搜档网
当前位置:搜档网 › 双酶切连接全攻略

双酶切连接全攻略

双酶切连接全攻略
双酶切连接全攻略

双酶切连接反应之全攻略

前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了14个质粒。现就自己的体会,结合丁香园战友的宝贵经验,谈一下质粒重组的一些个人经验。

1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照:https://www.sodocs.net/doc/f58303987.html,/upload/2006/08/13/31219184.pdf。

双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。应用大体系,如100微升。

纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。我用的是TAKARA的纯化柱试剂盒

酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml 菌液提出的DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。

2、酶切、回收后的PCR产物与载体的连接

摩尔比的计算,很多人凭经验也可以。但对于初学者从头认真计算则非常有必要。回收的载体片段:回收的PCR产物片段=1:10,一般取前者0.03pmol,后者取0.3pmol。pmol为单位的DNA转换为为μg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为μg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为

0.03×5.38×0.66=0.106524μg。

测DNA浓度可以在专用机子上测,注意OD值,一般约1.8-2.0.另外,如果嫌麻烦,也可用MARKER进行估测,如MARKER2000,5微升的MARKER每个条带约50ng。

连接反应:TAKARA的连接酶上的说明写的过夜,而其对连接酶单位的定义为:在20 μl

的连接反应体系中,6 μg的λDNA-Hind III的分解物在16℃下反应30分钟时,有90%以上的DNA片段被连接所需要的酶量定义为1个活性单位(U)。而它的浓度为350 U/μl ,所以完全够用。连接酶容易失活,注意低温操作,最好在冰上。时间3个小时足已。

3、转化:

a、全量(10 μl)加入至100 μl JM109感受态细胞中,冰中放置30分钟。

b、42℃加热45秒钟后,再在冰中放置1分钟。

c、加入890 μl AMP阴性培养基,37℃振荡培养60分钟。

取100μl铺板。也可离心后余100μl

几个非常重要的问题

1 做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解.为保险起见,一般连接3小时,16度.

2 对含有AMP-RESISTENCE的质粒铺板时,注意加AMP时的温度,温度过高,会使克隆株无法筛选出来.我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。铺板前后注意用吹风机吹干

3对照的设立:

为验证双酶切是否成功,可做如下对照:

A 酶切反应时加各单酶分别切,两管,用同一种BUFFER,跑胶,看单切的两管是否成线性.如两管均成线性可初步判断双酶切成功.

做转化时,也要进行对照.

设4个:

A.即拿双酶切的质粒产物也进行连接反应,这个对照可进一步看双酶切是否成功,如果长出克隆,说明很有可能只进行了单酶切,如没长出克隆,则证明双酶切成功,当然要保证感受态,培基,连接酶都'正常'的情况下.

B.酶切过的未进行连接反应的双酶切产物,进行转化,这一步可以证明是否有残留的未被任何酶切的原始质粒

C.设原始质粒为对照,意为检测整个操作过程中是否有误.

D.AMP阴性板上用同一批感受态细胞铺板20微升足够,检测感受态状况.

4.所有的试剂切记低温保存.一步一个脚印.不要偷懒,图省事最后却更费事.注意设立对照。经PCR鉴定,克隆90%-100%的阳性率,所以在后面的挑克隆中,我只挑选4个就足够

了。然后双酶切鉴定,测序。。。。。。

昨天14个测序结果出来,全部是阳性克隆。两边是载体的序列,中间是插入的目的片段。回顾自己的实验现补充几点。

就上面的对照简要说一下我的结果。转化后第二天可见14个标本的平皿上长了很多克隆,约100个左右,我用的是直径6cm的板子,所以仍显较多,(我是先挑半个克隆并标记好行PCR鉴定后再对另外的一半进行摇菌抽提质粒),较难挑克隆,所以铺皿时不用离心,直接用100微升的铺皿就可以了,我其中一个是这样做的,长得克隆较大,很好挑选。

下面简要的说一下对照的结果。

A 只长出了3个克隆,以100的基数计算,约为3%。即双酶切反应中质粒只有3%进行了单酶切

B 约有5个克隆,即质粒完全没被切动的约5%

C 长了很多克隆,证明操作系统没有问题。为系统控制指标。

D 长了很多克隆,证明感受态没有问题。

这些对照相辅相成,扬长避短。万一什么都没作出来,也好分析原因。

JM108感受态细胞的制备

刚开始做实验时,是向TAKARA购买的,一支30元,定了10支。后来干脆自己做,感觉质量和TAKARA的质量不相上下,下面谈谈我制作感受态的体会。

前期工作

分子生物耗费时间在于准备过程太多。所以做好前期工作非常重要,所谓‘磨刀不误砍材功’。注意事项

1.不要用经过多次转接或储于4℃的培养菌,最好从-70℃或-20℃甘油保存的菌种划板(AMP阴性)37度过夜培养,划板时用小TIP头挑少许冰渣即可,轻划S行。同时记得设立对照:A 、在AMP阳性板划菌,排出AMP抗性菌污染。大家都知道,实验室很多材料从师姐传师妹,或许经过很多人的转手。所以从头鉴定所用材料的可靠性非常必要。B、AMP 阴性空白培基。系统控制参照,为更准确起见,用TIP头不沾任何东西进行划板。第二天挑克隆。

2. 质粒的质量和浓度:用于转化的质粒DNA应主要是超螺旋态DNA(cccDNA)。转化效率与外源DNA的浓度在一定范围内成正比,但当加入的外源DNA的量过多或体积过大时,转化效率就会降低。1ng的cccDNA即可使50μl 的感受态细胞达到饱和。一般情况下,DNA溶液

的体积不应超过感受态细胞体积的5%。不过我一般链接反应后(TAKARA的链接酶,体系25微升)会全量加到200微升的感受态里,约为150ng(载体0.1微克,目的片段约0.05微克)。效果也好。

3. 试剂的质量: 所用的试剂,如CaCl2 等均需是最高纯度的(GR.或AR.),并用超纯水配制,最好分装保存于干燥的冷暗处。国产的当然也可以。我用都是国产的,好像是陇西化学制剂,分析纯。

