搜档网
当前位置:搜档网 › 第二章 薛定谔方程 习题

第二章 薛定谔方程 习题

第二章 薛定谔方程 习题
第二章 薛定谔方程 习题

第二章 薛定谔方程 习题(课本44页)

2.1 证明在定态中,概率流密度与时间无关。

证明:当一个系统处于定态时,其波函数),(t r

?可以写作, ??

? ??-=Et i r t r ex p )(),(φ?

于是便有, ??

? ??=Et i r t r ex p )(),(**φ?

根据概率流密度的定义式(2.4-4)有, ?????????? ??-??? ??-???? ????? ??-=

?

?????????????? ??-???? ??-????????? ?????? ??-=?-?≡????????ψψψψt iE t iE t iE t iE m i t iE t iE t iE t iE m i m

i J exp exp exp exp 2exp exp exp exp 2)(2****** 即有,)(2)(2****φφφφ?????-?=?-?=m i m i J 显然,在定态中概率流密度与时间无关。从某种意义上说明上述波函数称为定态波函数是名副其实的。

2.2由下列两定态波函数计算概率流密度:⑴)exp(11ikr r =?,⑵)exp(12ikr r

-=?。 从所得结果说明1?表示向外传播的球面波,2?表示向内(即向原点)传播的球面波。

解:在解本题之前,首先给出一个函数f 的梯度在球坐标系下的表达式,即

?

θθ?θ??+??+??=?f r e f r e r f e f r sin 1?1?? ⑴ 首先求解函数1?的概率流密度

r ikr ikr r ikr ikr ikr r ikr e mr k r ike r e e r e r ike r e e r e m i r ikr r ikr r ikr r ikr m i m

i J ???2)exp()exp()exp()exp(2)(22221*1*111 =?????????? ??+--???? ??-+-=??

? ???---?=?-?=---????

可见,概率流密度1J 与r 同号,这便意味着1J 的指向是向外的,即1?表示向外传播的球面

波。

⑵ 同理,可以得到2?的概率流密度

r ikr ikr r ikr ikr ikr r ikr e mr k r ike r e e r e r ike r e e r e m i r ikr r ikr r ikr r ikr m i m

i J ???2)exp()exp()exp()exp(2)(22222*2*222 -=?

????????? ??---???? ??+-=??? ??-?-?-=?-?=---????

这里的负号,即为概率流密度2J 与r 的符号相反,意味着概率流密度2J 的指向是向内

的,即波函数2?表示向内传播的球面波。

2.3一粒子在一维势场 ??

???>∞≤≤<∞=a x a x x x U ,0,00,)(

中运动,求粒子的能级和对应的波函数。

解:在量子力学中,一维薛定谔方程扮演着非常重要的角色。 其一,一维问题是微分方程中最简单、最基础的问题,通过解一维薛定谔方程,不但可以了解到量子力学中不同于经典力学的结果,如能量的量子化和势垒的贯穿等,还可以解更高维薛定谔方程的基础,如经典的氢原子的结构问题和现代的黑洞的结构问题,这些问题通过分离变量,最终化成求解一维薛定谔方程问题。

其二,随着现代科学技术的发展,在实验室中已经制成了一维的或准一维的系统,这样,求解一维薛定谔方程对于理解这些系统的性质起着至关重要的作用。

一维薛定谔方程的求解一般有两大类:一类是束缚态的求解,即求解束缚态的能级及相应的波函数;一类是散射问题,即求解散射态的反射系数、透射系数以及相应的波函数。这两类问题实质上也是整个初等量子力学所关注的最主要的两类问题。

具体到本题,显然是一维薛定谔方程中的束缚态问题。具体求解如下:

在势阱内)0(a x ≤≤,一维薛定谔方程的定态波动方程为,

)(2)()()(2222222x E dx x d x E dx x d ?μ???μ

-=→=-

x

其中0>E ,如果令

E k μ2=,则上述方程为, 0)()(22

2=+x k dx x d ?? 于是上述方程的解可表示为,

kx B kx A x cos sin )(+=?。

在势阱外),0(a x x ><,根据波函数应满足的连续性和有限性条件可知,

),0(0)(a x x x ><=?

则,由第一个边界条件0)0(=?知,0=B 。于是波函数为,

)0(sin )(≠=A kx A x ?

再根据第二个边界条件0)(=a ?有,

0sin =ka A 这就意味,a

n k n ka ππ=→=,其中n 为正整数。 由μ

μ2)(22

k E E k =→=,便可求出粒子的能级为, 2

2

222a n E μπ = 然后,再对波函数进行归一化处理,1|)(|2=?∞

∞-dx x ?,即,

2202022||2||)()(sin 1

)(sin ||A k ka A k kx d kx dx kx A a a =→=→=?? 于是,a A 2||=,不失一般性,取a

A 2=。 在此所使用的数学积分公式:

???????++=+-=?

