿凹模口的分布是圆角区较大,直边区很小,最大值在角平分线处。 结论:在圆筒形件的直径d 等于矩形件转角半径r c 的两倍的可比条件下,矩形件拉破的危险性比圆筒形件要小得多,因此允许的变形程度可比圆筒形件更大些。 矩形件拉深时同样存在起皱与拉破问题,且发生在圆角区。在直边区还有一个特殊的直边缓松工艺问题,这时由于拉深过程中圆角区材料从横向挤向直边区,使直边区材料沿横向显得偏多,造成工件的刚性不好,严重时可造成工件的形状不规则,出现扭曲现象。 二. 矩形件的变形程度表示方法 矩形件的假想拉深系数m r : r H rH r m rH R r r r r r r H r r R r rd dh d D R r m r p c p p c c c c r /21 2214.086.0256.072.1402202 20 =====--+=--+== 表4-19:由平板毛坯一次拉成矩形件的极限拉深系数m r 。 表4-20:由平板毛坯一次拉成矩形件所能达到的圆角区最大相对高度H/r c 。 表4-21:由平板毛坯一次拉成矩形件所能达到的以高度H 与宽度B 之比表示的最大相对高度H/B 。 三. 矩形件再拉深变形分析 矩形件的再拉深是指以前道工序拉成的具有直立侧壁的空心件为工序件再拉深成矩形

圆筒拉深件毛坯尺寸计算

4 . 2 直壁旋转体零件拉深工艺的设计 圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。 4.2.1 圆筒形拉深件毛坯尺寸计算 1.拉深件毛坯尺寸计算的原则 (1)面积相等原则 由于拉深前和拉深后材料的体积不变,对于不变薄拉深,假设材料厚度拉深前后不变,拉深毛坯的尺寸按“拉深前毛坯表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则)。 (2)形状相似原则 拉深毛坯的形状一般与拉深件的横截面形状相似。即零件的横截面是圆形、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。 拉深件毛坯形状的确定和尺寸计算是否正确,不仅直接影响生产过程,而且对冲压件生产有很大的经济意义,因为在冲压零件的总成本中,材料费用一般占到60 %以上。 由于拉深材料厚度有公差,板料具有各向异性;模具间隙和摩擦阻力的不一致以及毛坯的定位不准确等原因,拉深后零件的口部将出现凸耳(口部不平)。为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2)。 表4.2.1无凸缘零件切边余量Δh(mm) 拉深件高度h 拉深相对高度h/d或h/B 附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4 ≤10 >10~20 >20~50 >50~100 >100~150 >150~200 >200~250 >250 1.0 1.2 2 3 4 5 6 7 1.2 1.6 2.5 3.8 5 6.3 7.5 8.5 1.5 2 2.5 3.8 5 6.3 7.5 8.5 2 2.5 4 6 8 10 11 12 [img=118,139]mhtml:file://F:\ 冲压\4 _ 2 直壁旋转体零件 拉深工艺的设 计.mht![/img] 表4.2.2有凸缘零件切边余量ΔR(mm) 凸缘直径dt或Bt 相对凸缘直径dt/d或Bt/B 附图< 1.5 1.5~2 2~2.5 2.5~3 < 25 >25~50 >50~100 >100~150 >150~200 >200~250 >250 1.8 2.5 3.5 4.3 5.0 5.5 6.0 1.6 2.0 3.0 3.6 4.2 4.6 5.0 1.4 1.8 2.5 3.0 3.5 3.8 4.0 1.2 1.6 2.2 2.5 2.7 2.8 3.0 [img=125,125]mhtml:file://F:\ 冲压\4 _ 2 直壁旋转体零件 拉深工艺的设 计.mht![/img] 2.简单形状的旋转体拉深零件毛坯尺寸的确定(图4.2.1)

