搜档网
当前位置:搜档网 › 实验1 金属材料拉伸实验

实验1 金属材料拉伸实验

实验1  金属材料拉伸实验
实验1  金属材料拉伸实验

实验一金属材料拉伸实验

拉伸试验是检验金属材料力学性能普遍采用的一种极为重要的基本试验。

金属的力学性能可用强度极限σ

b

、屈服极限σs、延伸率δ、断面收缩率Ψ

和冲击韧度α

k

五个指标来表示。它是机械设计的主要依据。在机械制造和建筑工程等许多领域,有许多机械零件或建筑构件是处于受拉状态,为了保证构件能够正常工作,必须使材料具有足够的抗拉强度,这就需要测定材料的性能指标是否符合要求,其测定方法就是对材料进行拉伸试验,因此,金属材料的拉伸试验及测得的性能指标,是研究金属材料在各种使用条件下,确定其工作可靠性的主要工具之一,是发展新金属材料不可缺少的重要手段,所以拉伸试验是测定材料力学性能的一个基本试验。

一、实验目的

1、测定低碳钢在拉伸过程中的几个力学性能指标:屈服极限σs、强度极限σb、延伸率δ、断面收缩率Ψ。铸铁的σb 。

2、观察低碳钢、铸铁在拉伸过程中的各种现象,绘制拉伸图(P—ΔL图)由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。

3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能,及断口形貌。

二、实验设备仪器及量具

万能材料实验机,引伸仪,划线台,游标卡尺;小直尺。

三、试件

金属材料拉伸实验常用圆形试件。为了使实验测得数据可以互相比较,试件形状尺寸必须按国家标准GB228—76的规定制造成标准试件。如因材料尺寸限制等特殊情况下不能做成标准试件时,应按规定做成比例试件。图1为圆形截面标准试件和比例试件的国标规定。对于板材可制成矩形截面。园形试件标距L。和

直径之比,长试件为L

0/d

=10,以δ

10

表示,短试件为L

/d

=5以δs表示。

矩形试件截面面积A

0和标距L

之间关系应为

03.11A L = 或

065.5A L =

试件两端为夹持部分,因夹具类形不同,圆形试件端部可做成圆柱形,阶梯形或螺纹形如图1。

四、实验原理

1.由材料力学

EA Fl l =

? 得到 lA

Fl E ?=

其中,l 是试样标距,F 是载荷,l ?是变形量,A 是试样横截面积。 2. 材料的机械性能指标σs 、σb 、δ、Ψ是由拉伸破坏实验来确定的,实验时万能材料试验机自动给出载荷与变形关系的拉伸图(P —ΔL 图)如图2所示,观察试样和拉伸图可以看到下列变形过程。 1、弹性阶段— OA 2、屈服阶段— BC 3、强化阶段— CD 4、颈缩阶段— DE

由实验可知弹性阶段卸荷后,试样变形立即消失,这种变形是弹性变形。当

负荷增加到一定值时,测力盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服点Ps 。当屈服到一定程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值P b 后,试样的某一部位截面开始急剧缩小致使载荷下降。至到断裂,这一阶段叫颈缩阶段。

