搜档网
当前位置:搜档网 › 几种经典快速块匹配运动估计算法的比较研究

几种经典快速块匹配运动估计算法的比较研究

几种经典快速块匹配运动估计算法的比较研究
几种经典快速块匹配运动估计算法的比较研究

Computer Knowledge and Technology 电脑知识

与技术计算机工程应用技术本栏目责任编辑:梁书

第6卷第32期(2010年11月)几种经典快速块匹配运动估计算法的比较研究

肖敏连

(湖南人文科技学院计算机科学技术系,湖南娄底417000)

摘要:块匹配运动估计算法被许多视频编码标准采用以消除视频序列帧间的时间冗余信息,而运动估计往往是视频编码器中的最耗时的部分,为了加快视频编码速度,许多快速运动估计被相继提出,该文首先对三种经典的快速运动估计算法进行详细的分析,然后把这三种经典快速运动估计算法嵌入到国际视频编码标准H.264/AVC 中,在相同的条件下分别对这三种算法进行性能测试,最后通过比较测试结果对三种经典快速运动估计算法的各自的特点进行了总结。

关键词:块匹配;运动估计;算法

中图分类号:TP312文献标识码:A 文章编号:1009-3044(2010)32-9152-03

Comparative Research on Several Classical Rapid Algorithms of Block-matching Motion Estimation

XIAO Min-lian

(Department of Computer Science and Technology of Hunan Institute of Humanities,Science and Technology,Loudi 417000,China)

Abstract:Block-matching motion estimation was adopted by many video standards to eliminate the temporal redundancy information be -tween successive frames,and usually the motion estimation is the most time consuming part of the whole encoding process.Many rapid motion estimation algorithms are developed in the past twenty years successively.This paper firstly analyzed the three classical rapid block-matching motion estimation algorithms.Then these algorithms were inserted into the H.264/AVC reference software.The three classic rapid block-matching motion estimation algorithms'performances were tested under the same condition.Finally,the characteristics of the three classical rapid algorithms were summarized according to the experimental results.

Key words:block-matching;motion estimation;algorithm

对于视频图像序列,如果帧与帧之间不是场景变换,运动幅度不是很大,则两帧之间就会存在很大的时间相关性即时间冗余,可以通过运动估计来消除时间冗余,从而达到视频压缩的目的。块匹配运动估计算法是目前应用最广泛的一种运动估计算法,它已被许多视频编码标准所采纳,如MPEG-1/2/4、H.261、H.263及H.264/AVC 等等[1-2]。最基本的块匹配算法是全搜索(FS ,Full Search )算法,虽然它能通过对搜索范围内所有的点进行搜索而找到最佳匹配点,但其计算量非常巨大,因此寻求快速的块匹配运动估计算法成了视频编码中热点问题。

1几种快速经典运动估计算法的搜索策略

运动搜索的目的就是要寻找最优匹配点。在搜索过程中可以采用上述不同的起点预测方法和块匹配准则来加快搜索速度或提高精度。搜索策略选择适当与否对运动估计的准确性、运动估计的速度都有很大的影响。最简单、最可靠、搜索精度最高的是全搜索法,但由于它计算复杂度高,不易于实时应用,为此人们提出了各种改进的快速算法,下面介绍几种经典的快速运动估计算法。