?C x x xdx C x x xdx )2sin(4121cos )2sin(4121sin 22

则,对应的波函数为,

??

???><≤≤??? ??=.or 0,0,0,sin 2)(a x x a x a x n a x π?

最后,作几点说明:

首先,既然n 为正整数,则能量的最小值为)2(222a μπ

,这是纯粹量子效应的零点能。

其二,对于无限方势阱,量子化的能量间隔不是等距的。

其三,显然方势阱的宽度越小,相应的能级越高,这也可以看作是海森伯不确定性原理的一个表现:当方势阱的宽度越小,那么粒子位置的不确定度就越小,这样,根据海森伯不确定性原理,粒子的动量的不确定度就越大,于是,相应的能量便越高。

其四,从波函数的形式,基态波函数没有节点,第一激发态有一个节点,第k 个激发态有k 个节点,这表明:当粒子的能级越高,其相应的波函数的空间分布上的起伏就越厉害。

2.4证明(2.6-14)式中的归一化常数是a

A 1=

'。 解:已知粒子的波函数为 ?????≥<+'=a x a x a x a n A n ||,

0||),(2sin π?(2.6-14)

对波函数进行归一化处理, 1)(2sin ||1||222=??? ??+'→=??-∞

∞-a

a dx a x a n A dx π? 令上式的左边为A ,再构造B ,即

???

??????? ??+'=??? ??+'=??--a a a a dx a x a n A B dx a x a n A A )(2cos ||)(2sin ||2222ππ 两式相加,得,

a A B A 2||2?'=+

两式相减,应用公式,)2cos(sin cos 22θθθ=-,有

定态薛定谔方程讲义

定态薛定谔方程 一、定态Schr?dinger 方程 2 2(,)[()](,)2i r t V r r t t m ψψ?=-?+? (1) 在一般情况下,从初始状态ψ(r,0)求 ψ(r,t)是不容易的。以下,我们考虑一个很重要的特殊情形——假设势场V 不显含时间 t (在经典力学中,在这种势场中运动的粒子,其机械能守恒),此时薛定谔方程(1)可以用分离变量数法求其特解。 ()V r 与t 无关时,可以分离变量 令(,)()()r t r f t ψψ= 代入(1)式 2 2()1[()]()()()2i df t V r r f t dt r m ψψ=-?+ E = 其中E 是即不依赖于t ,也不依赖于r 的常量,这样 ()()df t i Ef t dt = (2) 2 2[()]()()2V r r E r ψψμ -?+= (3) ——定态薛定谔方程 由(2)解得 Et i ce t f -=)( 其中c 为任意常数。把常数c 放到()E r ψ 里面去,则 (,)()i Et E r t r e ψψ-= (4) 这个波函数与时间的关系是正弦式的,其角频率是ω=Ε/?按照德布罗意关系E=h ν=?ω,E 就是该体系处于这个波函数所描写状态时的能量。由此可见,当体系处于(4)式所描写状态时,能量具有确定值E ,所以这种状态称为定态,波函数ψ(r,t)称为定态波函数。 定态有两个含义:1、(,)()i Et E r t r e ψψ-= ;2、E 具有确定值;(判断是否为定态的依 据) 空间波函数()E r ψ 可由方程 2 2[()]()()2E E V r r E r m ψψ-?+= 和具体问题()E r ψ 应满足的边界条件得出。方程(3)称为定态Schr?dinger 方程,()E r ψ 也可

最新薛定谔方程及其解法

关于薛定谔方程 一.定义及重要性 薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提 出的量子力学中的一个基本方程,也是量子力学的一个基本假定, 其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合 建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都 有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式 以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基 本假定,它的正确性只能靠实验来检验。 二.表达式 三.定态方程 ()() 2 2 2 V r E r m η ψψ + ?? -?= ?? ?? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E是粒子本身的能量;v(x,y,z)是描述势场的函数,假设不随时间变化。

2 2 22222 z y x ??????++=? 可化为 d 0)(222 =-+ψψv E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ). ()()((3) ) ,(),()( ,,(2) )(),( 311212 2111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==?????=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββα βα

薛定谔方程与提出背景

薛定谔方程 在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 ;(1) 其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为 。(2) 假若,系统有个粒子,则波函数是定义于 -位形空间,所有可能的粒子位置空间。用方程表达, 。 其中,波函数的第个参数是第个粒子的位置。所以,第个粒子的位置是。 不含时薛定谔方程 不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。 应用分离变量法,猜想的函数形式为 ; 其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量. 代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程: 。 类似地,方程 (2) 变为

