搜档网
当前位置:搜档网 › 高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题
高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用

1.基本不等式:ab ≤a +b

2

(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式

(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤?

????a +b 22

(a ,b ∈R ); (4)a 2+b 22≥?

????a +b 22

(a ,b ∈R ). 3.算术平均数与几何平均数

设a >0,b >0,则a ,b 的算术平均数为a +b

2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则

(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 2

4.(简记:和定积最大) 一个技巧

运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤?

????a +b 22

(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形

(1)a 2+b 22≥?

????a +b 22

≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2)

a 2+

b 22≥a +b 2≥ab ≥2

1a +1b

(a >0,b >0,当且仅当a =b 时取等号).

这两个不等式链用处很大,注意掌握它们. 三个注意

(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.

(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.

(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.

应用一:求最值 例1:求下列函数的值域

(1)y =3x 2+

1

2x 2 (2)y =x +1

x

解题技巧: 技巧一:凑项 例1:已知5

4x <,求函数14245

y x x =-+-的最大值。

技巧二:凑系数 例1. 当

时,求(82)y x x =-的最大值。

技巧三: 分离

例3. 求2710

(1)1

x x y x x ++=

>-+的值域。 。

技巧四:换元

技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a

f x x x

=+的单调性。例:求函数22

54

x y x +=

+的值域。

练习.求下列函数的最小值,并求取得最小值时,x 的值.

(1)231

,(0)x x y x x

++=

> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数(1)y x x =-的最大值.;3.2

03

x <<

,求函数(23)y x x =-的最大值.

条件求最值

1.若实数满足2=+b a ,则b

a 33+的最小值是 .

变式:若44log log 2x y +=,求11

x y

+的最小值.并求x ,y 的值

技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且

19

1x y

+=,求x y +的最小值。 变式: (1)若+

∈R y x ,且12=+

y x ,求y

x

11+的最小值

(2)已知+

∈R y x b a ,,,且1=+y

b x a ,求y x

+的最小值

技巧七、已知x ,y 为正实数,且x 2+

y 2

2

=1,求x

1+y 2 的最大值.

技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =

1

ab

的最小值.

技巧九、取平方

5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.

应用二:利用基本不等式证明不等式

1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a

++>++222

1)正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc 例6:已知a 、b 、c R +

∈,且1a b c ++=。求证:1111118a b c ??????---≥ ???????????

应用三:基本不等式与恒成立问题 例:已知0,0x y >>且

19

1x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

应用四:均值定理在比较大小中的应用: 例:若)2

lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=

?=>>,则R Q P ,,的大小关系是 .

解:(1)y =3x 2+

1

2x 2

≥2

3x 2·

1

2x 2

= 6 ∴值域为[ 6 ,+∞)

(2)当x >0时,y =x +1

x

≥2

x ·1

x

=2; 当x <0时, y =x +1x = -(- x -1

x )≤-2

x ·1

x

=-2 ∴值域为(-∞,-2]∪[2,+∞)

解:因450x -<,所以首先要“调整”符号,又1

(42)

45

x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1

5454x x

-=

-,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 解析:由

知,

,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子

积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。 解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

,即

时,4

21)591

y x x ≥+?

+=+((当且仅当x =1时取“=”号) 解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

当,即t =时,4

259y t t

≥?+=(当t =2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)()

A

y mg x B A B g x =+

+>>,g (x )恒正或恒负的形式,然后运用基本不等式来求最值。 解:令24(2)x t t +=≥,则2

254

x y x +=+221

1

4(2)4x t t t x =

++

=+≥+

因1

0,1t t t >?=,但1t t

=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。 因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52

y ≥。 所以,所求函数的值域为5,2??+∞????

分析:“和”到“积”是一个缩小的过程,而且b

a

33?定值,因此考虑利用均值定理求最小值, 解: b a 33和都是正数,b

a 33+≥632332==?+

b a b a

当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b

a 33+的最小值是6.

错解..

:0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ??+=++≥= ???

故 ()min 12x y += 。 错因:解法中两次连用基本不等式,在2x y xy +≥等号成立条件是x y =,在1992x

y

xy

+≥等号成立

条件是

19

x y

=即9y x =,取等号的条件的不一致,产生错误。因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。 正解:

19

0,0,1x y x y >>+=,()1991061016y x x y x y x y x y

??∴+=++=++≥+= ???