4. 防止杂菌和杂DNA的污染:整个操作过程均应在无菌条件下进行, 所用器皿, 如离心管, tip头等最好是新的,并经高压灭菌处理,所有的试剂都要灭菌,且注意防止被其它试剂、DNA 酶或杂DNA所污染, 否则均会影响转化效率或杂DNA的转入, 为以后的筛选、鉴定带来不必要的麻烦。

培养基的配制

1.配制LB-AMP抗性培养基LB液体培养基:精解蛋白胨10g,酵母抽提物5g,氯化钠l0g,加去离子水800ml充分搅拌溶解,用1mol/LNaOH调pH7.0,补加去离子水至1000毫升,高压灭菌,4度保存。我一般没有用1mol/LNaOH调pH7.0。而是直接精解蛋白胨10g,酵母抽提物5g,氯化钠l0g加去离子水至1000ml。

2.LB固体培养基:LB液体培养基中加1.5%琼脂粉,高压灭菌消毒;

3.Amp母液:用无菌水或生理盐水配制成100mg/ml即100 ug/ul溶液,置-20℃保存;AMP500mg/支,一支用5ml稀释即得。然后分5支分装(浓度100mg/ml即100 ug/ul)。

4.含Amp的LB固体培养基:将配好的LB液体培养基高压灭菌后冷却至60℃左右,加入Amp储存液,使终浓度为100ug/ml摇匀后铺板(30ml/90mm):即多少毫升培养基加多少微升上述的Amp母液多少毫升培基=加多少微升母液,或减半量则最终浓度为50ug/ml

有指南上写细菌转化后37度复苏时用SOC培基。我从来只用AMP阴性的普通培基,效果也很好。

5.0.05mol/L CaCl2溶液:我们实验室只有CaCl2-6H2O,分子量219,配制100ml的,则需称量0.005×219=1.095g就可以了。其实氯化钙的摩尔浓度在0.05-0.1mol/L均可。溶于50ml重蒸水中,定容至100ml,高压灭菌。

6.含15%甘油的0.05mol/L CaCl2: 先配制成0.1mol/L的氯化钙溶液50ml,加入15ml 甘油,定容至100ml,高压灭菌。有文献说要用0.22的滤器,其实完全没有必要。高压即可。

准备工作做好了,就可以开工了。

一、受体菌的培养从LB平板上挑取新活化的JM109单菌落,接种于3-10ml LB液体培养基中,37℃下振荡培养12小时左右(一般过夜)。将该菌悬液以1:100-1:50的比例接种于10ml试管(如较多制备,多用几个试管即可)的LB液体(AMP阴性)培养基中同时做空的培基对照,37℃振荡培养2-3小时至OD600 =0.5左右。

二、感受态细胞的制备( CaCl2 法)

1、将培养液分转入1.5ml的离心管中(一管10ml菌液可分装成约6管1.5ml的离心管中),冰上放置10分钟,然后于4℃下3000g离心10分钟。

2、弃去上清,用预冷的0.05mol/L的CaCl2 溶液200微升轻轻悬浮细胞,冰上放置30分钟后,4℃下3000g离心10分钟。

3、弃去上清,加入200微升预冷含15%甘油的0.05mol/L的CaCl2 溶液,轻轻悬浮细胞,冰上放置几分钟,即成感受态细胞悬液。

4、贮存于-70℃可保存半年。

要点:1.悬浮细胞时动作一定要轻柔;2 冰上。掌握者两点可谓掌握了制备感受态的精髓,无往不利。

我五月初做实验时遇到很多问题,那时是相当的郁闷。当时参考了丁香园很多战友有益的相关帖子,获益颇丰,谢谢丁香园提供了这个交流平台。希望大家不断补充,纠正错误,知无不言,言无不尽。尽量让后来者少走弯路节约时间,尽量少过郁闷压抑没有成就感的日子。

蓝白斑筛选

蓝白斑筛选是重组子筛选的一种方法,是根据载体的遗传特征筛选重组子,如α-互补、抗生素基因等。现在使用的许多载体都带有一个大肠杆菌的DNA的短区段,其中有β-半乳糖苷酶基因(lacZ)的调控序列和前146个氨基酸的编码信息。在这个编码区中插入了一个多克隆位点(MCS),它并不破坏读框,但可使少数几个氨基酸插入到β-半乳糖苷酶的氨基端而不影响功能,这种载体适用于可编码β-半乳糖苷酶C端部分序列的宿主细胞。因此,宿主和质粒编码的片段虽都没有酶活性,但它们同时存在时,可形成具有酶学活性的蛋白质。这样,lacZ基因在缺少近操纵基因区段的宿主细胞与带有完整近操纵基因区段的质粒之间实

现了互补,称为α-互补。由α-互补而产生的LacZ+细菌在诱导剂IPTG的作用下,在生色底物X-Gal存在时产生蓝色菌落,因而易于识别。然而,当外源DNA插入到质粒的多克隆位点后,几乎不可避免地导致无α-互补能力的氨基端片段,使得带有重组质粒的细菌形成白色菌落。这种重组子的筛选,又称为蓝白斑筛选。如用蓝白斑筛选则经连接产物转化的钙化菌平板37℃温箱倒置培养12-16hr后,有重组质粒的细菌形成白色菌落。

X-gal是5-溴-4-氯-3-吲哚-b-D-半乳糖(5-bromo-4-chloro-3-indolyl-b-D- galactoside)以半乳糖苷酶(b-galactosidase)水解后生成的吲哚衍生物显蓝色。IPTG是异丙基硫代半乳糖苷(Isopropylthiogalactoside),为非生理性的诱导物,它可以诱导lacZ的表达。在含有X-gal 和IPTG的筛选培养基上,携带载体DNA的转化子为蓝色菌落,而携带插入片段的重组质粒转化子为白色菌落,平板如在37℃培养后放于冰箱3-4小时可使显色反应充分,蓝色菌落明显。

所以猜测在4度冰箱中放置一段时间,蓝斑会更蓝可能与下面因素有关:半乳糖苷酶在低温时表达增强,从而使X-Gal水解增多,产生更多的吲哚衍生物。(是否与低温状态下IPTG的诱导能力增强?)

