搜档网
当前位置:搜档网 › 高中数学椭圆中的常见最值问题

高中数学椭圆中的常见最值问题

高中数学椭圆中的常见最值问题
高中数学椭圆中的常见最值问题

椭圆中的常见最值问题

1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。

例1、椭圆19

252

2=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的

最大值时,P 点的坐标是 。P (0,3)或(0,-3)

例2、已知椭圆方程122

22=+b

y a x (222,0c b a b a +=>>)p 为椭圆上一点,

21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。

分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤

当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤

2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。

例3、已知)1,1(A ,1F 、2F 是椭圆15

92

2=+y x 的左右焦点,P 为椭圆上一动

点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。||||2PF PA -的最小值是 ,此时P 点坐标为 。

3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。

例4、已知)1,1(A ,1F 是椭圆15

92

2=+y x 的左焦点,P 为椭圆上一动点,则

||||1PF PA +的最小值是 ,此时P 点坐标为 。||||1PF PA +的最大

值是 ,此时P 点坐标为 。

分析:||||||||||2121AF PF PF PF PA ++≤+,当P 是2AF 的延长线与椭圆的交点时取等号。||||||||||2121AF PF PF PF PA -+≥+,当P 是2AF 的反向延长线与椭圆的交点时取等号。

4、椭圆上的点P 到定点A 的距离与它到椭圆的一个焦点F 的距离的e

1倍的和||1

||PF e

PA +的最小值(e 为椭圆的离心率),可通过

e d

PF =|

|转化为d PA +||(d 为P 到相应准线的距离)最小值,取得最小值的点是A 到准线的垂线与椭圆的交点。

例5、已知定点)3,2(-A ,点F 为椭圆112

162

2=+y x 的右焦点,点M 在该椭圆

上移动,求||2||MF AM +的最小值,并求此时M 点的坐标。

例6、已知点椭圆19

252

2=+y x 及点)0,3(),2,2(-B A ,),(y x P 为椭圆上一个动点,

则||5||3PB PA +的最小值是 。

5、以过椭圆中心的弦的端点及椭圆的某一焦点构成面积最大的三角形是短轴的端点与该焦点构成的三角形。

例7、过椭圆122

22=+b

y a x (222,0c b a b a +=>>)的中心的直线交椭圆于B

A ,两点,右焦点)0,(2c F ,则2ABF ?的最大面积是 。

例8、已知F 是椭圆22525922=+y x 的一个焦点,PQ 是过原点的一条弦,求PQF ?面积的最大值。

6、椭圆上的点与椭圆二焦点为顶点的面积最大的三角形是椭圆的短轴的一个端点与椭圆二焦点为顶点的三角形。

例9、P 为椭圆122

22=+b y a x (222,0c b a b a +=>>)一点,左、右焦点为

)0,(1c F -)0,(2c F ,则21F PF ?的最大面积是 。

7、椭圆上的点与椭圆长轴的端点为顶点的面积最大的三角形是短轴的一个端点和长轴两个端点为顶点的三角形。

例10、已知A 是椭圆22525922=+y x 的长轴一个端点,PQ 是过原点的一条弦,求A PQ ?面积的最大值。

8、椭圆上的点到坐标轴上的定点的距离最大值、最小值问题可利用两点间的距离公式及椭圆方程联立化为求函数最值问题。

例11、设O 为坐标原点,F 是椭圆19

252

2=+y x 的右焦点,M 是OF 的中点,

P 为椭圆上任意一点,求||MP 的最大值和最小值。

例12、椭圆中心在原点,长轴在x 轴上,23=e ,已知点)2

3

,0(P 到这个椭圆上的最远距离是7,求椭圆方程。

9、椭圆的焦点到椭圆上的距离最近和最远点是椭圆长轴的两个端点。

ex a r +=1)|(|a x ≤为x 的增函数,ex a r -=2)|(|a x ≤为x 的减函数,a x ±=时,22,r r 分别取得最大值c a +和最小值c a -。

例13、椭圆19

252

2=+y x 上的点到右焦点的最大值 ,最小值 。

10、椭圆上的点到定直线的距离最近及最远点分别是与定直线平行的椭圆的两条切线的切点。

例14、已知椭圆8822=+y x ,在椭圆上求一点P ,是P 到直线04:=+-y x l 的距离最小,并求最小值。

11、椭圆上的点到与它的两个焦点连线的最大夹角是它的短轴的一个端点和二焦点的连线的夹角。范围大于等于00,小于它的短轴的一个端点和二焦点的连线的夹角。

分析:?=+a PF PF 2||||21||||21PF PF 2a ≤?