圆筒形拉深件毛坯尺寸计算

圆筒形拉深件毛坯尺寸计算 2007-10-24 15:39:04| 分类:专业知识 | 标签: |字号大中小订阅 4 . 2 直壁旋转体零件拉深工艺的设计 圆筒形零件是最典型的拉深件,掌握了它的工艺计算方法后,其它零件的工艺计算可以借鉴其计算方法。下面介绍如何计算圆筒形零件毛坯尺寸、拉深次数、半成品尺寸,拉深力和功,以及如何确定模具工作部分的尺寸等。 4.2.1 1.拉深件毛坯尺寸计算的原则 1)面积相等原则 表面积等于拉深后零件的表面积”的原则来确定(毛坯尺寸确定还可按等体积,等重量原则)。 2)形状相似原则 、椭圆形时,其拉深前毛坯展开形状也基本上是圆形或椭圆形。对于异形件拉深,其毛坯的周边轮廓必须采用光滑曲线连接,应无急剧的转折和尖角。 压零件的总成本中,材料费用一般占到60 %以上。 件的口部将出现凸耳(口部不平)。为了得到口部平齐,高度一致的拉深件,需要拉深后增加切边工序,将不平齐的部分切去。所以在计算毛坯之前,应先在拉深件上增加切边余量(表42.1、4.2.2)。 表4.2.1无凸缘零件切边余量Δh(mm) 拉深件高度h 拉深相对高度h/d或h/B 附图>0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4 ≤10 >10~20 >20~50 >50~100 >100~150 >150~200 >200~250 >250 1.0 1.2 2 3 4 5 6 7 1.2 1.6 2.5 3.8 5 6.3 7.5 8.5 1.5 2 2.5 3.8 5 6.3 7.5 8.5 2 2.5 4 6 8 10 11 12 [img=118,139]mhtml:file:/ /F:\冲压\4 _ 2 直壁旋转体 零件拉深工艺的设 计.mht! [/img] 表4.2.2有凸缘零件切边余量ΔR(mm) 凸缘直径dt或Bt 相对凸缘直径dt/d或Bt/B 附图< 1.5 1.5~2 2~2.5 2.5~3 < 25 >25~50 >50~100 1.8 2.5 3.5 1.6 2.0 3.0 1.4 1.8 2.5 1.2 1.6 2.2 [img=125,125]mhtml:file:/ /F:\冲压\4 _ 2 直壁旋转体 零件拉深工艺的设

圆筒形件拉深尺寸计算和成形过程模拟

圆筒形件拉深尺寸计算和成形过程模拟 发表时间:2018-09-29T11:15:46.447Z 来源:《防护工程》2018年第10期作者:高明[导读] 在冲压生产中,拉深是广泛使用的工序。通过拉深可获得筒形、阶梯形、锥形、球形等零件。平板毛坯拉深成筒状开口零件时口部出现飞边卷口现象,对此进行切边设计。高明 中国航发哈尔滨东安发动机有限公司黑龙江 150066摘要:在冲压生产中,拉深是广泛使用的工序。通过拉深可获得筒形、阶梯形、锥形、球形等零件。平板毛坯拉深成筒状开口零件时口部出现飞边卷口现象,对此进行切边设计。关键词:筒形件;模具结构;拉深间隙 Dynaform作为近年来板料成形数值模拟技术中常用的软件,可以预测成形过程中板料的破裂、起皱、回弹等,从而帮助设计人员显著减少模具开发设计时间及试模周期。在利用该软件进行模拟分析时,应该采用理论计算和软件模拟共用,以找出合适的成形工艺。带凸缘的圆筒形件是日常生活中常用的零件,如不锈钢的面盆、压力锅的锅盖等物品,均属于带凸缘的圆筒形件。本文利用所给的拉深件,首先计算了拉深过程中的部分尺寸,而后在理论计算的基础上,结合Dynaform软件对零件的拉伸过程进行模拟,找出了较为合适的压边力,从而为后续拉深模具设计提供依据。 1、带凸缘圆筒形件拉深尺寸计算 图1是带凸缘圆筒形件的零件图,其壁厚为2mm,材料为304不锈钢,精度为IT14级。本文计算的拉深尺寸包括拉深毛坯的尺寸、拉深次数的计算、压边装置的使用与否以及压边力的计算。 1.1带凸缘圆筒形件毛坯尺寸的计算 由图1,零件的厚度t=2mm,因此在计算毛坯尺寸时应采用中线尺寸计算。该零件的相对直径dt/d=380/320=1.18,其中dt为凸缘直径,d 为圆筒件底部直径,取修边余量δ=6mm。由拉深毛坯尺寸的计算公式可知: 根据图1,d4=380+2δ=392mm,r=6mm,d2=d+2r=332mm,H=98mm 由此计算出防尘盖毛坯尺寸: 1.2是否需要压边装置和拉深次数的计算 本零件采用普通平面凹模拉深,毛坯不起皱条件为: t/D≥(0.09~0.17)(1-m)由图1和D可计算出:t/D=2/527=0.38%,总拉深系数m=d2/D=332/527=0.63。 因此(0.09~0.17)(1-m)=0.0333~0.0629,则t/D<(0.09~0.17)(1-m),因此该零件拉深时需使用压边圈。 查表得出,该零件总拉深系数大于其极限拉深系数0.55,因此可一次拉深成形。 1.3压边力的计算 一次拉深成形时的压边力:FY=Ap,查表可知,根据零件的复杂程度,p可以取值为2.5、3和3.7MPa。因本文中零件为简单的带凸缘圆筒形件,因此取P值为2.5Mpa。压边圈的面积应与凸模相配合,其最大直径考虑与毛坯重合,由此计算出: FY=Ap≈π(263.52-1722)×2.5≈312809N 综上所计算的结果,该零件拉深毛坯的尺寸D=527mm,可一次拉深成形,拉深过程中需要使用压边圈防止起皱,压边力FY=312809N。 为验证理论计算的正确性及在此压边力下是否可以得到合格的零件,利用Dynaform软件对其成形过程进行模拟。 2、分析模型的建立及拉深模拟结果的分析 2.1分析模型的建立