实验中可测得: Ps 一屈服荷重。

P b —最大荷重。 L 1 一断后标距部分长度。 A 1 一断后最细部分截面积。

由此可计算 1、屈服极限:0A P S

s =

δ 2、强度极限:0

A P b

b =

δ 3、延伸率:%1000

1?-=

L L L δ 4、截面收缩率:%1000

1

0?-=

A A A ψ 其中A 0、L 0均为拉伸前试件的截面面积及标距。

五、实验步骤

(1)在试样中部测量三个直径尺寸,计算其平均值作为试样直径尺寸d 。 (2)在试样中部取标距0l =5d ,并划上标距线。 1.测定低碳钢的弹性常数

(3)先将低碳钢的拉伸试样安装在万能试验机上。将软件界面的“负荷”清零。

(4)手动操作控制盒的“快上”、“慢上”、“微上”按钮,观察软件界面的“负荷”指示有很小的数值变化时,停止加载,并将软件界面的“变形”清零。

(5)手动操作控制盒,按等量逐级加载法均匀缓慢加载,读取软件界面的“负荷”和“变形”的读数,并记录。注意此加载过程应该在弹性范围内。

2.测定低碳钢拉伸时的强度和塑性性能指标

(6)先卸载。然后用连续加载方式(软件界面的“运行”)。观察试样的屈服现象和颈缩现象,直至试样被拉断为止。记录下软件界面中的数据和图形。

(7)取下拉断后的试样,将断口吻合压紧,用游标卡尺量取断口处的最小直径和两标点之间的距离。

3.测定灰铸铁拉伸时的强度性能指标

与前述步骤相同。

六、实验数据的记录与计算

1.测定低碳钢拉伸时的强度和塑性性能指标

表1-1 测定低碳钢拉伸时的强度和塑性性能指标试验的数据记录与计算

2.测定灰铸铁拉伸时的强度性能指标

表1-2 测定灰铸铁拉伸时的强度性能指标试验的数据记录与计算

3.拉伸试验结果的计算精确度

(1)强度性能指标(屈服应力s σ和抗拉强度b σ)的计算精度要求为MPa 5.0,即:凡<MPa 25.0的数值舍去,≥MPa 25.0而<MPa 75.0的数值化为MPa 5.0,≥MPa 75.0的数值者则进为MPa 1。

(2)塑性性能指标(伸长率δ和断面收缩率ψ)的计算精度要求为%5.0,即:凡<%25.0的数值舍去,≥%25.0而<%75.0的数值化为%5.0,≥%75.0的数值则进为%1。

七、结束工作

1.实验时必须严格遵守实验设备和仪器的各项操作规程,严禁开“快速”档加载。开动万能试验机后,操作者不得离开工作岗位,实验中如发生故障应立即停机。

2.引伸仪系精密仪器,使用时须谨慎小心,不要用手触动指针和杠杆。安装时不能卡得太松,以防实验中脱落摔坏;也不能卡得太紧,以防刀刃损伤造成测量误差。

3.加载时速度要均匀缓慢,防止冲击。

八、思考题:

1、低碳钢拉伸图大致可分几个阶段?每个阶段力和变形有什么关系?

2、低碳钢和铸铁两种材料断口有什么不同?它们的力学性能有何不同?(比较强度和塑性)

3、拉伸试验为什么要采用标准试件?

4、试件载面直径相同而标距长度不同,试件的延伸率和载面收缩率是否相同?

实验一---金属材料的拉伸实验

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 (a) (b) 图1-1 试件的截面形式 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试:

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。 测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: EA PL L ?= ? 若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。 ε ???=???= 1 )(000A P A L PL E 本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E 测毕取下,其中塑性材料的拉伸实验不间断。 (二)塑性材料的拉伸(低碳钢): 图1-2所示是典型的低碳钢拉伸图。 当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率较小,它并不反映真实的载荷—变形关系;载荷加大后,滑动消失,材料的拉伸 进入弹性阶段。 σ 1-2b 典型的低碳钢拉伸图 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B’-C 段),与最高载荷B’对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度σs : σs = A P SL 当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延伸率降低了,这就是冷作硬化。 随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E 点)Rm 后,试样的某一局部开始出现颈缩,而且发展很快,载荷也随之下降,迅速到达F 点后,试样断裂。材料的强度极限σb 为:

《金属材料室温拉伸试验方法》GBT228-2002实施要点

《金属材料室温拉伸试验方法》GBT228-2002实施要点2006-11-04 15:061 引言 国家标准GB/T228-2002《金属材料室温拉伸试验方法》已于2002年颁布实施。这一新国家标准是合并修订国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》三个标准为一个标准,它等效采用了国际标准ISO6892:1998《金属材料室温拉伸试验》,也是GB/T228第三次修订。GB/T228-2002包括的技术内容和要求与原三个标准有较大的不同,尤其在性能名称和符号、抗拉强度定义、试验速率、性能结果数值的修约方面变动较大。而且,新标准中增加了引用标准和关于试验方法准确度方面阐述的内容。为了更好地贯彻实施GB/T228-2002,将该标准的要点和实施中需注意之点说明如下。 2 GB/T228-2002标准的适用范围 标准适用于金属材料(包括黑色和有色金属材料,但不包括金属构件和零件)室温拉伸性能的测定,试样或产品的横截面尺寸≦0.1mm。对于小横截面尺寸的金属产品,例如金属箔、超细丝和毛细管等的拉伸试验需要双方协议。其原因在于:①横截面小的产品,按照标准中建议的量具分辨力要求不能满足附录A和附录C规定横截面测定准确度在±1%和±2%以内的要求。②试样标距采用常规的划细线、打小冲点等方法进行标记不可行。③常用的引伸计不适用于此类型产品试样的试验。试样的夹持方法需要特殊夹头等。 3 室温的温度范围 标准中规定室温的温度范围为10-35℃,超出这一范围不属于室温。对于材料在这一温度范围内性能对温度敏感而采用更严格的温度范围试验时,应采用23±5℃的控制温度。上述10-35℃的温度范围实质是指容许的试样温度范围,只要试样的温度是在这规定的室温范围内便符合标准要求。 4 标准中的引用标准 标准中的第二章引用了6个国家标准,即: GB/T2975-1998钢及钢产品力学性能试验取样位置和试样制备(eqv ISO377:1997) GB/T8170-1987数值修约规则 GB/T12160-2002单轴试验用引伸计的标定(idt ISO9513:1999) GB/T16825-1997拉力试验机的实验(idt ISO7500—1:1986) GB/T17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢(eqv ISO2566—1:1984)GB/T17600.2—1998钢的伸长率换算第2部分:奥氏体钢(eqv ISO2566—2:1984) 标准中通过注日期引用的这6个国家标准是构成GB/T228—2002标准本身不可缺少的部分,应遵照被引用的6个标准中的相关规定和要求,其中被引用的5个标准分别等同和等效相应的国际标准。目前,GB/T8170—1987《数值修约规则》还没有相对应的国际标准。 5 性能和术语定义 5.1性能定义 为了与国际接轨,性能的定义按照国际标准的规定。与原GB/T228—1987相比较,屈服强度与抗拉强度的定义有明显差异,其他性能的定义无实质性差异。 新标准将抗拉强度定义为相应最大力(Fm)的应力,而最大力(Fm)定义为试样在屈服阶段之后所能抵抗的最大力;对于无明显屈服(连续屈服)的金属材料,为试验期间的最大力。按照这一定义,如图1所示的拉伸曲线,最大力应为曲线上的B点,而不是旧标准中的取其A点的力(上屈服力)计算抗拉强度。 新标准中屈服强度这一术语的含义与旧标准中的屈服点有所不同,前者是泛指上、下屈服强度性能;而后者既是泛指屈服点和上、下屈服点性能,也特指单一屈服状态的屈服点性能(ζs)。因为新标准已将旧标准中的屈服点性能ζs归入为下屈服强度ReL(见标准中的图2d)。所以,新标准中不再有与旧标准中的屈服点性能(ζs)相对应的性能定义。也就是说新标

最新拉伸试验-1

拉伸试验-1

拉伸实验 拉伸实验是检验材料力学性能的最基本的实验。 一、实验目的 1.了解试验设备——微机控制电子万能试验机的构造和工作原理,掌握其操作规程及使用时的注意事项。 2.测定钢筋的屈服极限s σ、强度极限b σ、延伸率δ、断面收缩率ψ。 4.观察钢筋在拉伸过程中的各种现象,并利用自动绘图装置绘制拉伸图(P 一L ?曲线)。 二、实验设备和量具 1.量具:游标卡尺。 2.设备:WNW-10微机控制电子万能试验机。 图1-1 WNW-10微机控制电子万能试验机

下面将WNW-10微机控制电子万能试验机的构造、工作原理及操作规程介绍如下: 试验机主要用于金属材料和非金属材料的拉伸、压缩、弯曲等性能试验,除常规试验外,配备相应附件还可以进行蠕变、持久、应力松弛、低周循环试验及在高温或低温环境下拉伸性能试验。 机构与原理及特点 WDW系列电子式万能试验机,由主机、全数字测量控制系统、用户软件包、功能附件等部件组成。 主机:主机为门式预应力框架,轴向刚度高,采用圆弧同步带轮减速,滚珠丝杠副传动,传动无间隙,使试验力和变形速度精密控制得到保证;采用了双空间结构,上空间用于拉伸试验,下空间做压缩、弯曲试验。 测量控制系统:采用品牌计算机并配有Windows电子万能试验机专用软件,根据国家标准或用户提供的标准测量材料的性能参数,对试验数据进行统计和处理,输出打印各种要求的试验曲线及试验报告:可选择应力一应变、负荷一应变、负荷一时间、负荷一位移、位移一时间、变形一时间等多种试验曲线的显示、放大、比较及对试验过程的监控、智能、方便。计算机闭环控制,对试验结果自动存储,试验结果可任意存取,随时模拟再现。 三、实验原理 为了检验低碳钢(钢筋)拉伸时的机械性质,应使试件轴向受拉直至断裂,在拉伸过程中以及试件断裂后,测读出必要的特征数据(如;P S、P b、L1、)经过计算,便可得到表示材料力学性能的指标:σs、σb、δ、ψ。 d l 四、试验程序