1.1三步搜索算法

三步搜索算法[3](Three Step Search ,TSS)于1981年由T.KOGA 等人提出,作为

一种简单有效的运动估计技术,被广泛使用在低比特率视频压缩场合中,当最大搜

索距离为7,搜索精度取1个像素,则步长为4、2、1,共需三步即可满足要求,因此

而得名三步法。

TSS 采用一种由粗到细的搜索模式,从搜索窗中心点开始,按一定步长取周围

8个点构成每次搜索的点群,然后进行匹配计算,跟踪到最小块误差MBD 点。

TSS 算法具体执行步骤:①它先确定一个中心点,确定最大搜索长度,然后以

最大搜索长度的1/2作为步长,在中心点周围取离中心点距离为一个步长的8个

点,将这9个点按照匹配原则进行计算,得到最佳匹配点;②然后以上一步得到的

最匹配的块为中心,搜索与此相距为最大搜索长度1/4搜索窗口距离的8个点进

行比较,再通过比较找出最匹配的块;③最后比到步长为1时,找出此时的最佳匹

配点就是最终的结果。

图1为TSS 的一个搜索图示。该算法简单、健壮、性能良好。但第一步的搜索步收稿日期:2010-09-07

基金项目:湖南人文科技学院教改课题(RKJGY0928,RKJGZ0706)资助

作者简介:肖敏连(1969-),女,湖南娄底人,实验师,本科,主要研究方向为多媒体技术。

图1TSS 搜索图示

ISSN 1009-3044Computer Knowledge and Technology 电脑知识与技术Vol.6,No.32,November 2010,pp.9152-9154E-mail:kfyj@https://www.sodocs.net/doc/f32532215.html, https://www.sodocs.net/doc/f32532215.html, Tel:+86-551-569096356909649152

Computer Knowledge and Technology 电脑知识与技术计算机工程应用技术本栏目责任编辑:梁书第6卷第32期(2010年11月)长过大而引起误导,从而对小运动幅度的视频图像的估计效果就不怎么理想。所以,后来又相继出现了许多改进的新三步法等,以改进它对小运动的估计性能。

1.2新三步搜索法

新三步搜索算法[4](Novel Three Step Search ,NTSS)是1999年由R.li,B.Zeng 和M.L.Liou 提出的,它是在三步法的基础上所做出的改进算法,NTSS 利用运动矢量的中心偏置分布,采用具有中心倾向的搜索点模式,并应用中止判别技术,以减少搜索次数。