盒形件的拉深

第六节盒形件的拉深 盒形件属于非轴对称零件,它包括方形盒件,矩形盒件和椭圆形盒件等,根据矩形盒几何形状的特点,可以将其侧壁分为长度是 A-2r与B-2r的两对直边部分及四个半径为的圆角部分(图 4–74)。 压变形性质与直壁圆筒件有相同之处亦有不同之处。相同之处是在变形区都是在径向拉应力与切向拉应力的作用下产生拉深变形,而存在着变形区产生的拉应力与传力区的承载能力之间的关系问题。不同之处是盒形件的应力状态和所产生的拉深变形在周边上的分布是不均匀的,由次而引起一系列和圆桶形件成型不同的特点。 根据盒形件能否一次拉深成形将盒形件分为两类,凡是能一次拉深成形的盒形件称为低盒形件;凡是需经多次拉深才能成形的盒形件称为高盒形件。两类盒形件拉深时的变形特点是有差别的,因此工艺过程设计和模具设计中需要解决的问题和方法也不尽相同。 一、盒形件的拉深 1. 变形特点 1)盒形件一次拉深成形时,零件表面网络格发生了明显变化(图 4–74),由此表明凸缘变形区直边部分发生了横向压缩变形,使圆角处的应变强化得到缓和,从而降低了圆角部分传力区的轴向拉应力,相对提高了传力区的承载能力。 2)盒形件拉深时,凸缘变形区圆角处的拉深阻力大于直边的拉深阻力圆角处的变形过程度大于直边处的变形程度。因此,变形区内金属质点的位移量直边处大于圆角处,导致了这两处的位移速度的不同,而毛坯的这两部分又是联系在一起的整体,变形时必然相互牵制,这种位移速度差会引起剪切力,这种剪切力称为位移速度诱发剪应力。虽然,诱发剪切力在两处交界面达到最大值,并由此向直径和圆角处的中心线逐渐减小。变形区内应力状态与剪切力分布情况可定性的用图4–75示意。由图 4–75可知,圆角部分传力区内轴向拉应力减小了一个剪应力值,从而也相对地提高了传力区的承载能力。由于上述原因,盒形件成形极限高于直径为2r的圆筒形件的成形极限。

圆筒形拉深件工序件尺寸计算

例:试对图所示圆筒形件进行拉深工艺计算,材料为L3,壁厚0.5mm 。 圆筒形拉深件 解:1.确定修边余量Δh 该件H =90mm ,H/d =1.8,查表2-37得Δh =5mm 。则拉深高度H =90+5=95mm 。 2.计算毛坯直径 由于板厚t 小于1mm ,故计算毛坯直径可直接用工件图所注尺寸计算,不需按中心层尺寸计算。 D =2222256.072.14r rd H d d --+=225.056.0505.072.19550450?-??-??+ =146.5 3.确定拉深次数 按毛坯相对厚度t/D =0.5/146.5=0.34%和工件相对高度H/d =95/50=1.9,查表4-15得拉深次数n =3。初步确定需要三次拉深。考虑到工件圆角半径为0.5mm ,故需增加一次整形工序。 4.计算各次工序件直径 考虑到板料为软铝l3,拉深系数按表4-11中值减小1.5%计算,初步确定三次拉深的拉深系数分别为:m 1=0.54,m 2=0.77,m 3=0.79,初步计算各次拉深工序件直径为: 1 .489.6079.09.601.7977.01 .795.14654.023312211=?===?===?==d m d d m d D m d 第三次拉深直径已小于工件的直径,需调整各次的拉深系数,取m 1=0.55,m 2=0.78, m 3=796.078 .055.05.1465021=?=m m D d 因此得各次拉深工序件直径为: 50 8.62796.08.626.8078.06 .805.14655.023312211=?===?===?==d m d d m d D m d 5.选取凸模与凹模的圆角半径 An Tn Ai Ai A r r r r t d D r )8.0~7.0()8.0~7.0(5 .55.0)505.146(8.0)(8.01 1===?-=-=- 计算各次拉深凸模与凹模的圆角半径并取整结果为:

相关主题