相关文献:allow time for better expression of the β-galactosidase enzyme

似乎没有更多的证据或实验资料。冒昧揣测。

双酶切实验

双酶切概述 双酶切反应(Double Digests) 1、同步双酶切 同步双酶切是一种省时省力的常用方法。选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。由于内切酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。 2、分步酶切 如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。 3、使用配有特殊缓冲液的酶进行双酶切(图) 使用配有特殊缓冲液的酶进行双酶切也不复杂。在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。这保证了对缓冲液有特殊要求的酶也能良好工作。由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。 双酶切建议缓冲液 注: 只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。BSA不会影响任何内切酶的活性。 注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。可通过增加反应体系的总体积的方法实现这一要求。 某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。上表中这些组合以“se q”标注。 [编辑本段] 双酶切的注意事项 1、做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解.为保险起见,一般连接3小时,16度。 2、对含有AMP-RESISTENCE的质粒铺板时,注意加AMP时的温度,温度过高,会使克隆株无法筛选出来.我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。铺板前后注意用吹风机吹干。 3、对照的设立:为验证双酶切是否成功,可做如下对照: 酶切反应时加各单酶分别切,两管,用同一种BUFFER,跑胶,看单切的两管是否成线性.如两管均成线性可初步判断双酶切成功.做转化时,也要进行对照。 [编辑本段] 双酶切连接反应之全攻略 1、回收PCR产物:

双酶切连接反应之全攻略

双酶切连接反应之全攻略 1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照: 双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。应用大体系,如100微升。 纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。我用的是TAKARA的纯化柱试剂盒 酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。 而该酶浓度约为15单位/ 微升,在除外酶降解的 因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约 为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的 质量好,酶切完全切得动。 2、酶切、回收后的PCR产物与载体的连接 摩尔比的计算: 很多人凭经验也可以。但对于初学者从头认真计算则 非常有必要。回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。 pmol为单位的DNA转换为为μg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为μg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为 0.03×5.38×0.66=0.106524μg。 测DNA浓度: 可以在专用机子上测,注意OD值,一般约1.8-2.0.另外,如果嫌麻烦,也可用MARKER 进行估测,如MARKER2000,5微升的 MARKER每个条带约50ng。 连接反应:TAKARA的 连接酶上的 说明写的过夜,而其对连接酶单位的定义为:在20 μl的连接反应体系中,6 μg的λDNA-Hind III的分解物在16℃下反应30分钟时,有90%以上的DNA片段 被连接所需要的酶量定义为1个活性单位(U)。而它的浓度为350 U/μl ,所以完全够用。连 接酶容易失活,注意低温操作,最好在冰上。时间3个小时足已。 3、转化: a、全量(10 μl)加入至100 μl JM109感受态细胞中,冰中放置30分钟。 b、42℃加热45秒钟后,再在冰中放置1分钟。 c、加入890 μl AMP阴性培养基,37℃振荡培养60分钟。 取100μl铺板。也可离心后余100μl 几个非常重要的问题 1 做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解.为保险起见,一般 连接3小时,16度.

双酶切连接反应常见问题分析

前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了14个质粒。现就自己的体会,谈一下质粒重组的一些个人经验。 1. 回收PCR产物: 在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶。选好酶切位点后,在各个酶的两边加上保护碱基。 双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。应用大体系,如100微升。 2. 纯化问题: 纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。 3. 酶量的问题: 对1单位酶的定义如下:在50μl 反应液中,30℃温度下反应1小时,将1μg 的λDNA完全分解的酶量定义为1个活性单位(U)。而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml 菌液提出的DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。 4. 酶切、回收后的PCR产物与载体的连接: 摩尔比的计算,很多人凭经验也可以。但对于初学者从头认真计算则非常有必要。回收的载体片段:回收的PC R产物片段=1:10,一般取前者0.03pmol,后者取0.3pmol。

pmol为单位的DNA转换为为μg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000(注:长度bp×650是该双链DNA的分子量)所得数值即为μg,也可以直接用这个公式套。1pmol 1000bp DNA=0.66μg,如载体是5380b p,则0.03pmol为0.03×5.38×0.66=0.106524μg。 5. 测DNA浓度: 测DNA浓度可以在专用机子上测,注意OD值,一般约1.8-2.0.另外,如果嫌麻烦,也可用MARKER进行估测,如MARKER2000,5微升的MARKER每个条带约50ng。 6. 连接反应: TAKARA的连接酶上的说明写的过夜,而其对连接酶单位的定义为:在20 μl的连接反应体系中,6 μg的λD NA-Hind III的分解物在16℃下反应30分钟时,有90%以上的DNa段被连接所需要的酶量定义为1个活性单位(U)。而它的浓度为350 U/μl ,所以完全够用。连接酶容易失活,注意低温操作,最好在冰上。时间3个小时足已。 7.转化: ①全量(10 μl)加入至100μl JM109感受态细胞中,冰中放置30分钟。 ②42℃加热45秒钟后,再在冰中放置1分钟。 ③加入890 μl AMP阴性培养基,37℃振荡培养60分钟。 取100μl铺板。也可离心后余100μl 几个非常重要的问题: 1 做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解。为保险起见,一般连接3小时,16度。