最新版金属材料与热处理试验操作(完美版)实验1 拉伸试验

实验1 拉伸试验 1. 实验目的 (1)观察拉伸过程中的各种现象(屈服、强化、缩颈、断裂)。 (2)测定低碳钢的下屈服强度R eL 、抗拉强度R m 、延伸率A 和断面收缩率Z 。 (3)测定铸铁的抗拉强度R m 。 (4)了解拉伸试验机的主要结构及使用方法。 2.实验设备、仪器 拉伸试验机(见图1-17)、游标卡尺。 3.试件 按GB /T 228-2002的相关规定选用如图1-18所示的圆 形标准试件。本次实验试件的直径取d=10mm ,标距长度取L 0=50 mm 。 4.实验步骤 1)试件准备 将加工好的试件,用刻划机将标距L 0按 每隔10mm 刻划成5格(铸铁试件不刻)。 图1-16拉伸试验机 2)测量试件原始尺寸 用游标卡尺测量标距两端及中间(图示中的工、Ⅱ、Ⅲ) 。三个截面处的直径d 和标距L 0的实际长度,将此值填入表1-6。 3)试验机调整 根据试件所用材料的抗拉强 度理论值和横截面面积S ,预估试件的最大载荷。根据 预估值,按试验机说明书进行调整。 4) 安装试件 先将试件装夹在试验机的上夹头内,调整下夹头至适当位置,夹紧试件下端,调整好 自动绘图装置。 图1-18拉伸试样 5)加载测试 开动试验机,使之缓慢匀速加载。 6)观察与记录 注意观察力-伸长曲线,如图1-19所示。曲线上e 点以前的正比斜线为弹性变形阶段(试件初始受力时,头部在夹槽内有较大的滑动,故伸长曲线起始段为曲线)。这一阶段曲线应做匀速缓慢转动。当曲线不上升或上下波动时,说明材料出现“屈服”,此时曲线上的最低点值即为下屈服载荷F eL ,将此值填入表1-6。屈服现象结束后,曲线继续上升(上升速度由快变慢),此时进入强化阶段。曲线到达最高点b 点时曲线不再继续上升,此时数值即为最大载荷F m 。此时注意观察开 始出现“缩颈”,截面迅速减小曲线开始下降,直至z 点断裂为止,bz 阶段即为缩颈阶段。 7)测量试件最终尺寸 停机取下试件,将 断裂试件的两端对齐,用游标卡尺测量断裂后标距段 的长度L u ;测量左、右两断口(缩颈)处的直径d u 。 5.注意事项 1)测量直径时,在各截面相互垂直的两个 方向上各进行一次,取平均值。 2)铸铁试件测试时,不刻标记且只记录最大载荷F m 。 6.实验记录及数据处理(表1-6和表1-7) 表1-6 试 样 尺 寸 图1-19力-伸长曲线

ASTM E8M-09 中文版 金属材料拉伸试验方法E8-09

金属材料拉伸试验的标准试验方法 1范围 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 1.2 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 1.3 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 1.4 除非另有规定,室温应定为10—38℃。 1.5 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 1.6 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2参考文件 2.1 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法 E6 力学性能试验方法相关术语

E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 3.1 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL U[%])——在试样出现缩颈、断裂或者二者都出现之前,所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)两条直线与横轴的交点: (a)应力—应变曲线的不连续屈服段,通过最后一个零斜率点的水平正切线; (b)应力—应变曲线的均匀应变硬化段的正切线。 若在屈服的地方或附近没有出现斜率为零的点,则材料的的屈服点延伸率为0%。

实验一金属材料的拉伸实验

实验一金属材料的拉伸 实验 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 夹持 过渡 h 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。

实验一金属材料的拉伸实验

拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数, 如 弹性模量、强度、塑性等。 一. 实验目的 1. 测定低碳钢拉伸时的强度性能指标:屈服应力 二s 和抗拉强度二b 。 2. 测定低碳钢拉伸时的塑性性能指标:伸长率 和断面收缩率’-:。 3. 测定灰铸铁拉伸时的强度性能指标:抗拉 强度 :「b 。 4. 绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形 式。 二. 实验仪器、设备 1. 电子万能试验机(或液压万能材料试验机)。 2. 钢尺。 3. 数显卡尺。 三. 实验试样 按照国家标准 GB6397 — 86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品 种、规格以及试验目的的不同而分为圆形截面试样、 矩形截面试样、异形截面试样和不经机 加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准 GB6397 — 86。 图1-1试件的截面形式 试样分为夹持部分、过渡部分和待测部分( I )。标距(I 0)是待测部分的主体,其截面 积为A 。。按标距(I 。)与其截面积(A o )之间的关系,拉伸试样可分为比例试样和非比例 试样。按国家标准 GB6397-86的规定,比例试样的有关尺寸如下表 1-1。 表1-1 试样 标距 | I 。, (mm) 截面积A 0 ,(mm 2 ) 圆形试样直径 d (mm ) 延伸率 比例 长 11.3 J A 。或 10 d 任意 任意 短 5.65 JA 。或 5 d 四. 实验原理 (一)塑性材料弹性模量的测试: 实验 金属材料的拉伸实验 夹持过渡 (b