NTSS 算法具体执行步骤:①除了对原三步法第一步的9个点进行搜索计算匹配

之外,还对搜索窗口中心的周围8个点进行比较。如果匹配的块在中心位置,则结束

搜索,若是在周围的8个点上,则转②,如果在最外的8个点上,则转③;②以上一步

得到的最匹配的块为中心继续搜索其周围8个点,其中有部分重复了,所以实际需要

搜索的点为3到5个点,搜索得到的匹配块即为所求的最佳匹配块;③对最外面的8

个点则按原三步法进行搜索。

图2为NTSS 的一个搜索过程图示。运动矢量通常总是高度集中分布在搜索窗的

中心位置附近,NTSS 采用中心倾向的搜索点模式不仅提高了匹配速度,而且减少了

陷入局部极小的可能性;而采用中止判别技术则大大降低了搜索复杂度,提高了搜索

效率。

1.3菱形搜索法

菱形搜索算法(Diamond Search ,DS)[5]最早由S.Zhu 和K.K Ma 提出,经过多次改

进,成为目前快速块匹配算法中性能较为优异的一种算法。1999年10月被MPEG-4

国际标准采纳并收入验证模型(VM)。

搜索模板的形状和大小不但影响整个算法的运行速度,而且也影响它的性能。统

计数据表明,视频图像中进行运动估计时,最优点通常在零矢量周围以搜索窗口中心点为圆

心,两像素为半径的圆内,如图3所示。DS 使用了两种搜索模式,分别为有9个点的大菱形搜索模式(Large Diamond Search Pat -

tern ,LDSP)和有5个点的小菱形搜索模式(Small Diamond Search Patten ,SDSP)。图4给出了DS

的两种搜索模式,搜索过程先使用LDSP ,对9个点进行比较,得到最佳匹配点,如果该点不在

中心位置,则以最佳匹配点作为新的中心点,用LDSP 继续进行比较,直到最佳匹配点位于中

心位置,将LDSP 换为SDSP ,再进行匹配计算,这时SDSP 中5个点中的MBD 即为最优匹配

点。然后以该点为中心应用SDSP 进行比较,得到的最佳匹配点就是最后结果。

DS 搜索具体步骤:①在搜索区域中心及周围8个点按LDSP

分别进行块匹配计算,如果计算得到的MBD 在中心点则转到③,

否则转到②;②以上一次找到的MBD 点为中心,用LDSP 计算,若

MBD 点位于中则转到③,否则重复该步骤;③以上次最佳点为中

心,搜索SDSP 下的5个点,找到最佳点即是运动矢量对应的点。

图5给出了DS 的一个搜索过程,黑点表示该步搜索到的最

佳点。该算法分析了视频图像中运动矢量的基本规律,选用了大小

两种形式的模板LDSP 和SDSP 进行搜索,既可以进行粗定位,使

搜索过程不会陷入局部最小,也使搜索不至于有大的起伏,所以其

性能优于其他算法。另外,DS 搜索时各步骤之间有很强的相关性,

模板移动时只需要在几个新的检测点处进行匹配计算,所以也提

高了搜索速度。但其性能上仍然存在缺陷:其一,对于运动大的序

列,菱形法同等地对待搜索区域的各部门,这就造成较大的冗余,影响了算法的搜

索速度;其二,对小运动序列来说DS 算法还有待改进。在菱形搜索算法的基础上,

后来又推出了六边形搜索算法、十字菱形搜索算法等,这些算法基本沿用了菱形搜

索策略,提高了平均搜索速度,并且保持了相当的搜索精度。2实验结果

为了便于比较四种算法对运动估计的加速效果,在H.264参考平台JM17.2[6]

的基础上,对不同的测试序列进行了一系列的测试,这里选取其中4个具有不同运

动水平的视频序列,其中Akiyo (QCIF )和Foreman (QCIF )序列的运动较为简单,而

Mobile&Calendar(QCIF)和Coastguard(QCIF)序列的运动则较为复杂;量化参数

(Quantum Parameter ,QP )选取28,32,36,40;运动搜索范围为33×33矩形窗(即在

初始搜索中心点周围±16个整像素范围内),参考帧数为1,采用率失真优化算法及

CABAC 编码。为了突出各算法与全搜索算法的比较效果,在所有的测试序列中,只

有第一帧被编码为I 帧,其它的帧都被编码为P 帧,总共编码21帧。

图2NTSS

搜索图示

图3最优点分布规律图4大菱形模板LDSP 及小菱形模板

SDSP

图5DS 搜索图示9153

Computer Knowledge and Technology 电脑知识与技术计算机工程应用技术本栏目责任编辑:梁书第6卷第32期

(2010年11月)表1~4为akiyo 、foreman 、coastguard 、mobile&calendar 等四个序列的实验结果,ME_TIME 为整像素运动估计所用的时间,PSNR-Y 、PSNR-U 、PSNR-V 分别为亮度及两个色度信号的平均信噪比,BIT-RATE 为码率。

3结论

通过比较可以看出:FS 所用的编码时间最多,其所用时间约占总编码时间的50%,而且其所用的时间与序列的运动剧烈程度有很大的关系,从表1~4可以明显看出在akiyo 、foreman 、coastguard 、mobile&calendar 等序列中其整像素运动估计时间ME_TIME 是越来越大的,当然,码率与序列的运动剧烈程度也有很大的关系,运动越剧烈,码率越大;对于同一视频序列而言,在相同的QP 下,三种快速算法TSS 、NTSS 、DS 在编码时间上相差不大,但总体上呈现逐渐减小的趋势;在编码性能方面,对于基本静止的视频序列而言,TSS 、NTSS 和DS 基本相同,而对于运动比较剧烈的视频序列而言,NTSS 和DS 的表现比TSS 算法略好些。

参考文献:

[1]沈兰荪,卓力.视频编码与低速率视频传输[M].北京:电子工业出版社,2001.

[2]Joint Video Team (JVT)of ISO/IEC MPEG and ITU-T VCEG.Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec.H.264|ISO/IEC 14496-10AVC)[S].document JVT-G050d35.doc,7th Meeting:Pattaya,Thailand,March,2003.

[3]Koga T,Iinuma K.Motion compensated inter-frame coding for video conferencing [C]//Proc.Nat.Telecommun.Conf.,Piscataway:IEEE press,1981.

[4]Li R,Zeng B,Liou M L.A new three-step search algorithm for block motion estimation [J].IEEE Transactions on Circuits and Systems on Video Technology,Vol.4,No.4,Aug.1994,pp438-442.

[5]Zhu Sa,Ma K.A new diamond search algoritm for fast block matching[J].IEEE Transactions on Image Processing,2000,9(2):287-290.

[6]Joint Video Team (JVT),Test Model

JM17.2[EB/OL].http://iphome.hhi.de/suehring/tml/download/.