质粒的酶切、连接、与转化

质粒DNA酶切、连接、转化、筛选、鉴定 (2011-04-29 10:42:22) 转载▼ 质粒DNA酶切、连接、转化、筛选、鉴定 实验目的 1、学习和掌握限制性内切酶的特性 2、掌握对重组质粒进行限制性内切酶酶切的原理和方法 3、掌握利用CaCl2制备感受态细胞的方法 4、学习和掌握热击法转化E.coli的原理和方法 5、掌握α互补筛选法的原理 6、学习用试剂盒提取重组质粒DNA的方法 7、复习琼脂糖凝胶电泳的原理及方法 实验原理 重组质粒的构建需要对DNA分子进行切割,并连接到合适的载体上进行体外重组。限制性核酸内切酶和DNA连接酶的发现与应用,为重组质粒的构建提供了有力的工具。 限制性核酸内切酶酶切分离法适于从简单基因组中分离目的基因。质粒和病毒等DNA 分子小的只有几千碱基,大的也不超过几十万碱基,编码的基因较少,获得目的基因的方法也比较简单。 DNA连接酶催化两双链DNA片段相邻的5’-磷酸和3’-羟基间形成磷酸二酯键。在分子克隆中最有用的DNA连接酶是来自T4噬菌体的DNA 连接酶:T4 DNA连接酶。T4 DNA 连接酶在分子克隆中主要用于:1、连接具有同源互补粘性末端的DNA片段;2、连接双链DNA分子间的平端;3、在双链平端的DNA分子上添加合成的人工接头或适配子。 目的DNA片段与载体DNA片段之间的连接方式(以T4DNA连接酶为例)主要有以下几种: (一)、具互补粘性末端片段之间的连接 大多数的核酸内切限制酶都能够根据识别位点切割DNA分子,形成1~4核苷酸单链的粘性末端。当载体和外源DNA用同一种限制性内切酶切割时,产生相同的粘性末端,连接后仍保留原限制性内切酶的识别序列;如果用两种能够产生相同的粘性末端的限制酶(同尾酶)切割时,虽然可以有效地进行连接,但是获得的重组DNA分子消失了原来用于切割的那两种限制性核酸内切酶的识别序列,这样不利于从重组子上完整地将插入片段重新切割下来。 (二)、平末端的连接 载体分子和外源DNA插入片段并不一定总能产生出互补的粘性末端。实际上有许多情况都是例外的,因为有些限制酶切割DNA分子之后所形成的都是平末端的片段;有的实验要用两种不同的限制酶分别切割载体分子和外源DNA,形成的也多半是非互补的粘性末端或平末端;再如用机械切割法制备的DNA片段,PCR扩增的和化学合成的DNA片段或由RNA为模板反转录合成的cDNA片段,也不会具有互补的粘性末端。 理论上任何一对DNA平末端均能在T4DNA连接酶催化下进行连接,这给不同DNA分子的连接带来了方便。但是,平末端连接更为复杂,且速度也慢得多,因为一个平末端的5’磷酸基团或3’羟基与另一个平末端的3’羟基和5’磷酸基团同时相遇的机会显著减少,通常

实验3酶切与连接

实验三、酶切与连接 一、实验目的与原理简介 限制性内切酶在基因工程中主要应用地以下两个方面:制作基因酶切图谱和进行基因克隆。 制作基因图谱,就是利用特定的酶切出特定的条带; 而利用基因克隆时选择酶应注意以下几个方面: 1)克隆片段的长度;2)克隆片段中切点的情况3)载体上切点的情况; 4)切割与连接方式;5)接头状态。 酶切方式可分为部分酶切和完全酶切两种: 1)部分酶是指同一DNA 片段上有些被切开而另一些未被切开,此法主要应用于基因 的克隆 。用部分酶切法是基于基因内部可能有此酶的位点。进行部分酶切可通过两个方式:一是不同的时间内在同一酶反应管中取样终止反应,利用时间来控制酶切的程度。另一种是在其余条件相同时控制 酶的稀释度,利用不同酶浓度控制酶切程度,这种方法因易于控制反应而被广泛应用。 2)完全酶切法适用于如载体切割、酶切图谱的制作、基因的鉴定与DNA 片段的分离工作。完全酶切又可分为单酶切、多酶切两种。在多酶切反应中当2种或2种以上的酶有相同 的反应条件时,可同时进行酶切,不然须在前一种酶作用完成后将其失活,而后进行第二种酶切反应,这样可以避免片段混乱现象的出现。 二、材料和试剂 限制性内切酶NotI 、EcoRI ;10×Buffer , PCR 产物、pPIC9K 质粒、10×T4连接Buffer 、T4 Ligase 、DDW 、琼脂糖、电泳缓冲液 、Goldview 染液、胶回收试剂盒;电泳仪、恒温水浴锅、EP 管、移液枪、灭菌枪头、紫外检测仪 三、实验步骤 1)PCR 产物双酶切(NotI ,EcoRI ),pPI9K 质粒双酶切(NotI ,EcoRI );PCR 体系如下: 2)然后电泳检测后在紫外检测仪下观察(UV ,260nm )。 3)切胶回收(尽量不要切到不含目的片段的胶),按照胶回收试剂盒标准操作。 4)回收产物电泳检测后进行连接: 连接体系: 10×T4连接Buffer 1μl 目的基因 6μl 质粒载体 2μl 产物酶切体系 pPI9K 质粒酶切体系 DDW 4.6μl DDW 7μl 10×H Buffer 1μl 10×H Buffer 1μl 目的片段 4μl pPI9K 质粒 1.6μl NotI quickcut 0.2μl NotI quickcut 0.2μl EcoRI quickcut 0.2μl(37℃15min) EcoRI quickcut 0.2μl(37 ℃15min)

酶切和连接5页

双酶切: 载体大小为3000bp左右,在SfiⅠ和BssHⅡ位点之间有370bp左右的片段存在。 我想通过SfiⅠ和BssHⅡ双酶切,将370bp的片段切掉,然后装入不同的片段。 我的酶切体系如下: 质粒(载体+老片段)1ul(约100ng) (NEBlack Eye SfiⅠ1ul (NEBlack Eye BssHⅡ1ul 10×buf 2.2ul 100×BSA 0.2ul 水14.8ul 总体积20ul 50度,2小时。切出了370bp左右的片段,回收载体。 然后取回收载体的1ul自连,铺平板,但是长出了300多个克隆。证明酶切不完全,怀疑有大量载体只是单酶切。50度3小时我试过,但是质粒有降解。酶量应该说是过量的。请问有什么办法可以酶切完全? 粘性连接 (一)外源DNA和质粒载体的连接反应 外源DNA片段和线状质粒载体的连接,也就是在双链DNA5’磷酸和相邻的3'羟基之间形成的新的共价链。如质粒载体的两条链都带5'磷酸,可生成4个新的磷酸二酯链。但如果质粒DNA已去磷酸化,则吸能形成2个新的磷酸二酯链。在这种情况下产生的两个杂交体分子带有2个单链切口,当杂本导入感受态细胞后可被修复。相邻的5'磷酸和3'羟基间磷酸二酯键的形成可在体外由两种不同的DNA连接酶催化,这两种酶就是大肠杆菌DNA连接酶和T4噬菌体DNA连接酶。实际上在有克隆用途中,T4噬菌体DNA连接酶都是首选的用酶。这是因为在下沉反应条件下,它就能有效地将平端DNA片段连接起来。 DNA一端与另一端的连接可认为是双分子反应,在标准条件下,其反应速度完全由互相匹配的DNA末端的浓度决定。不论末端位于同一DNA分子(分子内连接)还是位于不同分子(分子间连接),都是如此。现考虑一种简单的情况,即连接混合物中只含有一种DNA,也就是用可产生粘端的单个限制酶切割制备的磷酸化载体DNA。在瓜作用的底物。如果反应中DNA浓度低,则配对的两个末端同一DNA分子的机会较大(因为DNA分子的一个末端找到同一分子的另一末端的概率要高于找到不同DNA分子的末端的概率)。这