材料的拉伸试验实验报告

材料的拉伸试验 实验内容及目的 (1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。 (2)掌握万能材料试验机的工作原理和使用方法。 实验材料及设备 低碳钢、游标卡尺、万能试验机。 试样的制备 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或 d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例 试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。

(a ) (b ) 图1 拉伸试样 (a )圆形截面试样;(b )矩形截面试样 实验原理 进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段: 弹性阶段:试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。 屈服(流动)阶段:应力应变曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点作为材料屈服极限(又称屈服强度),即A F s s = σ,是材料开始进入塑性的标志。结构、零件的应力一旦超过屈服极限,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限作为确定许可应力的基础。 强化阶段:屈服阶段结束后,应力应变曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。D 点是应力应变曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度,即A F b b = σ。对低碳钢来说抗拉强度是材料均匀塑性变形的最大抗力,是材料进入颈缩阶段的标志。 颈缩阶段:应力达到强度极限后,塑性变形开始在局部进行。局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。 材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率δ和断面收缩率ψ来表示。即 %1001?-= l l l δ

金属材料 室温拉伸试验方法 GB

金属材料室温拉伸试验方法 GB/T 228-2002 金属材料室温拉伸试验方法 GB 中华人民共和国国家标准 GB/T228-2002 eqv ISO 6892:1998 金属材料室温拉伸试验方法 Metallic materials——Tensile testing at ambient temperature 发布 GB/T228-2002 目次 前言Ⅲ ISO前言Ⅳ 1 范围1 2 引用标准1 3 原理1 4 定义1 5 符号和说明5 6 试样6 7 原始横截面积(So)的测定7 8 原始标距(Lo)标记7 9 试验设备的准确度7 10 试验要求8 11 断后伸长率(A)和断裂总伸长率(At)的测定8 12 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定9 13 屈服点延伸率(Ae)的测定9 14 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定10 15 规定非比例延伸强度(Rp)的测定10 16 规定总延伸强度(Rt)的测定11 17 规定残余延伸强度(Rr)的验证方法11 18 抗拉强度(Rm)的测定11 19 断面收缩率(Z)的测定12 20 性能测定结果数值的修约14 21 性能测定结果的准确度14

22 试验结果处理15 23 试验报告15 附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16 附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于 4mm线材、棒材和型材使用的试样型17 附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试 样类型20 附录D(标准的附录)管材使用的试样类型21 附录E(提示的附录)断后伸长率规定值低于5%的测定方法24 附录F(提示的附录)移位方法测定断后伸长率24 附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25 附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26 附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。2)举例27 附录J(提示的附录)误差累积方法估计拉伸试验的测量不确定度28 附录K(提示的附录)拉伸试验的精密度—根据实验室间试验方案的结果31 附录L(提示的附录)新旧标准性能名称和符号对照34 GB/T228-2002 前言 本标准有效采用国际标准ISO 6892:1998《金属材料室温拉伸试验》。在主要技术内容上与ISO6892:1998相同,但部分技术内容较为详细和具体,编写结构不完全对应。补充性能测定结果数值的修约要求和试验结果处理。增加试样类型。删去附录F(提示的附录)计算矩形横截面试样原始标距用计算图尺;删去附录L(提示的附录)参考文献目录。增加附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(RP);增加附录L(提示的附录)新旧标准性能名称和符号对照。 本标准合作并修订原国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。对原标准在以下方面的技术内容进行了较大修改和补充: ——引用标准; ——定义和符号; ——试样; ——试验要求; ——性能测定方法; ——性能测定结果数值修约; ——性能测定结果准确度阐述。 自本标准实施之日起,代替GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。 本标准的附录A∽D都是标准的附录。 本标准的附录E∽L都是提示的附录。 本标准由原国家冶金工业局提出。 本标准由全国钢标准化技术委员会归口。