2

2

221222121222122221221||||22||||2||||244||||24||||cos a

c a PF PF c a PF PF PF PF c a PF PF c PF PF -≥--=--=-+=θ 等号成立的条件:a PF PF ==||||21,即P 点为短轴的端点。

例15、已知椭圆C :122

22=+b

y a x )0(>>b a ,两个焦点为22,F F ,如果C 上

有一点Q ,使021120=∠QF F ,求椭圆的离心率的取值范围。

例16、如图所示,从椭圆122

22=+b

y a x )0(>>b a 上一点M 向x 轴作垂线,恰

好通过椭圆的左焦点1F ,且它的长轴的端点A 短轴的端点B 的连线AB 平行于OM 。

(1)求椭圆的离心率

(2)设Q 为椭圆上任意一点,2F 为椭圆的右焦点,求21QF F ∠的范围。 (3)当AB QF ⊥2时,延长2QF 与椭圆交于另一点P ,若PQ F 1?的面积为

320,求此椭圆方程。

12、椭圆上的点与它长轴的两个端点的连线的最大夹角是它的短轴的一个端点和长轴的二端点的连线的夹角。范围为大于2

π

,小于它的短轴的一个端点和长轴的二端点的连线的夹角。

例17、已知椭圆C :122

22=+b

y a x )0(>>b a ,长轴的两个端点为A 、B ,如

果C 上有一点Q ,使0120=∠AQB ,求椭圆的离心率的取值范围。

13、点P 在椭圆上,ny mx u +=(n m ,为常数)的最大值或最小值分别是直线0=-+u ny mx 与椭圆相切时u 的值。

例18、已知点),(y x P 在125

1442

2=+y x 上的点,则y x u +=的取值范围是 。 14、点P 在椭圆上,n

x m

y u --=

(n m ,为常数)的最大值或最小值分别是直线m n x u y +-=)(与椭圆相切时的斜率。

例19、点),(y x P 在椭圆4)2(422=+-y x 上,则x

y

的最大值 ,最小值 。

例20、点),(y x P 在椭圆192522=+y x 上,则4

6

-+=y x t 的最大值 ,最小

值 。

15、x

b y x

a x y sin cos 00--=

的最大值或最小值是直线00)(y x x k y +-=与椭圆

??

?==θ

θ

sin cos b y a x 相切时切线的斜率。 例21、求x

x

y cos 24sin 3--=

的最大值、最小值

16、椭圆的平行弦、过定点弦等弦长最值问题及有关弦长的最值问题:

例22、求直线1+=kx y 被椭圆14

22

=+y x 所截得弦长的最大值。

例23、N M Q P ,,,四点均在椭圆上,椭圆方程为:12

22

=+x y ,F 为椭圆在y

轴正半轴的焦点,已知,共线,,共线,且021=?PF PF ,求

四边形PMQN 面积的最小值。

17、利用方程元的范围求有关最值问题:

例24、已知椭圆方程为1y 2

22

=+x ,求过点P (0,2)的直线交椭圆于不

同两点A 、B ,PB PA

λ=,求λ的取值范围。)

,(]33

1[∈λ 18、其它有关最值

例24、P 为椭圆:122

22=+b

y a x )0(>>b a 上一动点,若A 为长轴的一个端点,

B 为短轴的一个端点,当四边形OAPB 面积最大时,求P 点的坐标。

例25、已知椭圆13

122

2=+y x 和直线09:=+-y x l ,在l 上取一点M ,经过点

M 且以椭圆的焦点21,F F 为焦点作椭圆,当M 在何处时所作椭圆的长轴最短,

并求此椭圆方程。

例26、设椭圆122

22=+b

y a x )0(>>b a 的两个顶点为)0,(),,0(a B b A ,右焦点为F ,

且F 到直线AB 的距离等于它到原点的距离,求离心率的取值范围。

例27、已知椭圆C :)0(1

22

22>>=+b a b

y a x ,21,F F 为其左右焦点,P 为椭圆C 上一点,x PF ⊥2轴,且21F PF ∠的正切值为4

3

(1)求椭圆C 的离心率。

(2)过焦点2F 的直线l 与椭圆C 交于点N M 、,若MN F 1?面积的最大值为3,求椭圆C 的方程。

解:c x =代入)0(12222>>=+b a b

y a x 得:a b y 2

±=

又21F PF ∠的正切值为4

3

,所以),(2a b c P ,即432432222=-?=ac c a ac b

注意到10<<

a c ,所以2

1=a c (2)设),(),,(2211y x N y x M ,过焦点2F 的直线l 的方程为c my x +=,代入椭圆方程得:

096)43(134)(1)(2222

2222222

=-++?=++?=++c mcy y m c

y c c my b y a c my 4

39,4362

2

2122

1+-=+-=+m c y y m mc y y 2122121214)(|||)||(|22

1

1y y y y c y y c y y c S MN

F -+=-=+?=? 16249112)43(4464336)436(2

422

22222222+++=++=+++-=m m m c m m c m c m mc c 6

1

1

)1(91

121

)1(6)1(911222

2

22222

++++=+++++=m m c

m m m c

设1

1)1(92

2++

+=m m u ,12

+=m t ,则)1(19≥+=t t t u 由于)(t u 在),1[+∞上是增函数,所以10)1(=≥u u ,1=u 时取等号,

即0=m 时取等号,此时有22

36

101

121

c c S MN F =+≤?,又MN F 1?面积的最大值为3, ???==?=?=∴3

2

1332b a c c

故椭圆C 的方程为:

13

4

2

2

=+

y x

仰望天空时,什么都比你高,你会自卑;

俯视大地时,什么都比你低,你会自负;

只有放宽视野,把天空和大地尽收眼底,

才能在苍穹泛土之间找准你真正的位置。

无须自卑,不要自负,坚持自信。

用心工作,快乐生活!(工作好,才有好的生活!)

此文档可编辑,欢迎使用!

~~~专业文档,VIP专享。更多精彩文档,尽在Baidu文库~~~

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

高中数学公式大全(必备版)

高中数学公式大全(必备版) 高中数学公式大全(必备版) 篇一 篇二 篇三 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα

cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα

cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot;cot→tan(奇变偶不变),然后在前面加上把α看成锐

高中数学椭圆中的常见最值问题

椭圆中的常见最值问题 1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。 例1、椭圆19 252 2=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的 最大值时,P 点的坐标是 。P (0,3)或(0,-3) 例2、已知椭圆方程122 22=+b y a x (222,0c b a b a +=>>)p 为椭圆上一点, 21,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。 分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤ 当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤ 2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。 例3、已知)1,1(A ,1F 、2F 是椭圆15 92 2=+y x 的左右焦点,P 为椭圆上一动 点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。||||2PF PA -的最小值是 ,此时P 点坐标为 。 3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。 例4、已知)1,1(A ,1F 是椭圆15 92 2=+y x 的左焦点,P 为椭圆上一动点,则

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高中数学椭圆的焦点弦长公式的四种推导方法及其应用

椭圆的焦点弦长公式的四种推导方法及其应用 摘要 :直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即12 AB x -或 者12AB y -,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公式: 22222cos ab AB a c θ =-,如果记住公式,可以给我们解题带来方便. 下面我们用万能弦长公式,余弦定理,焦半径公式,仿射性四种方法来推导椭圆的焦点弦长公式,这几种方法涉及到很多思想,最后举例说明其应用. 解法一:根据弦长公式直接带入解决. 题:设椭圆方程为122 22=+b y a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭 圆于1122(,),(,)A x y B x y 两点,求弦长AB . 椭圆方程12222=+b y a x 可化为02 22222=-+b a y a x b ……①, 直线l 过右焦点,则可以假设直线为:x my c =+(斜率不存在即为0m =时),代入①得: 222222222()20b m a y mcb y b c a b +++-=,整理得,222224()20b m a y mcb y b ++-= ∴24 1212222222 2,mcb b y y y y b m a b m a +=-=-++, ∴ 12AB y -==∴()2 222 221ab AB m b m a =++ (1)若直线l 的倾斜角为θ,且不为90o ,则1 tan m θ = ,则有: ()222 2222 222 221111tan tan ab ab AB m b m a b a θθ ??=+=+ ?+??+, 由正切化为余弦,得到最后的焦点弦长公式为2 222 2cos ab AB a c θ =-……②. (2)若=90θo ,则0m =,带入()22 222 21ab AB m b m a =++,得通径长为22b a ,同样满足②式.并且由

高三数学必背公式总结

高三数学必背公式总结 高三数学必背公式总结汇总 一、对数函数 log.a(MN)=logaM+logN loga(M/N)=logaM-logaN logaM^n=nlogaM(n=R) logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1) 二、简单几何体的面积与体积 S直棱柱侧=c*h(底面周长乘以高) S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半) 设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h S圆柱侧=c*l S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l S圆锥侧=1/2*c*l=兀*r*l S球=4*兀*R^3 V柱体=S*h V锥体=(1/3)*S*h V球=(4/3)*兀*R^3 三、两直线的位置关系及距离公式 (1)数轴上两点间的距离公式|AB|=|x2-x1| (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式 |AB|=sqr[(x2-x1)^2+(y2-y1)^2] (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr (A^2+B^2) (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1- C2|/sqr(A^2+B^2) 同角三角函数的基本关系及诱导公式 sin(2*k*兀+a)=sin(a)