AFLP双酶切和连接方法探讨

植物保护2003年12月塑垫鲞蔓!塑!丛蔓!堕堕旦坚!型堕竺.200t!堕.!!。奠!:! M:Marker(北京鼎国生物技术公司)1:EcoRI(02pL)/M删I(02pL)2:EcoRI(O.3PL)/MseI(03止)3:67一『YJRI.(04£t1.)/MmI(0.4vL)4:F“,RI(0.5vL)/M∞I(05/LL)5:EcoRI(06pl。)/M.∞I(0.6pL)6:EcoRI(f)7fm)/MseL(07“L)7:EcoRI(O8¨L)/M,el(08gL)8:EcoRI(O9vL)/MseI(09tzL) 圄1小麦基因组DNA不同酶切用量的酶切效果 从图1可看出,5泳道的EcoRI(0.6"L)和Msel(0、6“L)的酶切效果比较理想,基因组100~l800bp问的DNA片段都有出现。EvoRI和MseI两种酶用量各为0.2uL时酶切DNA片段为700~I800bp之间,各Hj0.3“L的酶切片段在500~一I800bp之间,各用0.4“L的酶切片段在400~1800bp之间,各用0.5"L的酶切片段在250~1800bp之间。由此可见,由于限制性内切酶』甘量太少,酶切不完全,基因组多态性不丰富。在6、7、8泳道则酶用量太多,既造成浪费,也容易出现酶切过头现象,产生许多低于100bp的DNA片段,导致接头连接不上,PCR反应失败的结果。6、7、8泳道的两种酶总用量分别是1.4、1.6、1.8HL,都接近或超过总反应体系15止的l/10(1,5止)。显而易见,一般两种酶的总量不能超过反应体积的l/10。2限制性内切酶的缓冲液选择 在双酶切过程中,如果两种酶反应温度一致而缓冲液不同时,可查阅内切酶供应商提供的各种酶在不同缓冲液中的话力表。如果一种缓冲液能同时使两种酶的活力都超过70%,便可用这种缓冲液作为反应缓冲液。如果两种酶厂家不同,可比较其缓冲液成份,倘若相似,可各取一半中和,也可使用通用缓冲液。例如,作者在进行小麦抗锈基因的AFLP标记研究中,选用E∞Rl(上海生工)和MseI(纽英伦生物有限公司)两种限制性内切酶,分别查阅并比较了卜述公司的酶在不同缓冲液中的活力表,确定用BufferY+/TANGO…(表1)。 从表1可见,EcoRI和M”I两种酶在2倍Buffery+/TANCr)TM中括力均为100%,而且没有过度消化现象。因而选用2倍液Buffery+门"ANGO"‘” 寰1限制性内切酶EcoR[和MseI在苇同缓冲液中韵酶活力情况 1)HufferB+(蓝)Ⅲ10IIml/LTrisHCI(pH75)。10mmol/LMgCl2,0.1mg/mLBSA;2)BufferG+(绿):10mmo]/I,TrisHCI(pH75).10mmol/LMgCl2,50mmo]/I。NaCI,0.1mg/mLBSA;3)BufferO+(橘):10mmo[/LTris—HCI(pH75)?10nmaol/LMgCIz,100mmo[/l—N《1.01mg/ml。BSA;4)BufferR’(红):iommol/LTrisHCI(pH85),10mmol/LMgClz,100mmolA—NaC[。01mg/mLBSA;5)BuHe“+,l'ANGOⅢ:33mmol/LTris8cetate(pH79),10mmol/I,Mgaeetste,66mmol/LKReState,01rag/mLFKqA。 作为2种内切酶的通用缓冲液。 3酶切时间 酶切时间是双酶切时较易忽略的问题,但却是酶切成败的关键。酶切时问过长,许多酶可能出现新的活性,就不能在原定的酶切位点切割,使接头连接不上,PCR反应无结暴。在作琼脂糖检测时,Marker100bp条带下方出现一片弥散,很可能就是酶切时间太长所致。因为AFLP经过PCR反应扩增出的产物主要在1000bp左右,范围可在100~1500bp之间,小于100bp的小分了量片段,接头可能连接不r。这是引起PCR扩增不出结果的原因之一。酶切时间太短,酶坷J不完全,酶切片段就不能覆盖整个基因组,影响PCR扩增的多态性。 一般来讲,酶切时间长短与酶的性质有关,具体

酶切

DNA的酶切实验 采用粘末端连接必须对目的DNA分子和载体分子进行酶切以获得相应的粘末端进行连接。酶切可以是单酶切也可以是双酶切。单酶切操作比较简单,但双酶切如果两种酶所用缓冲液成分不同(主要是盐离子浓度不同)或反应温度不同,这时可以采用如下措施解决:1)先用一种酶切,然后乙醇沉淀回收DNA分子后再用另外一种酶切;2)先进行低盐要求的酶酶切,然后添加盐离子浓度到高盐的酶反应要求,加入第二种酶进行酶切;3)使用通用缓冲液进行双酶切。具体要根据酶的反应要求进行,尽量避免星号活力。一材料、试剂和仪器: 1 材料:质粒DNA 2 试剂:限制性内切酶、ddH2O 3 仪器:微量移液枪,离心机,水浴锅,电泳仪,紫外透射观测仪 实验程序: I. .单酶切: II. 双酶切: 注:酶切的选择原则一般是尽量扩大酶切体系,这样抑制因素得以稀释;基因组DNA或质粒DNA酶的用量较一般DNA大,一般为1μg/10U;所加酶的体积不能超过酶切总体积的1/10,否则甘油浓度会超过5%,会产生星号活力;对难切的质粒或基因组DNA应延长反应时间4—5hr, 甚至过夜。灭火限制性内切酶活性可以采用加热灭活,乙醇沉淀,酚/氯仿抽提,添加EDTA或SDS等方法,具体每一种酶可能有些方法不能完全灭活,这一点需要注意。 二. 结果与分析: 假若一种酶在环状质粒DNA中只有一个酶切位点, 且酶切彻底,紫外灯下检测电泳结果, 则单酶切应为一条带, 而双酶切则为两条带。如果条带数目多于理论值,那么有可能是酶切不完全。如果酶切结果与酶切前的质粒条带一样(超螺旋、线性和开环三条带),则说明质粒完全没有被切开。 图4 重组质粒HindIII XbaI双酶切琼脂糖凝胶电泳分析