表1akiyo 序列的实验结果表2foreman 序列的实验结果

表3coastguard 序列的实验结果表4mobile&calendar 序列的实验结果

9154

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

运动估计算法比较

大作业 几种运动估计算法比较 一、实验内容 简要介绍各种运动估计算法,并比较不同运动估计算法的性能,主要考虑各算法的运算速度和精度。 二、实验背景 视频原始图像中存在着大量的信息冗余,如时间冗余、空间冗余、信息熵冗余、谱间冗余、几何结构冗余、视觉冗余和知识冗余等等。运动估计是视频压缩编码中的核心技术之一,采用运动估计和运动补偿技术可以消除视频信号的时间冗余以提高编码效率。如何提高运动估计的效率,使运动估计算法的搜索过程更健壮、更快速、更高效成为目前研究的热点。 运动估计的基本思想是尽可能准确地获得序列图像帧间的运动位移,即运动矢量。因为运动估计越准确,预测补偿的图像质量越高,补偿的残差就越小,补偿编码所需位数越少,需要传输的比特率就越小。利用得到的运动矢量在帧间进行运动补偿。补偿残差经过变换、量化、编码后与运动矢量一起经过熵编码,然后以比特流形式发送出去。 运动估计算法多种多样,大体上可以把它们分成四类:块匹配法、递归估计法、贝叶斯估计法和光流法。其中块匹配运动估计算法因其具有算法简单、便于VLSI实现等优点得到广泛应用。所以本文将重点介绍块匹配运动估计算法,并对各种块匹配算法在计算速度和估计精度上进行简单比较。 三、实验原理 (一)、像素递归技术 像素递归技术是基于递归思想。在连续帧中像素数据的变化是因为物体的移位引起的,郑么如果沿着梯度方向在某个像素周圈的若干像素作迭代运算,运算会最后收敛于一个固定的运动估计矢量,从而预测该像素的位移。 (二)、块匹配运动估计 块匹配运动估计是把图像帧划分为若干互不重叠的块,并以块为单位寻找目标帧中每块在参考帧(上一帧或者其它帧)中最优匹配的块的相对位置,假设图像中每块的大小为M

几种排序算法分析

《几种排序算法的分析》 摘要: 排序算法是在C++中经常要用到的一种重要的算法。如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。排序的目的之一就是方便数据的查找。在实际生活中,应根据具体情况悬着适当的算法。一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。本论文重点讨论时间复杂度。时间复杂度就是一个算法所消耗的时间。算法的效率指的是最坏情况下的算法效率。 排序分为内部排序和外部排序。本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。 本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例: 1.1.插入排序 1.1.1.直接插入排序 思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。 要点:设立哨兵,作为临时存储和判断数组边界之用。 实现: Void InsertSort(Node L[],int length) { Int i,j;//分别为有序区和无序区指针 for(i=1;i=1)//直到增量缩小为1 { Shell(L,d); d=d/2;//缩小增量 } } Void Shell(Node L[],int d) {

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

运动估计算法简述

运动估计算法简述 标签:搜索运动估计预测矢量算法分类:探索H.2642007-02-03 13:59 马上要做运动估计算法,重点整理了一下这方面的内容。 帧间预测编码可以简单地分为单向预测、双向预测、多帧预测。而H.264 标准采用了多帧预测,参考帧可达5—15帧。 运动补偿采用较多的有运动矢量估计[重叠块运动补偿(OBMC)]、全局运动估计、基于象素点的运动估计、基于区域的运动估计、基于网格的运动估计。1.单向预测原理:将重建帧和参考帧送运动参数估值器(ME)比较得到运动矢量,再将运动矢量和重建帧送到运动补偿预测器中,得预测帧Ft^(x,y)。 Ft^(x,y)=Ft(x+i,y+j) 其中(i,j)即MV 2.基于块匹配算法的运动矢量估计 简单地说就是以块为单位分配运动矢量。在前一帧搜索区(M+2Wx,M+2Wy)内找到与当前帧块相匹配的块,位移d(i,j)即为运动矢量。 常用的块匹配准则有:均方误差(MSE)最小准则,绝对误差均值(MAD)最小准则、NCCF准则。 搜索方法: a.穷尽搜索计算(2Wx+1)×(2Wy+1)个MAD值,全局最优,计算量大。 b.快速搜索 (1)分层的和多分辨率的快速块匹配方法 (2)基于连续消除的快速块匹配方法 (3)固定搜索模式的快速块匹配方法(e.g.三步搜索法) (4)基于时空相关性和视觉特性的快速块匹配方法