实验一金属拉伸试验

实验一金属拉伸试验 拉伸试验是检验金属材料力学性能普遍采用的一种极为重要的基本试验。 金属的力学性能可用强度极限σ b 、屈服极限σs、延伸率δ、断面收缩率Ψ 和冲击韧度α k 五个指标来表示。它是机构设计的主要依据。在机构制造和建筑工程等许多领域,有许多机械零件或建筑构件是处于受拉状态,为了保证构件能够正常工作,必须使材料具有足够的抗泣强度,这就需要测定材料的性能指标是否符台要求,其测定方法就是对材料进行拉伸试验,因此,金属材料的拉伸试验及测得的性能指标,是研究金属材料各种使用条件下,确定其工作可靠性的主要工具之一,是发展新金属材料不可缺少的重要手段,所以拉伸试验是测定材料力学性能的一个基本试验。 一、实验目的 1、测定低碳钢在拉伸过程中的几个力学性能指标:屈服极限σs、强度极限σb、延伸率δ、断面收缩率Ψ。铸铁的σb 。 2、观察低碳钢、铸铁在拉抻过程中的各种现象,绘制拉伸图(P—ΔL图)由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。 3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能,及断口形貌。 二、试验设备仪器及量具 万能材料试验机,引伸仪,游标卡尺;小直尺。 三、试件 金属材料拉伸试验常用圆形试件。为了使实验测得数据可以互相比较,试件形状尺寸必须按国家桶准GB228—76的规定制造成标准试件。如因材料尺寸限制等特殊情况下能做成标准试件时,应按规定做成比例试件。图1为圆形截面标准试件和比例试件的国标规定。对于板材可制成矩形截面。园形试件标距L。和直 径之比,长试件为L 0/d =10,以δ 10 表示,短试件为L /d =5以δs表示。矩 形试件截面面积A 0和标距L 之间关系应为

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

ASTM E8M-09 中文版 金属材料拉伸试验方法

金属材料拉伸试验的标准试验方法 1 范围 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 除非另有规定,室温应定为10—38℃。 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2 参考文件 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法

E6 力学性能试验方法相关术语 E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL [%])——在试样出现缩颈、断裂或者二者都出现之前, U 所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)

1 拉伸实验(改)

实验一拉伸实验 一、实验目的 观察、比较低碳钢(Q235钢)和铸铁的拉伸过程及破坏现象,测定其主要的力学性能指标,并比较其力学性能。 二、实验设备 1. 电子万能试验机(见图1) 2.游标卡尺和分规 3.计算机 4.引伸计(标距50mm) 5.计算机数据采集系统及实验软件 6.打印机 图1 电子万能试验机 三、实验概述 拉伸实验是材料力学性能实验中最基本最重要的实验。为了使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定,国家标准GB228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形横截面和矩形横截面两种试样,如图2所示。

对于比例试样,对圆截面试样规定L 0/d 0 =10或5 对矩形横截面试样规定, =11.3或5.65 式中L 0—试样的标距 d 0——圆截面试样直径(取标距内三处最小的一处平均值) S 0——横截面面积 本实验采用圆截面比例试样。 低碳钢作为塑性材料的代表,在常温、静荷下作拉伸实验。将试样安装在试验机的夹头中,加载后,观察试件的受力、变形直至破坏的全过程。试验机数据采集系统将实验数据传送到控制计算机, 在计算机屏幕的实验软件界面上,载荷、应变和试验机横梁位移都可以在相应的窗口实时显示,同时显示拉伸试验过程曲线(R -ε)。 根据下屈服载荷F eL 和破坏前试件所能承受的最大载荷F m ,由以下两式算得两个主要强度指标为 下屈服强度:R eL =F eL /S 0 抗拉强度: R m =F m /S 0 其中S 0为试件原始横截面面积。 低碳钢拉伸过程中,屈服阶段反映在拉伸图上为一水平波动线。在屈服期间,不计初始瞬时效应时的最低应力为下屈服强度R eL ,试验过程中注意观察屏幕上实时显示的试验曲线。 试件拉断后,取下试样,并测量拉断后的标距长度L u 和拉断后颈缩处的最小直径d u 。由以下两式算得其主要塑性指标: 图2 园截面拉伸试样 (b) o S L