tan(2*兀+a)=tana sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana sin(兀+a)=-sina sin(兀-a)=sina cos(兀+a)=-cosa cos(兀-a)=-cosa tan(兀+a)=tana 四、二倍角公式及其变形使用 1、二倍角公式 sin2a=2*sina*cosa cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2 tan2a=(2*tana)/[1-(tana)^2] 2、二倍角公式的变形 (cosa)^2=(1+cos2a)/2 (sina)^2=(1-cos2a)/2 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina 五、正弦定理和余弦定理 正弦定理: a/sinA=b/sinB=c/sinC 余弦定理: a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosB c^2=a^2+b^2-2abcosC cosA=(b^2+c^2-a^2)/2bc cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-c^2)/2ab tan(兀-a)=-tana sin(兀/2+a)=cosa sin(兀/2-a)=cosa

与椭圆有关的最值问题

与椭圆有关的最值问题 圆锥曲线在高考中占很重要的地位,每年必考。对椭圆、双曲线、抛物线的研究方法基本相同,椭圆 为三曲线之首,对椭圆的学习就更为重要了。而椭圆中的最值问题是比较重要的课题,它主要体现了转化 思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式 等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。下面介绍几种常见 的与椭圆有关的最值问题的解决方法。 1 ?定义法 2 2 例1。P(-2, 3 ),F2为椭圆——=1的右焦点,点M 在椭圆上移动,求丨MP| + | MF 2 |的最大值 25 16 和最小值。 分析:欲求丨MP| + | MF 丨的最大值和最小值 可转化为距离差再求。由此想到椭圆第一定义 | MF | =2a- | MF | , F 1为椭圆的左焦点。 解:| MP| + | MF | = | MP| +2a- | MF | 连接 PR 延长 PF 1 交椭圆于点M 1,延长F 1P 交椭圆于点M 2由三角形三边关系知 -| PF |兰| MP| - | MF |兰| PR |当且仅当M 与M 1重合时取右等号、M 与M 2重合时取左等号。因为 2a=10, | PF 1 | =2所以(| MP| + | MF |) ma>=12, (| MP | + | MF | ) min =8 2 2 X y 结论1:设椭圆二 2 =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆内一点,M(x,y)为椭圆上任意 a b 一点,则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为2a - | PR |。 2 2 例 2: P(-2,6),F 2为椭圆— -L 25 16 M ,此点使| MP| + | MF |值最小,求最大值方法同例 1。 MF |连接PF 1并延长交椭圆于点 皿仆则M 在M 1处时| MP | - | MF I 取最大值| PF 1 |。二| MP | + | MF |最大值是10+ , 37,最小值是,41 2 2 x y 结论2:设椭圆一2 - =1的左右焦点分别为F 1、F 2, P(x o ,y o )为椭圆外一点,M(x,y)为椭圆上任意一点, a b 则| MP | + | MF |的最大值为 2a+ | PF 1 |,最小值为 PF ?。 2. 二次函数法 2 2 例3?求定点A(a,0)到椭圆务'£ =1上的点之间的最短距离。 a b 分析:在椭圆上任取一点,由两点间距离公式表示| PA |,转化为x,y 的函数,求最小值。 1 1 解:设 P(x,y)为椭圆上任意一点,| PA | 2=(x-a) 2+y 2 =(x-a) 2+1- x 2 = (x_ 2a)2+1d 由椭圆方 =1的右焦点,点 M 在椭圆上移动,求| MP | + | MF |的最大值和 最小值。 分析:点P 在椭圆外,PF 2交椭圆于 解:| MP | + | MH | = | MP | +2a- | M 1 M 2

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 2.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有 2n –2个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T =2a; 9.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1)n a =.(2)当n a =;当n 为偶数时 ,0 ||,0a a a a a ≥?==?-∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a ,

高考数学必背公式大全

高考数学必背公式大全 由于高中数学公式很多,同学们复习的时候不方便查阅,下面是我给大家带来的高考必背数学公式,希望能帮助到大家! 高考必背数学公式1 两角和公式 sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb ) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga ) 倍角公式 tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2 和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) 2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) 3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) 4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb 5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb 等差数列 1、等差数列的通项公式为: an=a1+(n-1)d(1) 2、前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学史上最全椭圆二级结论大全