3.重叠块运动补偿(OBMC) 为解决方块效应特别是运动矢量估计不准确或物体运动不是简单的平移运动以及一个块中有多个不同物体运动时的问题,采用OBMC方法,即一个像素的预测不仅基于其所属块的MV估计,还基于相邻块的MV估计。 4.运动估计 ?运动表示法: (1)基于块的运动表示法 帧间宏块分割区域大小的选择:大分区,表征MV的选择和区分割类型的比特数较少,但运动压缩的冗余度较高,运动补偿残差在多细节区域能量很高。小分区,运动补偿残差能量较低,但需要较多的表征MV的选择和区分割类型的比特数,运动压缩的冗余度较低。 一般策略:平缓区域大分区,多细节区域小分区。 树状结构运动补偿,宏块和子宏块各4种分割方法。 色度成分均为量度成分水平、垂直尺寸的1/2。 (2)亚像素位置的内插 亚像素运动矢量:亮度精度1/4,色度精度1/8 对亮度成分,用六抽头滤波器对整数像素点内插:左右相邻的6个像素的加权均值得1/2像素点,然后是线性滤波得到1/4像素点。 对色度块以类似方法得到1/4像素点,再次进行线性内插就得到1/8精度MV. (3)运动矢量在时空域的预测方式 空间 (1)运动矢量中值预测 (2)空间域的上层块模式运动矢量(最优) 时间 (1)前帧对应块运动运动矢量预测 (2)时间域的临近参考帧运动矢量预测 (4)匹配误差在时空域上的预测方式 H.264定义的匹配误差函数 J(MV,λMOTION)=SAD(s,c(MV))+λMOTION×R(MV-PMV)。 匹配误差在时空域的预测方式与运动矢量类似 空间 (1)中值预测 (2)上层预测 时间 (1)前帧对应块的预测 (2)时间域的临近参考帧预测(最优) ?运动估计准则分类: (1)MSE最小(2)MAD最小(3)NTD ——子集匹配法大大减少每帧图像的平均搜索时间 ?运动搜索算法 (1)全局搜索算法 (2)分数精度搜索算法 (3)快速搜索算法 1)二位对数搜索法 2)三步搜索法

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

运动功能评定.doc

运动功能评定 一、肌力评定 肌力是指肌肉收缩的力量。肌力评定是测定受试者在主动运动时肌肉和肌群产生的最大收缩力量。肌力评定是对神经、肌肉功能状态的一种检查方法,也是评定神经、肌肉损害程度和范围的一种重要手段。 及评定分徒手肌力检查和器械肌力测定。 (一)徒手肌力的检查 1、概念根据受检肌肉和肌群的功能,当受试者处于不同的检查体 位,然后嘱其分别在去除重力、抗重力和抗阻力的条件下做一定的动 作,按照动作的活动范围及抗重力和抗阻力的情况将肌力进行分级。2、标准国际上普遍应用的图,手机的检查方法是Lovett6 级分级 法。 1983 年,美国医学研究委员会在此分级基础上进一步细分,即 MRC肌力分级法,表3-1肌力评定标准 分级评级标准 5肌肉抗最大阻力,活动关节达到全范围 - 5肌肉抗较大阻力,活动关节达到全范围 + 4肌肉抗比中等度稍大的阻力,活动关节达到全范围 4肌肉抗中等度阻力,活动关节达到全范围 4-肌肉抗比中度稍小的阻力,活动关节达到全范围 + 肌肉抗重力时活动关节达到全范围,肌肉抗较小阻力时活动关节达到部分范围3 3肌肉抗重力,活动关节达到全范围 3-肌肉抗重力,活动关节达到最大范围的50%以上 + 肌肉减重活动关节达到全范围,肌肉抗重力活动关节达到最大范围的50%以 下 2 2 肌肉减重活动关节达到全范围 - 肌肉减重活动关节达到最大范围的50%以上 2 1+ 肌肉减重活动关节达到最大范围的50%以下 1可触及肌肉收缩,但无关节运动 0没有可以测到的肌肉收缩