有色金属细丝拉伸试验方法

《有色金属细丝拉伸试验方法》国家标准编制说明 (征求意见稿) 国标(北京)检验认证有限公司 二〇一八年十月十八日

《有色金属细丝拉伸试验方法》 编制说明 1工作简况 1.1项目背景和立项意义 随着科学技术的进步与国民经济的发展,对于有色金属材料在数量、品种、质量及成本等方面不断提出新的要求;对其化学成分、物理性能以及产品的可靠性、稳定性等方面的要求也越来越高,这就需要高精度、高可靠性的工艺、装备、控制技术与检测技术。室温拉伸力学性能是有色金属产品的一项基础性能,国内外针对金属材料的室温拉伸力学性能检测方法,制定和实施了很多标准,例如GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》、GB/T 16865-2013《变形铝、镁及其合金加工制品拉伸试验用试样及方法》、GB/T 34505-2017《铜及铜合金材料室温拉伸试验方法》、ASTM E8/E8M《金属材料拉伸试验方法》、ASTM B557/ B557M《变形及铸造铝、镁拉伸试验方法》、JIS Z 2241《金属材料拉伸试验方法》等,对规范有色金属材料的力学性能检测起到了很大作用。但是,对于有色金属细丝产品来说,由于这些产品的特殊性,不适合采用这些标准方法进行室温拉伸力学性能检测,主要原因有: 1) 横截面积很小的产品,按照标准中建议的量具分辨力测定横截面积,其准确度可能明显超过±2%的要求。例如,直径小于0.05mm的金属细丝,用分辨力0.001mm 的量具测量引起的误差超过±2%,这样,其横截面积测量误差超过±2%。 2) 试样原始标距的标记采用常规的划细线、打小冲点等方法不可行。 3) 试验机的力值范围和分辨力都很小,与常规试验机不同;常规的引伸计也不太可能直接用于这些产品试样的试验。 4) 试样的夹持方法需要特殊的方式等等。 由于上述这些原因,需要针对有色金属细丝产品,制定专门的拉伸试验方法标准,规范有色金属细丝拉伸试验,提高有色金属细丝产品力学性能检测的准确性和可靠性。 国家标准GB 10573-89《有色金属细丝拉伸试验方法》颁布实施二十多年以来,为规范我国有色金属合金丝材的性能检测提供了依据,在有色金属细丝产品的生产贸易以及质量控制方面都起到了巨大的作用。不过,随着我国有色金属合金制造行业的快速发展,有色金属丝材产品的种类也逐渐丰富,我国的有色金属及合金丝、线、条材的标准体系也在发生着不断变化,而且随着现代检测手段和设备的不断更新换代,现行的国家

金属材料的拉伸与压缩实验

实验四金属材料的拉伸实验(二)一.实验目的 1.测定低碳钢材料在常温、静载条件下的屈服极限σ s ,强度极限σ b ,延伸率δ和断面 收缩率ψ。 2.测定铸铁材料在常温静载下的强度极限σ b 。 3.观察低碳钢﹑铸铁在拉伸过程中出现的各种现象,分析P-△L图的特征。 4.比较低碳钢与铸铁力学性能的特点和试件断口情况分析其破坏原因。 5.了解微机控制电子万能材料试验机的构造原理,学习其使用方法。 二.仪器设备 1.微机控制电子万能材料试验机 2.数显游标卡尺 三.试件 在测试某一力学性能参数时,为了避免试件的尺寸和形状对实验结果的影响,便于各种材料力学性能的测试结果的互相比较,采用国家标准规定的比例试件。国家标准规 定比例试件应符合以下关系:L0=K A。对于圆形截面试件,K值通常取5.65或11.3。即直径为d0的圆形截面试件标距长度分别为5d0和10d0。本试验采用L0=10d0的比例试件。 图 3-4-1 四.测试原理

实验时,实验软件能够实时的绘出实验时力与变形的关系曲线,如图3-4-2所示。 图3-4-2 1.低碳钢拉伸 ⑴.弹性阶段 弹性阶段为拉伸曲线中的OB段。在此阶段,试件上的变形为弹性变形。OA段直线为线弹性阶段,表明载荷与变形之间满足正比例关系。接下来的AB段是一非线弹性阶段,但仍满足弹性变形的性质。 ⑵.屈服阶段 过弹性阶段后,试件进入屈服阶段,其力与曲线为锯齿状曲线BC段。此时,材料丧失了抵抗变形的能力。从图形可看出此阶段载荷虽没明显的增加,但变形继续增加;如果试件足够光亮,在试件表面可看到与试件轴线成45°方向的条纹,即滑移线。在此阶段试件上的最小载荷即为屈服载荷P s. ⑶.强化阶段 材料经过屈服后,要使试件继续变形,必须增加拉力,这是因为晶体滑移后增加了抗剪能力,同时散乱的晶体开始变得细长,并以长轴向试件纵向转动,趋于纤维状呈现方向性,从而增加了变形的抵抗力,使材料处于强化状态,我们称此阶段为材料的强化阶段(曲线CD部分)。强化阶段在拉伸图上为一缓慢上升的曲线,若在强化阶段中停止加载并逐步卸载,可以发现一种现象——卸载规律,卸载时载荷与伸长量之间仍遵循直线关系,如果卸载后立即加载,则载荷与变形之间基本上还是遵循卸载时的直线规律沿卸载直线上升至开始卸载时的M点。我们称此现象为冷作硬化现象。从图可知,卸载时试件的伸长不能完全恢复,还残留了OQ一段塑性伸长。 ⑷.颈缩阶段 当试件上的载荷达到最大值后,试件的变形沿长度方向不再是均匀的了,在试件某