。 历史背景与发展 爱因斯坦诠释普朗克的量子为光子,光波的粒子;也就是说,光波具有粒子的性质,一种很奇奥的波粒二象性。他建议光子的能量与频率成正比。在相对论里,能量与动量之间的关系跟频率与波数之间的关系相同,所以,连带地,光子的动量与波数成正比。 1924年,路易·德布罗意提出一个惊人的假设,每一种粒子都具有波粒二象性。电子也有这种性质。电子是一种波动,是电子波。电子的能量与动量决定了它的物质波的频率与波数。1927年,克林顿·戴维和雷斯特·革末将缓慢移动的电子射击于镍晶体标靶。然后,测量反射的强度,侦测结果与X射线根据布拉格定律 (Bragg's law) 计算的衍射图案相同。戴维森-革末实验彻底的证明了德布罗意假说。 薛定谔夜以继日地思考这些先进理论,既然粒子具有波粒二象性,应该会有一个反应这特性的波动方程,能够正确地描述粒子的量子行为。于是,薛定谔试着寻找一个波动方程。哈密顿先前的研究引导著薛定谔的思路,在牛顿力学与光学之间,有一种类比,隐蔽地暗藏于一个察觉里。这察觉就是,在零波长极限,实际光学系统趋向几何光学系统;也就是说,光射线的轨道会变成明确的路径,遵守最小作用量原理。哈密顿相信,在零波长极限,波传播会变为明确的运动。可是,他并没有设计出一个方程来描述这波行为。这也是薛定谔所成就的。他很清楚,经典力学的哈密顿原理,广为学术界所知地,对应于光学的费马原理。借着哈密顿-雅可比方程,他成功地创建了薛定谔方程。薛定谔用自己设计的方程来计算氢原子的谱线,得到了与用玻尔模型计算出的能级相同的答案。 但是,薛定谔对这结果并不满足,因为,索末菲似乎已经正确地计算出氢原子光谱线精细结构常数的相对论性的修正。薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程(现今称为克莱因-高登方程),可以描述电子在库仑位势的量子行为。薛定谔计算出这方程的定态波函数。可是,相对论性的修正与索末菲的公式有分歧。虽然如此,他认为先前非相对论性的部分,仍旧含有足够的新结果。因此,决定暂时不发表相对论性的修正,只把他的波动方程与氢原子光谱分析结果,写为一篇论文。1926年,正式发表于物理学界[2]。从此,给予了量子力学一个新的发展平台。 薛定谔方程漂亮地解释了的行为,但并没有解释的意义。薛定谔曾尝试解释代表电荷的密度,但却失败了。1926年,就在薛定谔第四篇的论文发表之后几天,马克斯·玻恩提出概率幅的概念,成功地解释了的物理意义[3]。可是,薛定谔本人一直不承认这种统计或概率的表示方法,和它所伴随的非连续性波函数坍缩。就像爱因斯坦的认为量子力学是基本为确定性理论的统计近似,薛定谔永远无法接受哥本哈根诠释。在他有生最后一年,他写给马克斯·玻恩的一封信,薛定谔清楚地表明了这看法。 含时薛定谔方程导引

实验三 定态薛定谔方程的矩阵解法

实验三 定态薛定谔方程的矩阵解法 一.实验目的 1.掌握定态薛定谔方程的矩阵解法。 2.掌握几种矩阵特征值问题数值解法的原理,会调用相应的子程序求解具体问题。 二.实验内容 1.问题描述 以/2ω/()m ω为长度单位,一维谐振子的哈密顿量为 2 202d H x dx =-+, 其本征值为21n E n =+,本证波函数为 2 /2)()n n x H x ?=-, 其中()n H x 为厄米多项式,满足递推关系 11()2()2()n n n H x xH x nH x +-=-。 用矩阵方法求 2 22d H x x dx =-++ 的本证能量和相应的波函数。 2.问题分析 H E ψψ= 0()|j j j t c ψ?∞ ==>∑ 0||i i j i j i j c E c x Ec ??∞ =+<>=∑ 11|j j j x ???-+>=>>

11||||j j j j x x ????-+<>= <>= 0010010 112111,211,11,1 n n n n n n n n n n n n E x c c x E x c c E x E x c c x E c c -------?????????????????????????=??????????????????????? ? 3.程序编写 子程序及调用方法见《FORTRAN 常用算法程序集(第二版)》第三章 徐士良,P97 4.实验要求 ◆用恰当的算法求解以上实对称三对角矩阵的特征值问题。 ◆取n=8,给出H 的全部特征值和相应的特征向量。 5.实验步骤 ● 启动软件开发环境Microsoft Developer Studio 。 ● 创建新工作区shiyan03。 ● 创建新项目xm3。 ● 创建源程序文件xm3.f90,编辑输入源程序文本。 ● 编译、构建、运行、调试程序。 6.实验结果 程序设计:

第二章 薛定谔方程 习题

第二章 薛定谔方程 习题 (课本44页) 证明在定态中,概率流密度与时间无关。 证明:当一个系统处于定态时,其波函数),(t r ?可以写作, ?? ? ??-=Et i r t r ex p )(),(φ? 于是便有, ?? ? ??=Et i r t r ex p )(),(**φ? 根据概率流密度的定义式有, ?????????? ??-??? ??-???? ????? ??-= ??????????????? ??-???? ??-????????? ?????? ??-=?-?≡????????ψψψψt iE t iE t iE t iE m i t iE t iE t iE t iE m i m i J exp exp exp exp 2exp exp exp exp 2) (2* ***** 即有,)(2)(2****φφφφ?????-?=?-?=m i m i J 显然,在定态中概率流密度与时间无关。从某种意义上说明上述波函数称为定态波函数是名副其实的。 — 由下列两定态波函数计算概率流密度:⑴ )exp(1 1ikr r =?,⑵ )exp(12ikr r -=?。 从所得结果说明1?表示向外传播的球面波,2?表示向内(即向原点)传播的球面波。 解:在解本题之前,首先给出一个函数f 的梯度在球坐标系下的表达式,即 ? θθ? θ??+??+??=?f r e f r e r f e f r sin 1?1?? ⑴ 首先求解函数1?的概率流密度

r ikr ikr r ikr ikr ikr r ikr e mr k r ike r e e r e r ike r e e r e m i r ikr r ikr r ikr r ikr m i m i J ???2)exp()exp()exp()exp(2) (22221*1*111 =?????????? ??+--???? ??-+-=?? ? ???---?=?-?=---???? 可见,概率流密度1J 与r 同号,这便意味着1J 的指向是向外的,即1?表示向外传播的球面 波。 ⑵ 同理,可以得到2?的概率流密度 r ikr ikr r ikr ikr ikr r ikr e mr k r ike r e e r e r ike r e e r e m i r ikr r ikr r ikr r ikr m i m i J ???2)exp()exp()exp()exp(2) (22222*2*222 -=? ????????? ??---???? ??+-=?? ? ??-?-?-=?-?=---???? 这里的负号,即为概率流密度2J 与r 的符号相反,意味着概率流密度2J 的指向是向内 的,即波函数2?表示向内传播的球面波。 < 一粒子在一维势场 ?? ? ??>∞≤≤<∞=a x a x x x U ,0,00, )( 中运动,求粒子的能级和对应的波函数。 解:在量子力学中,一维薛定谔方程扮演着非常重要的角色。 其一,一维问题是微分方程中最简单、最基础的问题,通过解一维薛定谔方程,不但可以了解到量子力学中不同于经典力学的结果,如能量的量子化和势垒的贯穿等,还可以解更高维薛定谔方程的基础,如经典的氢原子的结构问题和现代的黑洞的结构问题,这些问题通过分离变量,最终化成求解一维薛定谔方程问题。 其二,随着现代科学技术的发展,在实验室中已经制成了一维的或准一维的系统,这样,求解一维薛定谔方程对于理解这些系统的性质起着至关重要的作用。 一维薛定谔方程的求解一般有两大类:一类是束缚态的求解,即求解束缚态的能级及相 x

薛定谔方程

第一章 薛定谔方程 §1.1.波函数及其物理意义 1. 波函数: 用波函数描述微观客体的运动状态。 例:一维自由粒子的波函数 推广 :三维自由粒子波函数 2. 波函数的强度——模的平方 3. 波函数的统计解释 用光栅衍射与电子衍射对比的方式理解波函数的统计解释。 t 时刻,出现在空间(x,y,z )点附近单位体积内的粒子数与总粒子数之比。 t 时刻,粒子出现在空间(x,y,z )点附近单位体积内的概率。 t 时刻,粒子在空间分布的概率密度 4、 波函数的归一化条件和标准条件 归一化条件 粒子在整个空间出现的概率为1 标准条件:一般情况下, 有关特殊情况波函数所满足的条件参看曾谨言教程。 对微观客体的数学描述: 脱离日常生活经验,避免借用经典语言引起的表观矛盾 §1.2. 薛定谔方程 是量子力学的基本假设之一,只能建立,不能推导,其正确性由实验检验。 1. 建立 (简单→复杂, 特殊→一般) 一维自由粒子的振幅方程 非相对论考虑 2. 一维定态薛定谔方程 2 |),,,(|t z y x ψ1d d d d d ||2===?=ψ???N N N N V V N N V V V . 是单值、有限、连续的ψ0)(2d )(d 222=ψ+ψx mE x x 0)()(2d )(d 222=ψ-+ψx U E m x x