最全椭圆二级结论大全 1.122PF PF a += 2.标准方程22 221x y a b += 3.11 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时 A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线 方程是 00221x x y y a b +=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111 (||,||)r OP r OQ r r a b +=+==.

高中数学必背公式

高中数学必背公式、常用结论 一.二次函数和一元二次方程、一元二次不等式 1. 二次函数 y ax 2 bx c 的图象的对称轴方程是 x b b 4a c b 2 ,顶点坐标是 2a , 。 2a 4a 2. 实系数一元二次方程 ax 2 bx c 0的解: ①若 b 2 4ac 0, 则 x 1,2 b b 2 4a c ; 2a ②若 b 2 4ac 0, 则 x 1 x 2 b ; 2a ③ 若 b 2 4a c 0,它在实数集 R 内没有实数根;在复数集 C 内有且仅有两个共轭复数根 x b(b 2 4ac)i (b 2 4ac 0) . 2a 3. 一元二次不等式 ax 2 bx c 0(a 0) 解的讨论 : 二次函数 y ax 2 bx c ( a 0 )的图象 一元二次方程 有两相异实根 有两相等实根 ax 2 bx c 0 x 1, x 2 ( x 1 x 2 ) x 1 x 2 b 无实根 a 0 的根 2a ax 2 bx c 0 x x 1 x 2 x x b (a 的解集 x 或x 2a R 0) ax 2 bx c 0 x x 1 x x 2 (a 0)的解集 二、指数、对数函数 1.运算公式 m n m m 1 ⑴分数指数幂: a n ; a n (以上 a 0, m,n N ,且 n 1 ) . a m a n ⑵ . 指数计算公式: a m a n a m n ; (a m )n a mn ;( a b)m a m b m ⑶对数公式:① a b N log a N b ; ② log a MN log a M log a N ; ③ log a M log a M log a N ; ④ log a m b n n log a b . N m

椭圆的常见题型及解法一

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F 的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P ( , )是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。 证法1: 。 因为,所以 ∴ 又因为,所以 ∴ , 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知 11 PF e d ,又 ,所以,而 。 ∴ , 。

2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y + =的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则1020332,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P Q 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知可得 ,所以直线AB 的方程为 ,代入椭圆方程得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为 直径的圆C 与以长轴为直径的圆相内切。

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

高中数学必修2公式

高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

破解椭圆中最值问题的常见策略

破解椭圆中最值问题的常见策略

————————————————————————————————作者:————————————————————————————————日期: ?

破解椭圆中最值问题的常见策略 有关圆锥曲线的最值问题,在近几年的高考试卷中频频出现,在各种题型中均有考查,其中以解答题为重,在平时的高考复习需有所重视。圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。本文通过具体例子,对椭圆中的常见最值问题进行分类破解。 第一类:求离心率的最值问题 破解策略之一:建立c b a ,,的不等式或方程 例1:若B A ,为椭圆)0(12222>>=+b a b y a x 的长轴两端点,Q 为椭圆上一点,使0120=∠AQB , 求此椭圆离心率的最小值。 分析:建立c b a ,,之间的关系是解决离心率最值问题常规思路。此题也就要将角转化为边的思想,但条件又不是与焦点有关,很难使用椭圆的定义。故考虑使用到角公式转化为坐标形式运用椭圆中y x ,的取值进行求解离心率的最值。 解:不妨设),(),0,(),0,(y x Q a B a A -,则a x y k a x y k BQ AQ -= += ,, 利用到角公式及0 120=∠AQB 得:0120tan 1=-++ -- +a x y a x y a x y a x y (a x ±≠), 又点A 在椭圆上,故2222 2y b a a x -=-,消去x , 化简得2232c ab y =又b y ≤即b c ab ≤2 232 则4 2 2 2 3)(4c c a a ≤-,从而转化为关于e 的高次不等式 04432 4≥-+e e 解得 13 6 <≤e 。 故椭圆离心率的最小值为3 6 。(或222233()ab c a b ≤=-,得:303b a <≤,由21()b e a =-, 故 13 6 <≤e )(注:本题若是选择或填空可利用数形结合求最值) 点评:对于此类最值问题关键是如何建立c b a ,,之间的关系。常用椭圆上的点),(y x 表示成 c b a ,,,并利用椭圆中y x ,的取值来求解范围问题或用数形结合进行求解。 破解策略之二:利用三角函数的有界性求范围 例2:已知椭圆C:22 221(0)x y a b a b +=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使 12F Q F Q ⊥,求椭圆离心率的最小值。

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

相关主题