JIS-Z-2241:2011金属材料拉伸试验方法

目次 1 适用范围....................................................................................... .................................... . 1 2 规范性引用文件................................................................................................................ .... 1 3术语和定义............................................................................................................................... 1 4 符号和说明 (2) 5原理........................................................................................................................ ............. . (8) 6 试样 (18) 6.1形状及尺寸..................................................................................................... .. (18) 6.2试样种类............................................................................................... ......... . (18) 6.3试样加工..................................................................................................... .. (19) 7 原始横截面积的测定 (21) 8 原始标距的标记 (21) 9 试验设备的准确度 (22) 9.1试验机 (22) 9.2延伸计 (22) 10 试验条件 (22) 10.1试验零点的设定 (22) 10.2试样夹持方法 (22) 10.3试验速度 (23) 11 上屈服强度的测定 (24) 12 下屈服强度的测定 (25) 13 规定塑性延伸强度的测定 (25) 14 规定总延伸强度的测定 (25) 15 规定残余延伸强度的验证和测定 (25) 16 屈服点延伸率的测定 (26) 17 最大力塑性延伸率的测定 (26) 18 最大力总延伸率的测定 (26) 19 断裂总延伸率的测定 (26) 20 断后伸长率的测定 (27) 21 断面收缩率的测定 (28) 22试验报告 (28) 23测量不确定度 (29) 23.1一般 (29) 23.2试验条件 (29) 23.3试验结果 (29) 附录A(参考附录)计算机控制拉伸试验机使用的建议 (30) 附录B(规范性附录)厚度0.1mm~<3mm 薄板和薄带使用的试样类型 (31) 附录C(规范性附录)直径或厚度小于4mm 线材、棒材和型材使用的试样类型 (34) 附录D(规范性附录)厚度等于或大于3mm 板材和扁材以及直径或厚度等于或大于4mm 线材、棒材和型材使用的试样类型 (35) 附录E (规范性附录)管材使用的试样类型 (43) 附录F(参考附录)考虑试验机柔度估计的横梁分离速率 (46)

实验1_金属材料拉伸实验

实验一金属材料拉伸实验 拉伸试验是检验金属材料力学性能普遍采用的一种极为重要的基本试验。 金属的力学性能可用强度极限σ b 、屈服极限σs、延伸率δ、断面收缩率Ψ 和冲击韧度α k 五个指标来表示。它是机械设计的主要依据。在机械制造和建筑工程等许多领域,有许多机械零件或建筑构件是处于受拉状态,为了保证构件能够正常工作,必须使材料具有足够的抗拉强度,这就需要测定材料的性能指标是否符合要求,其测定方法就是对材料进行拉伸试验,因此,金属材料的拉伸试验及测得的性能指标,是研究金属材料在各种使用条件下,确定其工作可靠性的主要工具之一,是发展新金属材料不可缺少的重要手段,所以拉伸试验是测定材料力学性能的一个基本试验。 一、实验目的 1、测定低碳钢在拉伸过程中的几个力学性能指标:屈服极限σs、强度极限σb、延伸率δ、断面收缩率Ψ。铸铁的σb 。 2、观察低碳钢、铸铁在拉伸过程中的各种现象,绘制拉伸图(P—ΔL图)由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。 3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能,及断口形貌。 二、实验设备仪器及量具 万能材料实验机,引伸仪,划线台,游标卡尺;小直尺。 三、试件 金属材料拉伸实验常用圆形试件。为了使实验测得数据可以互相比较,试件形状尺寸必须按国家标准GB228—76的规定制造成标准试件。如因材料尺寸限制等特殊情况下不能做成标准试件时,应按规定做成比例试件。图1为圆形截面标准试件和比例试件的国标规定。对于板材可制成矩形截面。园形试件标距L。和 直径之比,长试件为L 0/d =10,以δ 10 表示,短试件为L /d =5以δs表示。 矩形试件截面面积A 0和标距L 之间关系应为

相关主题