肢体肌群的手法肌力检查方法表3-2。 表 3-2上肢和下肢主要肌肉的手法肌力检查 肌检查方法 群 1 级 2 级 3 级 4 级 5 级 肩仰卧,试向对侧侧前图屈肩时卧,上侧屈可触及三上肢放在滑肌角肌前部板上,肩可群收缩主动屈曲坐位,肩内坐位,肩内旋,坐位,肩内旋,掌心向掌心向下,阻旋,掌心向下,可克服重力加于上臂下,阻力加于力屈肩远端,能抗中上臂远端,能 等阻力屈肩抗较大阻力 屈肩 肩仰卧,试同左,上肢坐位,屈肘肩坐位,屈肘,坐位,屈肘,外图肩外展放在滑板外展 90°,可肩外展 90°,肩外展 90°,展时可触及上,肩主动克服重力外阻力加于上臂阻力加于上肌三角肌收外展展远端,能抗中臂远端,能抗群缩等阻力较大阻力 屈坐位,肩同左,肘可坐位,上肢下坐位,上肢下坐位,上肢下肘外展,上主动屈曲垂;前臂旋后垂;前臂旋(检垂;前臂旋后肌肢放在滑(检查肱二查肱二头肌)(检查肱二群板上;试头肌)或旋(或旋前(检查头肌)或旋前图肘屈曲检查肱肌)或肱肌)或中立(检查肱

基于线性搜索的快速运动估计算法

第38卷 第2期2004年2月 西 安 交 通 大 学 学 报 J OU RNAL OF XI′AN J IAO TON G UN IV ERSIT Y Vol.38 №2 Feb.2004基于线性搜索的快速运动估计算法 丁贵广,郭宝龙 (西安电子科技大学机电工程学院,710071,西安) 摘要:为了减小快速运动估计算法的计算复杂度和提高运动补偿的准确性,提出了一种新的块匹配运动估计算法,称为线性正方形搜索算法.该算法采用运动估计的线性搜索策略,对于不重要的搜索区域利用线性搜索技术进行快速搜索以减小算法的计算复杂度,而对于重要搜索区域,即最佳点所在区域,用9点的正方形模块进行精细搜索以提高算法的搜索精度.实验结果证明,该算法与菱形算法相比不仅计算复杂度减小了10%以上,而且视频编码效率可以提高约011dB. 关键词:块匹配算法;运动估计;线性搜索;视频编码 中图分类号:TP391 文献标识码:A 文章编号:0253-987X(2004)02-0136-04 N e w F ast Motion Estimation Algorithm B ased on Line Search Di ng Guiguang,Guo B aolong (School of Electromechanical Engineering,Xidian University,Xi′an710071,China) Abstract:In order to reduce the computational complexity of the fast motion estimation and improve the accuracy of motion compensation,a new block2matching algorithm called line2square search(L SS)algorithm was pro2 posed,in which the strategy of the line search was introduced.The L SS algorithm performed the line search for the unimportant area to reduce the computation complexity.For the important search area in which optimal points were existed,a square search pattern consisted of9checking points was used to carry out the refined search,thus the search accuracy and the prediction quality were https://www.sodocs.net/doc/f32532215.html,pared with the diamond search algorithm,experimental results showed that the computational complexity could be reduced up to10%and the coding efficiency could be increased about011dB by the L SS algorithm. K eyw ords:block2m atchi ng al gorithm;motion esti m ation;li ne search;vi deo codi ng 对于视频序列图像,由于相邻帧之间存在很大的时间相关性,即时间冗余,所以通过减少时间冗余,可以大幅度提高视频编码的效率.基于块匹配的运动估计算法是一种有效的方法,它已经被许多视频编码标准所采纳[1,2].在块匹配运动估计算法中,全搜索(FS)算法精度最高,但由于它要对搜索区内的每个搜索点进行检测,因此计算复杂度高,软硬件实现困难.后来人们相继提出了许多快速搜索算法,如三步法(TSS)[3]、四步法(FSS)[4]、二维对数法(TDL)[5]、基于块的梯度下降法(BB G DS)[6]、交叉法(CS)[7]和菱形法(DS)[8,9\〗等,它们通过设计不同的搜索模板和搜索策略,在计算复杂度上比FS 减小了许多,但搜索的准确性比不上FS.因此,有必要寻找更加高效的块匹配运动估计算法. 本文在分析运动矢量和绝对差和(Sum of Ab2 solute Difference,SAD)的空间分布特性的基础上,设计了一种新的搜索算法———线性正方形搜索算法(Line2Square Search,L SS).实验结果表明,本文提出的L SS算法在计算复杂度和准确性上都明显优于DS等块匹配算法. 收稿日期:2003-05-05. 作者简介:丁贵广(1976~),男,博士生;郭宝龙(联系人),男,教授,博士生导师. 基金项目:国家自然科学基金资助项目(69975015);教育部优秀青年教师计划资助项目.