实验2 酶切 片段回收和连接

酶切、片段回收与连接 黄华如 (生命科学学院,生技091,29号) 摘要:实验用bt2质粒和pet质粒做酶切材料,回收目的片段,经连接后,转入以氯化钙罚制备的大肠杆菌感受态细胞中,并让转化大肠杆菌在含有抗生素培养基上生长,最后用长出来的大肠杆菌做验证PCR。本次试验中,质粒经过双酶切后,可以清晰的看到目的条带,转化后的大肠杆菌也可以在含有抗生素培养基中长出来,但是最后的验证PCR验证在培养基上生长的是假阳性大肠杆菌。说明了实验中目的基因没有成功转入大肠杆菌。 关键词:重组;酶切;连接;转化;片段回收 基因文库的建立为重组DNA研究工作提供了方便的、有意义的基因。构建基因文库的意义不只是使生物的遗传信息以稳定的重组体形式贮存起来,更重要的是它是分离克隆目的基因的主要途径。对于复杂的染色体DNA分子来说,单个基因所占比例十分微小,要想从庞大的基因组中将其分离出来,一般需要先进行扩增,所以需要构建基因文库。 基因工程(gene engineering)是20世纪70年代以后兴起的一门新技术,即用人工的方法,把遗传物质DNA分离出来,在体外进行基因切割、连接、重组,然后再转移到生物体内并进行表达的技术。基因工程中的关键一步是将目的基因与DNA载体连接成重组DNA,获得重组子,并把重组子筛选出来。近年来,建立了许多方法来筛选重组子,其中较为常用的是利用a互补原理,根据菌落的蓝白颜色进行筛选1oL一互补是指E.coli B一半乳糖苷酶的两个无活性片段(N端片段和c端片段)组合而成为功能完整的酶的过程。现在使用的许多质粒载体都带有一个E.coli DNA的短片段,其中含有B.半乳糖苷酶N端146个氨基酸的编码信息及调控序列。在这个编码区中插入了一个多克隆位点,可在此处插入外源DNA 片段。这种类型的载体适用于可编码B.半乳糖苷酶c端部分的宿主细胞。尽管宿主和载体编码的两个片段都没有活性,但他们能够融合为具有酶活性的蛋白质,在含有底物X-gal的培养基中形成蓝色菌落。当外源DNA片段插入到质粒的多克隆位点后,导致N端片段丧失仪.互补能力,因此,带有重组质粒的宿主细胞将形成白色菌落[1]。 1 材料与设备 1.1 试供材料 大肠杆菌、质粒DNA 1.2 试剂准备 质粒DNA回收试剂盒、灭菌水、琼脂糖、BamHI、HindIII、T4连接酶、T4 Buffer、LB 固体培养基、等 1.3 实验设备及用具 高速冷冻离心机、液氮罐、恒温水浴锅、紫外分光光度计、制冰机、冰箱、移液枪、PH 计、冰盒、恒温培养箱、恒温振荡摇床、高压灭菌锅、恒温水浴锅等。 2 实验步骤 2.1 提取质粒DNA 这个步骤由老师完成 2.2 酶切

双酶切连接反应

【原创】双酶切连接反应之全攻略(原创) 双酶切连接反应之全攻略 前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了14个质粒。现就自己的体会,结合战友的宝贵经验,谈一下质粒重组的一些个人经验。 1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照: 双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。应用大体系,如100微升。 纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。我用的是TAKARA的纯化柱试剂盒 酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。 2、酶切、回收后的PCR产物与载体的连接 摩尔比的计算,很多人凭经验也可以。但对于初学者从头认真计算则非常有必要。回收的载体片段:回收的PCR产物片段=1:10,一般取前者,后者取。 pmol为单位的DNA转换为为μg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为μg,也可以直接用这个公式套.1pmol 1000bp DNA=μg,如载体是5380bp,则为 ××=μg。 测DNA浓度可以在专用机子上测,注意OD值,一般约另外,如果嫌麻烦,也可用MARKER进行估测,如MARKER2000,5微升的MARKER每个条带约50ng。 连接反应:TAKARA的连接酶上的说明写的过夜,而其对连接酶单位的定义为:在20 μl的连接反应体系中,6 μg的λDNA-Hind III的分解物在16℃下反应30分钟时,有90%以上的DNA片段被连接所需要的酶量定义为1个活性单位(U)。而它的浓度为350 U/μl ,所以完全够用。连接酶容易失活,注意低温操作,最好在冰上。时间3个小时足已。

双酶切编辑

双酶切编辑 做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解。为保险起见,一般连接3小时,16度;对含有AMP-RESISTENCE的质粒铺板时,注意加AMP 时的温度,温度过高,会使克隆株无法筛选出来。我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。铺板前后注意用吹风机吹干;对照的设立:为验证双酶切是否成功。 目录1简介 2连接反应 3注意事项 1简介编辑双酶切反应(Double Digests) 1、同步双酶切 同步双酶切是一种省时省力的常用方法。选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。NEBuffer 的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。由于内切酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。 2、分步酶切 如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。 3、使用配有特殊缓冲液的酶进行双酶切(图) 使用配有特殊缓冲液的酶进行双酶切也不复杂。在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。这保证了对缓冲液有特殊要求的酶也能良好工作。由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。 双酶切建议缓冲液 注: 只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。BSA不会影响任何内切酶的活性。 注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。可通过增加反应体系的总体积的方法实现这一要求。 某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。上表中这些组合以“seq”标注。 2连接反应编辑1、回收PCR产物: 在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。选好酶切位点后,在各个酶的两边加上保护碱基。 双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。应用大体系,如100微升。 纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基

双酶切(1)