当且仅当

9y x

x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

分析:因条件和结论分别是二次和一次,故采用公式ab ≤

a 2+

b 2

2

同时还应化简1+y 2 中y 2前面的系数为 1

2 , x

1+y 2 =x 2·1+y 2

2

2 x ·12

y 2

2

下面将x ,12

y 2

2

分别看成两个因式:

x ·

12 +y 2

2 ≤x 2+(

12 +y 2

2 )22

x 2+y 22 +1

2

2

=3

4

即x

1+y 2 = 2 ·x

12

y 2

2

3

4

2

分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30b

b +1

由a >0得,0<b <15

令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16

t

≥2

t ·16

t

=8

∴ ab ≤18 ∴ y ≥

1

18

当且仅当t =4,即b =3,a =6时,等号成立。 法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥2

2 ab

令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2

ab ≤3 2 ,ab ≤18,∴y ≥

1

18 点评:①本题考查不等式

ab b

a ≥+2

)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式

ab b

a ≥+2

)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

解法一:若利用算术平均与平方平均之间的不等关系,

a +b

2

a 2+

b 2

2

,本题很简单

3x +2y ≤ 2 (3x )2+(2y )2 = 2 3x +2y =2 5

解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。

W >0,W 2=3x +2y +23x ·

2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20

∴ W ≤

20 =2

5

变式: 求函数152152()2

2

y x x x =-+-<<的最大值。

解析:注意到21x -与52x -的和为定值。

22(2152)42(21)(52)4(21)(52)8y x x x x x x =-+-=+--≤+-+-=

又0y >,所以022y <≤ 当且仅当21x -=52x -,即3

2

x =

时取等号。 故max 22y =。 评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。

总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。

分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又

1121a b c bc a a a a

-+-==≥,可由此变形入手。 解:a 、b 、c R +

∈,1a b c ++=。∴

1121a b c bc a a a a -+-==≥

。同理121ac b b -≥,121ab

c c

-≥。上述三个不等式两边均为正,分别相乘,得

1112221118bc ac ab a b c a b c ??????---≥= ???????????

。当且仅当13a b c ===时取等号。 解:令,0,0,

x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x

k kx ky

∴++= 103

12k k

∴-

≥? 。16k ∴≥ ,(],16m ∈-∞ 分析:∵1>>b a ∴0lg ,0lg >>b a

2

1

=

Q (p b a b a =?>+lg lg )lg lg Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R >Q >P 。

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+(2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 特别说明:以上不等式中,当且仅当b a =时取“=” 5、常用结论 (1)若0x >,则1 2x x +≥(当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤-(当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥b a 112 + 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2 2 2 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ?????? ---≥ ??????????? 6、选修4—5:不等式选讲

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

基本不等式知识点归纳.doc

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、 同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0).

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式

1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ); 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥+; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小)

高中数学不等式练习题(供参考)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B )a b <1 (C )lg(a -b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1+a ≥2 (a ≠0) (C )a 1<b 1(a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11)(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21, g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

一元一次不等式知识点总结

四、列一元一次方程解应用题的步骤有: 1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。 2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。 3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。 4、列方程:根据等量关系列出方程。列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。 5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。 6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。 7、作答:正确回答题中的问题。 五、常见的一元一次方程应用题: 1、和差倍分问题: (1)增长量=原有量×增长率; (2)现在量=原有量+增长量 2、等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。 (1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h (2)长方开的面积 周长=2×(长+宽) S=长×宽 3、数字问题: 一般可设个位数字为a ,十位数字为b ,百位数字为c 。 十位数可表示为10b+a , 百位数可表示为100c+10b+a 。 然后抓住数字间或新数、原数之间的关系找等量关系列方程。 4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” ) (1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价 ×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量 (5)商品的销售利润=(销售价-成本价)×销售量 (6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。或者用标价打x 折: 折后价(售价)=标价×10 x 计算。 5、行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 6、工程问题: (1)工作总量=工作效率×工作时间; 工作效率=工作总量÷工作时间 (2)完成某项任务的各工作总量的和=总工作量=1 (3)各组合作工作效率=各组工作效率之和 (4)全部工作总量之和=各组工作总量之和

基本不等式知识点归纳教学内容

基本不等式知识点归 纳

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得 等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R +∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+>、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ;

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

不等式知识点总结

期末复习之不等式知识点 2 3 1) (x – 2)(ax – 2)>0 (2)x2–(a+a2)x+a3>0; (3)2x2 +ax +2 > 0; 注: 解形如ax2+bx+c>0的不等式时分类讨论的标准有: 1、讨论a与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小;运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想(4)含参不等式恒成立的问题: 例1.已知关于x的不等式 在(–2,0)上恒成立,求实数a的取值范围. ? ? ? ?? ? ? ? ? ? ≠ ≤ ? ? ≤ > ? ? > )x(g )x(g )x(f )x(g )x(f )x(g )x(f )x(g )x(f 22 (3)210 x a x a +-+-< ? ? ? ? ? 用图象 分离参数后用最值 函数 、 、 、 3 2 1

例2.关于x 的不等式 对所有实数x ∈R 都成立,求a 的取值范围. 4 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数的最大值或最小值。 5 (1),a b R ∈?222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈?2 a b +≥当且仅当a =b 时取“=”号). (3),a b R +∈?22a b ab +??≤ ??? (当且仅当a =b 时取“=”号). 总结:已知y x ,都是正数,则有 (1)如果积xy 是定值p ,那么当且仅当y x =时和y x +有最小值p 2; (2)如果和y x +是定值s ,那么当且仅当y x =时积xy 有最大值24 1s . (3)用均值不等式求最值时,若不正,则要加负号,若不定,则要凑定值,若不等,则求导考虑单调性。 )1(log 22++-=ax ax y y z x =z ax by =+22y x z +=

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x