十大经典排序算法

.1 算法分类 十种常见排序算法可以分为两大类: ?比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。 ?非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。 0.2 算法复杂度

0.3 相关概念 ?稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。 ?不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。 ?时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。 ?空间复杂度:是指算法在计算机 内执行时所需存储空间的度量,它也是数据规模n的函数。 1、冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述 ?比较相邻的元素。如果第一个比第二个大,就交换它们两个; ?对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数; ?针对所有的元素重复以上的步骤,除了最后一个; ?重复步骤1~3,直到排序完成。 1.2 动图演示 1.3 代码实现 ?

2、选择排序(Selection Sort) 选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 2.1 算法描述 n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下: ?初始状态:无序区为R[1..n],有序区为空; ?第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区; ?n-1趟结束,数组有序化了。 2.2 动图演示 2.3 代码实现 ?

基于块的全搜索运动估计算法实现实验报告

数字视频处理实验报告 学院:通信与信息工程学院 系班:电信科0901班 姓名: 学号: 时间:2012 年11月23号

一、实验名称:基于块的全搜索运动估计算法实现 二、实验目的: 1、掌握运动估计算法的实现原理。 2、掌握运动估计算法的研究现状及多种计算方法。 3、学习基于块的全搜索运动估计算法,研究分析其Matlab实现 程序过程,并补充完成程序,对实验结果进行分析比较。 三、实验要求 三、实验要求 1、对实验程序motionEstAnalysis.m进行分析,完成主程序流程图。 函数流程图: 2、编写补充完成部分不全程序代码,调试程序使其能正确运行 (1) motionEstES( ) % Computes motion vectors using exhaustive search method(全搜索法计算运动矢量) % % Input % imgP : The image for which we want to find motion vectors(当前图像) % imgI : The reference image(参考图像) % mbSize : Size of the macroblock(宏块尺寸) % p : Search parameter (read literature to find what this means)(搜索参数) % % Ouput % motionVect : the motion vectors for each integral macroblock in imgP (当前图像中每一个积分宏块的运动矢量) % EScomputations: The average number of points searched for a macroblock(每个宏块搜索的平均点数) % % Written by Aroh Barjatya

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

一种有效的三步运动估计算法

一种有效的三步运动估计算法 摘 要:为了减小运动估计算法的计算复杂度及提高序列图像超分辨率重建的可靠性,提出了一种有效的三步搜索算法。该算法采用多步搜索策略,根据运动矢量分布的中心偏移性及并行处理的思想,在最佳匹配点所在的区域使用菱形小模板代替原有的正方形小模板来进行精细搜索,以提高算法的搜索精度。实验结果表明,该算法在保证搜索精度的同时能大幅度缩短消耗时间。 关键词:超分辨率重建;运动估计;块匹配;运动矢量 由于误差表面通常并不是单调的,所以搜索窗口太小,就容易陷入局部最优;而搜索窗口太大,又容易产生错误的搜索路径[7]。3SS 搜索法第一步搜索步长较大,在图像运动较小的时候会影响运动估计的效果,使运动估计的精度明显下降。在超分辨率图像重建中,序列图像的每一帧变化都很小,帧与帧之间大多为小运动估计,而在实际应用中,除了要保证运动估计的精度之外,对算法的实时性也提出了更高的要求。根据这个特点,本文提出一种根据N3SS 法演变而来的一种有效的三步搜索算法(effective three step search ,E3SS)。图2为E3SS 的搜索模板,搜索窗宽度为5,即搜索范围是)5,5(±±j i 。 i j 6-i 6 +i 6 +j 6 -j 图2 E3SS 搜索模板 在真实的视频序列中,运动矢量的分布具有中心偏移的特点,由全搜索算法FS 的匹配结果表明,匹配点在中心点的概率最高,其次为在中心点周围上、下、左、右的4个邻点,而在中心点周围左上、右上、右下、左下4个对角点的概率最小[8],因此在搜索窗口的中心采用了一个小的菱形搜索模板来替代N3SS 算法