③双酶切处理目的片段和带有GFP的质粒并纯化 一、实验原理 1. 核酸限制性内切酶是在原核生物中发现的一类专一识别双链DNA中特定 碱基序列的核酸水解酶,他们的功能类似动物的免疫系统,用于抗击外来DNA的侵袭。现已发现几百种限制性内切酶,他们以内切方式水解核酸链中的磷酸二酯键,产生的DNA片段5’端为P,3’端为OH,由于限制性内切酶能识别DNA特异序列并进行切割,因而在基因重组、DNA序列分析、基因组甲基化分析、基因物理图谱绘制及分子克隆等技术上受到广泛应用。在酶切反应中,DNA的纯度、缓冲液中的离子强度、Mg2+等因素均可影响反应,一般可通过增加酶的用量,延长反应时间等措施以达到完全酶切。 2.DNA的酶切反应 II型限制性内切酶能识别双链DNA内部的特殊序列并在识别位点处将双链切断,形成粘性末端或齐平末端,通过电用酶切后的DNA混合物能够确认和分离酶切片段。 3.DNA的连接 在T4 DNA连接酶的作用下,平端或带有相同粘末端的DNA分子可以连接上。DNA连接酶的作分三步: ①T4 DNA连接酶与辅助因子ATP形成酶-AMP复合物。 ②酶-AMP复合物再结合到具有5’-磷酸基和3’-羟基切口的DNA分子上,使DNA腺苷 化 ③产生一个新的磷酸二酯键,把缺口封起来。 二、实验器材与处理方法(参照) 1、限制性内切酶酶BUFFER GFP质粒 2、T4 DNA连接酶连接酶缓冲液 3、电泳缓冲液(0.5×TBE或1×TAE)10×电泳加样缓冲液 4、溴酚蓝琼脂糖溴化乙锭(工作浓度0.5ug/ml)EcoR I 5、酚氯仿无水乙醇70%乙醇灭菌双蒸水 6、1.5ml离心管装入铝制饭盒(灭菌)、移液器吸头装入相应的吸头盒(灭 菌)电泳仪电泳槽紫外检测仪摄影设备 7、恒温水浴槽 三、实验步骤 先将步骤②扩增的目的片段进行纯化(柱层析或电泳割胶法) 1.酶切反应(按情况加大反应体系) 取GFP质粒(DNA)样品于合适的离心管中,按照表1加入试剂 ↓ 混匀;4000rpm离心30s,甩至管底 ↓ 37℃(限制性内切酶最适水温),保温1~3h酶切(酶切过夜则建议用稍大的酶切体积,以避免水分蒸发过多酶切体系各组分浓度改变过大,记得根据不同酶切位点加保护碱基)

双酶切连接反应之全攻略(

原创】双酶切连接反应之全攻略(原创) 转自医学教育网的一篇贴子,很精彩,希望大家有做到的一定仔细看看,也添加了一些自己的体验。希望大家继续补充 双酶切连接反应之全攻略 前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了 14个质粒。现就自己的体会,结合战友的宝贵经验,谈一下质粒重组的一些个人经验。 1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照: https://www.sodocs.net/doc/f58303987.html,/upload/2006/08/13/31219184.pdf。 双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。应用大体系,如100微升。 纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。我用的是TAKARA 的纯化柱试剂盒 酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml 菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。 2、酶切、回收后的PCR产物与载体的连接 摩尔比的计算,很多人凭经验也可以。但对于初学者从头认真计算则非常有必要。回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。 pmol为单位的DNA转换为为μg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为μg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为 0.03×5.38×0.66=0.106524μg。 测DNA浓度可以在专用机子上测,注意OD值,一般约1.8-2.0.另外,如果嫌麻烦,也可用MARKER进行估测,如MARKER2000,5微升的 MARKER每个条带约50ng。 连接反应:TAKARA的连接酶上的说明写的过夜,而其对连接酶单位的定义为:在20 μl 的连接反应体系中,6 μg的λDNA-Hind III的分解物在16℃下反应30分钟时,有90%以上的DNA片段被连接所需要的酶量定义为1个活性单位(U)。而它的浓度为350 U/μl ,所以完全够用。连接酶容易失活,注意低温操作,最好在冰上。时间3个小时足已。 3、转化: a、全量(10 μl)加入至100 μl JM109感受态细胞中,冰中放置30分钟。 b、42℃加热45秒钟后,再在冰中放置1分钟。 c、加入890 μl AMP阴性培养基,37℃振荡培养60分钟。 取100μl铺板。也可离心后余100μl 几个非常重要的问题

酶切连接经验之谈

酶切 本实验室条件下酶切连接经验之谈 1、PCR产物可以切胶回收后酶切,用Elution buffer溶解即可,不影响后续实验。 2、50ulPCR产物切胶回收后用35ul Elution buffer溶解后只需取一半体积用于后续实验即可 满足要求。 3、PCR产物可以用乙醇沉淀法获得DNA用于后续反应,但需取少于一半的量用于后续实验, 否则会不能完全切开而导致实验失败。 4、双酶切时,若2种酶不是同一厂家时,可以根据Thermo厂家该2种酶的共同buffer, 选用Tango缓冲液,一般50ul体系各加1ul酶,而快切酶只需0.5ul,切3小时即可。 5、添加酶切试剂时,应先将buffer和样品振荡均匀后再加入相应的酶,轻弹混匀即可。 6、观察酶切后的载体片段会比质粒大很多,PCR产物双酶切后的片段也比未酶切时要大, 并且酶切后产物有时会呈现稍微弥散的宽带,由此可以判断是否切开。 7、部分限制性内切酶对甲基化的DNA不能切割,如FbaI和MboI等,一般生物公司提供的内切酶说明中均有说明。 大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。 而要解除这种限制修饰作用通常有两种方法: (1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响; (2)利用甲基化酶缺失的受体细胞进行DNA的制备,如E.coli JM110和链霉菌等,前者Dam和Dcm甲基化酶已敲出,而后者细胞内本就没有甲基化酶,从这些细胞中抽提的DNA就能被上述酶切割。 8:E.coli JM110 要排除dam,dcm甲基化的影响,需要用特定的dam-,dcm-的菌株,如JM110 如果由JM110或SCS110等甲基化缺失的菌株产生的质粒,则不会被甲基化. 若酶切不成功可以考虑以下因素的影响 a)有些内切酶对PCR产物酶切效率较低 b)双酶切无共同buffer时,可以采用分步酶切 c)PCR产物直接双酶切不成功,可以选择先做TA克隆后再双酶切 d)当载体的2个酶切位点很接近,或者其中一个酶切效率很差时,可以对载体进行去磷酸 化,该酶为牛小肠碱性磷酸酶,在大多数限制酶缓冲液中均有活性 e)导致“星星活性”可能是体系中甘油浓度过高、高PH、较低的离子强度所致。 连接 1、一定要选择未经过反复冻融的连接buffer,并准确加入,确保其终浓度准确。 2、目的片段和载体比例不是影响连接成功与否的关键原因,依据经验,取相等质量的的目 的片段和载体即可,载体可以尽量少加一点。3ug 载体(5kb)相当于2pmol 线性DNA 或者4pmol双酶切产物。 3、多个片段连接时,体系中,终浓度的各个片段与载体相同即可。