3. 三维定态薛定谔方程 4. 一般形式薛定谔方程 5. 多粒子体系的薛定谔方程 讨论: 1、薛定谔方程也称波动方程,描述在势场U 中粒子状态随时间的变化规律。 2 、建立方程而不是推导方程,正确性由实验验证。薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 3、薛定谔方程是线性方程。是微观粒子的基本方程,相当于牛顿方程。 4、自由粒子波函数必须是复数形式,否则不满足自由粒子薛定谔方程。 5、薛定谔方程是非相对论的方程。 量子力学的中心任务就是求解薛定谔方程。 求解问题的思路: 1. 写出具体问题中势函数U (r )的形式代入方程 2. 用分离变量法求解 3. 用归一化条件和标准条件确定积分常数 4. 讨论解的物理意义, 薛定谔的另一伟大科学贡献 《What is life ?》 薛定谔(Schroding,1897-1961)奥地利人,因发现原子理论的有效的新形式一波动力学与狄拉克(Dirac,1902-1984)因创立相对论性的波动方程一狄拉克方程,共同分享了1933年度诺贝尔物理学奖 定态薛定谔方程 一.定态薛定谔方程条件:V (r,t )=V(r), 与t 无关。用分离变量法, 令Ψ=φ(r)f(t),代入薛定谔方程,得两个方程: 此称定态薛定谔方程 整个定态波函数形式: ),,,(),,,()],,,(2[),,,(2121212221t r r t r r V t r r m t r r t i i i i ψ+ψ?-=ψ??∑)t (Ef t )t (f i =?? Et i ce )t (f -=)r (E )r ()r (V )r (m ?=?+??-222Et i e )r ( -?=ψ

第二章 薛定谔方程

第二章 薛定谔方程 本章介绍:本章将系统介绍波动力学。波函数统计解释和态叠加原理是量子力学的两个基本假设。薛定谔方程是波动力学的核心。在一定的边界条件和初始条件下求解薛定谔方程,可以给出许多能与实验直接比较的结果。 §2.1 波函数的统计解释 §2.1.1 波动—粒子两重性矛盾的分析按照德布罗意的观点,和每个粒子相联系的都有一个波。怎样理解粒子性和波动性之间的联系,这是量子力学首先遇到的根本问题。 2.1.1 波动—粒子两重性矛盾的分析能否认为波是由粒子组成? 粒子的单缝和双缝实验表明,如减小入射粒子强度,让粒子近似的一个一个从粒子源射出,实验发现,虽然开始时底片上的感光点是无规则的,但只要时间足够长,感光点足够多,底片上仍然会出现衍射条纹。如果波是由粒子做成,那末,波的干涉、衍射必然依赖于粒子间的相互作用。这和上述实验结果相矛盾,实际上,单个粒子也具有波动性的。 能否认为粒子是由波组成? 比如说,电子是三维空间的物质波包,波包的大小即电子的大小,波包的速度即电子的速度,但物质波包是色散的,即使原来的物质波包很小,但经过一段时间后,也会扩散到很大的空间去,或者形象地说,随着时间的推移,粒子将越来越“胖”,这与实验相矛盾 经典物理对自然界所形成的基本物理图像中有两类物理体系: ◆一类是实物粒子 ◆另一类是相互作用场(波)经典粒子是以同时确定的坐标和动量来描述其运动状态,粒子的运动遵从经典力学规律,在运动过程中具有确定严格的轨道。粒子的能量,动量在粒子限度的空间小区域集中;当其与其它物理体系作用时,只与粒子所在处附近的粒子相互作用,并遵从能量、动量的单个交换传递过程,其经典物理过程是粒子的碰撞;“定域”是粒子运动的特征。经典波动则是以场量(振幅、相位等)来描述其运动状态,遵从经典波动方程,波的能量和动量周期性分布于波所传播的空间而不是集中在空间一点,即波的能量、动量是空间广延的。波与其他物质体系相互作用时,可同时与波所在广延空间内的所有物理体系相互作用,其能量可连续变化,波满足叠加原理,“非定域”是波动性运动的特性。◆◆在经典物理中,粒子和波各为一类宏观体系的呈现,反映着两类对象,两种物质形态,其运动特点是不相容的,即具有粒子性运动的物质不会具有波动性;反之具有波动性运动的物质不会具有粒子性。综上所述,微观粒子既不是经典的粒子又不是经典的波,或者说它既是量子概念的粒子又是量子概念的波。其量子概念中的粒子性表示他们是具有一定的能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。◆现在被物理学家们普遍接受的波函数解释是玻恩提出的统计解释。他认为,粒子在衍射或干涉实验中所揭示的波动性质,既可以看成是大量粒子在同一实验中的统计结果,也可以认为是单个粒子在多次相同实验中显示的统计结果。 ◆玻恩的统计解释:波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波 §2.1.2 波函数统计解释 波函数的的特点:1.由于 2 |),(|t r ψ给出在 t 时刻,粒子在 r 处出现的几率密度,因此原 则上可由统计平均公式:? ?>= <)(r f 。在这种意义下,波函数),(t r ψ描述了微观粒子的运