中的正方形小模板。 首先,搜索模板上的13个检测点,如果最小块误差(minimum block distortion ,MBD) 点 (SAD 值最小的点),在搜索窗口的中心则算法结束。 如果MBD 点位于中心点的4个相邻点中,移动菱形小模板到上一步的MBD 点,继续搜索菱形小模板中的其他点,直到MBD 点是菱形中心的点或者菱形小模板到达搜索窗口边缘为止,如图3(a)中,点(0,-1)是第一步的MBD 点,也是第二阶段的MBD 点,且位于搜索窗中心,故最终运动矢量就是(0,-1)。图中每个点上的数字表明了不同阶段搜索时的检测点。 如果MBD 点是99 模板中的8点之一,搜索方法同3SS ,即将步长减半,中心点移到上一步的MBD 点,重新在周围距离步长的8个点处进行块匹配计算并比较,重复此步骤,直到步长为1,该点所在位置即对应最优运动矢量,如图3(b)中,(4,4)是第一步的MBD 点,然后以(4,4)为中心点进行第二步搜索,此时搜索半径已经缩减为2像素,最后以当前MBD 点(2,6)完成第三步搜索,找到最优匹配点。 -1 1 -2-3-4-5-6-702 3 4567 -11-2-3-4-5-6-7 0234567-11-2-3-4-5-6-7 0234567-11 -2-3-4-5-6-702 3 4 5 6 7 (a) (b) 图3 E3SS 搜索示意图 4 实验结果与分析 为了验证E3SS 算法的性能,在相同条件下进行了一系列的仿真实验。实验的搜索区域在水平与竖直方向的最大位移均为±7,块的大小为16×16,并采用SAD 作为最佳匹配准则。实验时,首先利用预测帧的峰值信噪比(peak signal to noise ratio ,PSNR)来度量搜索的准确性,同时选取多个不同性质的序列图像来检

视频信号的运动估计和运动补偿算法

数字视频实验报告 班级:电信科0801班 学号: 姓名:

实验报告二 一、实验名称:视频信号的运动估计和运动补偿算法 二、实验目的 在视频编码和处理系统中,运动估计和运动补偿技术对降低视频序列时间冗余度、提高编码效率起着非常关键的作用。运动估计的准确程度将直接决定视频编码器的编码效率。它极大地消除了视频序列的帧间相关性。运动估计算法的复杂性将直接决定视频压缩编码系统的复杂性,如何提高运动估计的效率,使运动估计算法的搜索过程更快速、更高效一直是人们研究的热点。掌握运动估计的块匹配算法,以及快速运动估计算法。 三、实验内容: 1、分析基于块匹配的全搜索运动估计算法程序,画出 motionEstAnalysis.m 和 motionEstES.m文件流程图 2、编程补充完成costFuncMAD.m 文件中最小绝对误差计算函数 costFuncMAD()和imgPSNR.m文件中峰值信噪比PSNR计算函数imgPSNR()的程序,最终输出运动矢量场; 3、掌握运动补偿算法,编程实现motionComp.m文件中对目标帧的运 动补偿重构函数 motionComp(); 4、了解多种快速运动估计算法,例如三步法搜索法、二维对数法、

菱形搜索法等。 5、总结实验结果,比较各种搜索算法的性能和所需时间。 四、实验原理 在帧间预测编码中,由于活动图像邻近帧中的景物存在着一定的相关性。因此,可将活动图像分成若干块或宏块,并设法搜索出每个块或宏块在邻近帧图像中的位置,并得出两者之间的空间位置的相对偏移量,得到的相对偏移量就是通常所指的运动矢量,得到运动矢量的过程被称为运动估计。 运动矢量和经过运动匹配后得到的预测误差共同发送到解码端,在解码端按照运动矢量指明的位置,从已经解码的邻近参考帧图像中找到相应的块或宏块,和预测误差相加后就得到了块或宏块在当前帧中的位置。 运动估计的准确程度往往用补偿图像与原图像比较的PSNR来衡量表示。 五、实验程序 1、motionEstAnalysis.m文件流程图

常见的八种经典排序方法

常见经典排序算法 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法 */ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp=v[j];

v[j]=v[j+gap]; v[j+gap]=temp; } } } } 二.二分插入法 /* 二分插入法 */ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */

相关主题