双酶切连接反应的注意要点

双酶切连接反应的注意要点 双酶切: 1、在双酶切载体时如果2个酶切位点靠得很近,必须注意酶切顺序。因为有的限制性内切酶要求其识别序列的两端至少保留有若干个碱基才能保证酶的有效切割。有的酶要求识别序列两端有多个碱基的,则必须先切,否则就可能造成酶切失败。 2、回收PCR产物:回收的PCR产物片段=1:10,一般取前者0.03pmol,后者取0.3pmol。pmol为单位的DNA转换为为?g单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为?g,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524?g。 3、双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,一般酶切3个小时,对于PCR产物,可以过夜酶切,效果会很好。酶切体系不宜过大,会影响质粒和酶的碰撞机会,效果降低;质粒量不应该超过酶切要求的最大量,否则酶切不完全,酶的用量控制在1U酶在15-20ul体系中酶解1ugDNA。 4、两种酶切的条件不同时,分别进行两次酶切,切完一个纯化后再切:温度要求不同,先酶切低温要求的,再酶切高温要求的;若盐浓度要求不同,先酶切低盐浓度要求的,再酶切高盐浓度要求的。 5、若质粒是在TE中保存的,TE 中的EDTA可能与酶的激活因子螯合,影响酶切效果,可放大酶切体积或重新浓缩质粒。 6、限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。选好酶切位点后,在各个酶的两边加上保护碱基。 7、纯化问题:纯化PCR产物割胶还是柱式,推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。 8、酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml 菌液提出的DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。 9、酶切、回收后的PCR产物与载体的连接:摩尔比的计算,很多人凭经验也可以。但对于初学者从头认真计算则非常有必要。回收的载体片段:回收的PCR产物片段=1:10,一般取前者0.03pmol,后者取0.3pmol。pmol为单位的DNA转换为为?g单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为?g,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol 为0.03×5.38×0.66=0.106524?g。测DNA浓度可以在专用机子上测,注意OD值,一般约1.8-2.0.另外,如果嫌麻烦,也可用MARKER进行估测,如MARKER2000,5微升的MARKER 每个条带约50ng。 10、连接反应:TAKARA的连接酶上的说明写的过夜,而其对连接酶单位的定义为:在20 μl的连接反应体系中,6 μg的λDNA-Hind III的分解物在16℃下反应30分钟时,有90%以上的DNA片段被连接所需要的酶量定义为1个活性单位(U)。而它的浓度为350 U/μl ,所以完全够用。连接酶容易失活,注意低温操作,最好在冰上。时间3个小时足已。

DNA的酶切与连接(一)

实验七DNA的酶切与连接(一) 一、实验目的 1.掌握限制性内切酶的特性和酶切的目的和原理 2.掌握限制性内切酶酶解体系的建立及酶切样品的检测 2.掌握PCR试剂盒回收PCR酶切样品的方法 二、实验原理 1.通过DNA重组技术构建DNA重组子 利用限制性核酸内切酶切割DNA和利用DNA连接酶连接DNA是DNA重组过程中的关键步骤之一。成功的酶切和有效的连接为后续的外源基因进入宿主细胞进行表达提供了有效的实验材料。 2.酶切 限制性内切酶能特异性地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异性位点上,并切割双链DNA。根据限制酶的识别切割特性、催化条件及是否有修饰酶活性,可分为I型、II型和III型三类。DNA重组技术中最常用的是II型酶,切割后得到的是带粘性末端或平末端的线性DNA。 II型酶的主要特点是识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、8个、9个、10个和11个核苷酸的。在分子克隆实验中使用最普遍的是那些识别4个或6个碱基对的限制性内切酶。II 型限制性内切酶的识别顺序是一个回文对称顺序,即有一个中心对称轴,从这个轴朝两个方向“读”都完全相同。这种酶的切割可以有两种方式:粘性末端和平头末端。

限制性内切酶的活性以酶的活性单位表示,一个酶单位(1Unit)指的是在指定缓冲液中,37度下反应60min,完全酶切1ug的纯DNA所用的酶量。 三、材料、试剂及器具 1.材料与试剂 酶切反应:质粒pGEX-4T-2 EcoRI Xhol 酶切缓冲液 DNA回收:PCR回收试剂盒 检测:1X TAE电泳缓冲液 Gel Red 琼脂糖 2.仪器 电泳仪,离心机,移液枪,Hema凝胶成像仪 三、实验步骤 1.质粒DNA酶切 ①在PCR管中,按照下表加入试剂(单位:ul) EcoRI1 保温2h进行酶切反应。 ③反应结束后,65度保温20min使酶失活。 2.酶切产物的回收 a)将PCR反应产物或其它酶促反应物移入1.5ml离心管中。 b)将PCR反应产物体积的2倍加入DNA binding buffer。(每次加入的DNA binding buffer最大体积不宜超过200ul) c)将混合液全部转移到Spin column中。 d)于6000g离心1分钟,并弃去接液管内液体。 e)向Spin colomn内加650ul wash buffer,于12000g离心30~60秒,并弃去接 液管内液体。 f)重复第5步一次。 g)再次于12000g离心1分钟,然后将spin column转移到无菌的1.5ml离心管 中。(如不进行该步离心,则无法保证离心柱内残夜被彻底清除)。 h)向spin column内加25ul Elution buffer,并于室温静置1分钟。 i)于12000g离心1分钟,1.5ml离心管内溶液中含有目的的DNA片段。 j)提取的DNA可直接用于各类下游分子生物学实验,如不立即使用,请保存于-20度。

相关主题