非线性薛定谔方程数值解的MATLAB仿真

[键入作者姓名] [键入文档标题] ——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(Fast Fourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

§4.3薛定谔方程

§4.3 薛定谔方程 在这一节,我们讨论态随时间变化的规律问题。大家知道,在经典力学中,当质点的初始状态为已知时,由其运动方程就可以知道以后任一时刻的运动状态。在量子力学中的情况也是这样的,即当粒子在初始时刻的态为已知时,在以后任一时刻的态也要由一个相应的方程来决定。所不同的是:在经典力学中,质点的状态用质点的坐标和速度描写,质点的运动方程就是我们所熟知的牛顿运动方程。而在量子力学中,微观粒子的状态则用波函数来描写,决定粒子状态变化的方程不再是牛顿运动方程,而是下面我们要建立的薛定谔方程。从物理上,这个方程式 必须满足下述条件: 一、在非相对论条件下,薛定谔方程应该满足的条件 1、在粒子的速度v c 时,质量为m 的粒子的总能量为:22p E U m =+ 2、方程是线性的 由于波函数满足态叠加原理,而态叠加原理对任何时间都成立,因此描述波函数随时间变化的方程应该是线性方程。即如果1ψ和2ψ是方程的解,那么它们的线性迭加 1122c c ψ+ψ也是方程的解。 3、方程的系数仅含有质量、电荷等内禀量,不应含有和个别粒子运动状态特定性质有关的 量,如动量、能量等。 4. 方程应当是波函数 (,)r t ψ 对时间的一阶微分方程 因为我们所要建立的是波函数(,)r t ψ 随时间变化的运动方程,而波函数完全描述态,因此方程必须波函数 ),(t r ψ对时间的一阶微分方程。也就是说方程必然包 含(,)r t t ?ψ? ,但方程不包含22 (,)r t t ?ψ? ,否则需要利用两个初始条件(,0)r ψ 和0(,)|t r t t =?ψ? 才能确定),(t r ψ,这就意味着体系的初始状态不能由波函数(,0)r ψ 完全描述,违反了波函数完全描述态体系运动状态的基本假设。 二、自由粒子波函数所满足的微分方程 下面,就以自由粒子为例,来建立满足上述条件的运动方程。自由粒子的波函数就是德布罗意平面波函数 ()()·,i p r Et r t Ae -ψ= (1)

薛定谔方程

薛定谔方程(Schr?dinger equation)是一个由奥地利物理学家薛定谔在1926年描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。而概率幅的绝对值的平方,就是事件发生的概率密度。 薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。 薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。 目录 [隐藏] ? 1 含时薛定谔方程 ? 2 不含时薛定谔方程 ? 3 历史背景与发展 ? 4 含时薛定谔方程导引 o 4.1 启发式导引 ? 4.1.1 假设 ? 4.1.2 波函数以复值平面波来表达波函数 o 4.2 薛定谔的导引 ? 5 特性 o 5.1 线性方程 ? 5.1.1 证明 o 5.2 实值的本征态 o 5.3 幺正性 ? 5.3.1 证明 o 5.4 完备基底 ? 6 相对论性薛定谔方程 ?7 解析方法 ?8 实例 o8.1 自由粒子 o8.2 一维谐振子 o8.3 球对称位势 ?8.3.1 角部分解答

非线性薛定谔方程的孤子解和怪波解

非线性薛定谔方程的孤子解和怪波解 摘要:光纤中光波的传输模型一直是当前研究的热点理论模型之一,从非线性薛定谔方程到金格堡-朗道方程,都试图对其进行更好的阐释,其次对于非线性动力学系统中,非线性薛定谔方程的解有呈现出非常多有趣的特征,对于其中特定解的研究能够让我们了解脉冲演化的本质,所以本文主要从孤子解的传输入手,并且简单介绍了怪波解的解形式。 薛定谔方程又称薛定谔波动方程,是量子力学的一个基本方程,同时又是量子力学的基本假设之一,由奥地利物理学家薛定谔1926年在《量子化就是本征值问题》中提出的,它在量子力学中的地位非常重要,相当于牛顿定律对于经典力学一样。 随着人们对世界的不断探索,非线性现象逐渐走进人们的视野,这种现象一般大都用非线性偏微分方程的数学模型来描述,显然线性方程已经不能满足人们的需求。 1973年,Hasegawa从含有非线性项的色散方程中推导出了非线性薛定谔方程。非线性薛定谔方程(NLS)是普适性很强的一个基本方程,最简单的形式是: 其中为常数。因为这个方程在几乎所有的物理分支及其他科学领域得到了广泛的应用,如超导,光孤子在光纤中传播,光波导,等离子体中的Langnui波等,所以许多学者对此方程的研究投入了很大的热情,至今还在生机勃勃的向前发展着。 1 分步傅里叶法计算演化过程 对于处理非线性性薛定谔方程,常用的数值仿真方式为分步傅里叶方法,为了简单起见,只考虑二阶色散和自相位调制,不考虑高阶色散、自陡以及四波混频等高阶非线性效应。上述方程中做 2 β为二阶色散,γ表示Kerr效应系数,g和α分别代表光纤中的增益和损耗。对上述方程转化到频域,先不考虑增益和损耗。可以得到 2 k k k k k dA i A i a a dz βγ =?+F. 其中2 2 2 k i β β ?=Ω 令() exp k k A B i z β =?可以得到 () 2exp k k k k dB i a a i z dz γβ =-? F 以上方程可以用四阶龙格库塔直接求解,但是速度较慢,所以我们需要做差分处理。 ()() ()()() 2 exp k k k k k B z z B z i a z a z i z z γβ +?- =-? ? F 再利用() exp k k A B i z β =?可以得到 ()()()() ()()() 2 2 exp exp exp k k k k k k k k A z z A i a z a z z i z a z i a z z i z γβ γβ ?? +?=+??? ?? ?? ?? ≈????? ?? F F 然后做傅里叶反变换就可以得到最终的结果 ()()()() 2 1exp exp - k k k k a z z a z i a z z i z γβ ?? +?=????? ?? F F

薛定谔方程及其解法

关于薛定谔方程 一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理 学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。

2 2 22222z y x ?? ????++=? 可化为d 0)(222=-+ψψ v E h m dx 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法 二. 边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 ).()()((3) ) ,() ,() ( ,,(2) )() ,( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dy i i i i i i i i =-???????++==++==????? =≤≤=++的局部截断误差使以下数值解法 的值及确定常数ββα βα

薛定谔方程与它的基本意义

薛定谔方程 维基百科,自由的百科全书 跳转到:导航, 搜索 汉漢▼ 量子力学 不确定性原理 入门·数学表述显示▼背景 经典力学·旧量子论·干涉 哈密顿量·狄拉克符号 显示▼基本概念 量子态·波函数·态矢量 态叠加原理·波粒二象性 量子测量·不确定性原理 泡利不相容原理·量子缠结 量子脱散·量子隧穿效应 埃伦费斯特定理 显示▼实验 双缝实验·薛定谔的猫 戴维孙-革末实验 施特恩-格拉赫实验 贝尔不等式实验 波普尔实验·量子擦除器 显示▼构想

薛定谔绘景·海森堡绘景 相互作用绘景·矩阵力学 求和的历史 显示▼方程 薛定谔方程·泡利方程 克莱因-高登方程 狄拉克方程 显示▼量子力学诠释 哥本哈根诠释·Ensemble 隐变量·交易诠释 多世界诠释·一致性历史 系综诠释·量子逻辑 显示▼进阶理论 量子场论·量子引力 万有理论 显示▼科学家 普朗克、玻尔、薛定谔、海森堡 泡利、德布罗意、埃伦费斯特、玻姆 玻恩、爱因斯坦、冯?诺伊曼 费曼、狄拉克、维恩、埃弗里特 索末菲、其他 本模板:查看? 讨论? 编辑? 历史 薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程[1],也是量子力学的一个基本假定,其正确性只能靠实验来检验。就好像牛顿定律在经典力学的地位,薛定谔方程在量子力学里占有中心的地位。 薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。波函数又可以用来计算,在量子系统里,某个事件发生的几率幅。而几率幅的绝对值的平方,就是事件发生的几率密度。薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。量子尺寸的

§16.3 一维定态薛定谔方程的建立和求解举例

§16.3 一维定态薛定谔方程的建立和求解举例 (一)一维运动自由粒子的薛定谔方程 波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程. 将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程: ψ-=?ψ?)/iE (t 即ψ=?ψ?E t i (16.3.1) ψ=?ψ ?22)/ip (x 2 ψ=ψ ?-2222p ????? ?????<<的薛定谔方程自由粒子轴运动的沿)c x (v 方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程. 请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式?. 这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明. (二)一维运动自由粒子的定态薛定谔方程?? 上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即 〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4) 将此式代入(16.3.3)式得: 22 2dx u d )t (f )m 2/(dt df )x (u i -= 两边除以ψ=uf 得: 22 2dx u d u 1)m 2/(dt df f 1i -= 此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即 ? 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版. ? 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版. ? 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.

薛定谔方程及其解法

一. 定义及重要性 薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 二. 表达式 三. 定态方程 ()()2 22V r E r m ηψψ+??-?=???? 所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。 其中,E 是粒子本身的能量;v(x ,y ,z)是描述势场的函数,假设不随时间变化。 可化为 薛定谔方程的解法 一. 初值解法;欧拉法,龙格库塔法

二.边值解法;差分法,打靶法,有限元法 龙格库塔法(对欧拉法的完善) 给定初值问题 有限元方法 有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。不同于求解(往往是困难的)满足整个定义域边界条件的函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

第二章波函数和薛定谔方程

第二章波函数和薛定谔方程 ●§2.1 波函数的统计解释 ●§2.2 态叠加原理 ●§2.3 薛定谔方程 ●§2.4 粒子流密度和粒子数守恒定律●§2.5 定态薛定谔方程 ●§2.6 一维无限深势阱 ●§2.7 线性谐振子 ●§2.8势垒贯穿

本章主要介绍了波函数的统计解释、薛定谔方程的建立过程、用定态薛定方程处理势阱问题和线性谐振子问题。

§2.1 波函数的统计解释(一)波函数 (二)波函数的解释 (三)波函数的性质

?? ????-?=ψ)(exp Et r p i A ?3个问题? 描写自由粒子的 平面波 ),(t r ψ?如果粒子处于随时间和位置变化的力场中运动,他的动量和能量不再是常量(或不同时为常量)粒子的状态就不能用平面波 描写,而必须用较复杂的波描写,一般记为: 描写粒子状态的 波函数,它通常 是一个复函数。 称为de Broglie 波。此式称为自由粒子的 波函数。 (1) ψ是怎样描述粒子的状态呢? (2) ψ如何体现波粒二象性的? (3) ψ描写的是什么样的波呢? (一)波函数

电子源感 光 屏(1)两种错误的看法 1. 波由粒子组成 如水波,声波,由分子密度疏密变化而形成的一种分布。 这种看法是与实验矛盾的,它不能解释长时间单个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长,底片上增 加呈现出衍射花纹。这说明电子的波动性并不是许多电子在空间聚集在一起时才有的现象,单个电子就具有波动性。 波由粒子组成的看法夸大了粒子性的一面,而抹杀 了粒子的波动性的一面,具有片面性。 P P O Q Q O 事实上,正是由于单个电子具有波动性,才能理解氢原子 (只含一个电子!)中电子运动的稳定性以及能量量子化这样一些量子现象。

非线性薛定谔方程数值解的MATLAB仿真

admin [非线性薛定谔方程数值解的MATLAB仿真]——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解

1、非线性薛定谔方程 非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。而对波函数的研究主要是求解非线性薛定谔方程。本文主要研究光脉冲在光纤中传输状态下的演变。 一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。并通过MATLAB 软件对结果数值仿真。 非线性薛定谔方程的基本形式为: 22||t xx iu u u u =+ 其中u 是未知的复值函数. 目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(FastFourier Transform Algorithm)。基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。 一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型: 把待求解的非线性薛定谔方程写成以下形式: ??()U D N U z ?=+? (I ) (II )

2-薛定谔方程

二、薛定鄂方程的性质与求解方法 对给定的体系(给定势能函数),如何得到体系的波函数是量子力学的另一个基本内容。 体系状态波函数随时间的演化满足薛定鄂方程(相当于经典力学中的牛顿运动方程): ?i H t ?ψ=ψ? 其中哈密顿算苻(能量算苻) 222??22p H V V m m =+=-?+ 222 2222x y z ??? ?=++??? (直角系) 22 22222 211111sin .sin sin r r r r r r θθθθθθφ?????????????=++ ? ? ????????????? (球坐标系)

薛定鄂方程的性质与特点: 1. 方程是线性的,满足态叠加原理,如果1ψ和2ψ都是方程的解,那么它们的线性叠加21ψ+ψb a 也是方程的解。 2. 方程是非相对论的,时间t 和坐标xyz 地位不等价,t 是作为一个参数,而坐标是算符。 3. 如果定义几率流密度 ()ψ?ψ-ψ?ψ=**2m i J 可以得到连续性方程 0J =??+?ψ ?t 2 这表明空间一体积内几率密度随时间的变化等于从包围这体积面积流入(出)的几率流密度量值。

4. 波函数的归一化性质不随时间改变。(这一点非常关键,如果波函数在0=t 时刻是归一化的,而随时间的演化(波函数按薛定鄂方程演化),它不再是归一化的,整个量子力学体系将崩溃) 5. 如果两个波函数ψ1和ψ2在0=t 时刻是正交的,则在以后任意时 刻也是正交的。

求解薛定鄂方程的一般方法: 如果势能函数不显含时间(绝大多数是这种情况),通过分离变量,得到定态薛定鄂方程(能量本征值方程) ?H E ψ=ψ 由此解出一组能量本征函数{}n ψ和能量本征值{}n E ,能量本征函数组成正交归一系。 *m n mn d ψψτ=δ? 分立谱 * '(')d λλψψτ=δλ-λ? 连续谱 分立谱是物理上可实现的态,而连续谱不是,但是它们的叠加可以是物理上可实现的态。

相关主题