搜档网
当前位置:搜档网 › 高中数学三角函数专题专项练习(非常好)

高中数学三角函数专题专项练习(非常好)

高中数学三角函数专题专项练习(非常好)
高中数学三角函数专题专项练习(非常好)

【三角函数疑难点拔】 一、 忽略隐含条件

例3. 若01cos sin >-+x x ,求x 的取值范围。

正解:1)4sin(2>+πx ,由22)4sin(>+πx 得)(432442Z k k x k ∈+<+<+πππππ∴)(2

22Z k k x k ∈+

<<π

ππ

二、 忽视角的范围,盲目地套用正弦、余弦的有界性 例4. 设α、β为锐角,且α+β?=120,讨论函数βα22cos cos +=y 的最值。

错解

)cos(2

1

1)cos()cos(1)2cos 2(cos 211βαβαβαβα--=-++=++=y ,可见,当1

)cos(-=-βα时,

2

3max =

y ;当1)cos(=-βα时,21min =y 。分析:由已知得?<

1)cos(2

1≤-<βα,∴当1)cos(=-βα,即?==60βα时,21

min =y ,最大值不存在。

三、 忽视应用均值不等式的条件

例5. 求函数)20,0(sin cos 2

222π

<<>>+=x b a x

b x a y 的最小值。 错解 )12sin 0(42sin 4cos sin 2sin cos )2()

1(2

222≤<≥=≥+=x ab x ab x x ab x

b x a y ,∴当12sin =x 时,ab y 4min = 分析:在已知条件下,(1)、(2)两处不能同时取等号。正解: 2

222

222222222)(2)cot tan ()cot 1()tan 1(b a ab b a x b x a b a x b x a y +=++≥+++=+++=,

当且仅当x b x a cot tan =,即a

b x =

tan ,时,

2min )(b a y +=

【经典题例】

例4:已知b 、c 是实数,函数f(x)=c bx x ++2

对任意α、β∈R 有:,0)(sin ≥αf 且,0)cos 2(≤+βf

(1)求f (1)的值;(2)证明:c 3≥;(3)设)(sin αf 的最大值为10,求f (x )。

[思路](1)令α=2

π

,得,0)1(≥f 令β=π,得,0)1(≤f 因此,0)1(=f ;(2)证明:由已知,当11≤≤-x 时,,

0)(≥x f 当31≤≤

x 时,,0)(≤x f 通过数形结合的方法可得:,0)3(≤f 化简得c 3≥;

(3)由上述可知,[-1,1]是)(x f 的减区间,那么

,10)1(=-f 又,0)1(=f 联立方程组可得4,5=-=c b ,所以45)(2+-=x x x f

例5:关于正弦曲线回答下述问题:

(1)函数

)43sin(log 2

1x

y ππ-=的单调递增区间是? Z k k x k ∈+<≤-]348328[;

(2)若函数x a x y 2cos 2sin +=的图象关于直线8

π

=x 对称,则a 的值是 1 ;

(3)把函数)4

3sin(π+=x y 的图象向右平移8π

个单位,再将图象上各点的横坐标扩大到原来的3倍(纵坐标不变),则所得

的函数解析式子是 )8

sin(π

-=x y ;

例6:函数x

x x

x f cos sin 12sin )(++=,(1)求f(x)的定义域;(2)求f(x)的最大值及对应的x 值。

[思路](1){x|x 2

22π

πππ-

≠-≠k x k 且 }Z k

∈(2)设t=sinx+cosx,则y=t-14

2,12max π

π+=-=k x y Z k ∈

例7:在ΔABC 中,已知B A C C A sin 2

3

2cos sin 2cos sin

22

=+(1)求证:a 、b 、c 成等差数列;

(2)求角B 的取值范围。 [思路](1)条件等式降次化简得

b c a B C A 2sin 2sin sin =+?=+(2)

,2

182682)(32)

2(

cos 22222=-≥-+=+-+=

ac ac ac ac ac c a ac c a c a B ∴……,得B 的取值范围]3,0(π 14.设ααsin cos +=x

,且0cos sin 33>+αα,则x 的取值范围是 ]2,0( ;

19.已知)2

,

0(π

∈x ,证明不存在实数)1,0(∈m 能使等式cos x +msin x =m(*)成立;

(2)试扩大x 的取值范围,使对于实数)1,0(∈m ,等式(*)能成立; (3)在扩大后的x 取值范围内,若取3

3

=m ,求出使等式(*)成立的x 值。

提示:可化为1)42tan(>+=πx m (2))2

,2(ππ-∈x (3)6π-

=x

最值问题典型错例

例5. 求函数

y x

x

=

-s i n c o s 1342

的最大值和最小值。 错解:原函数化为4902y x x y s i n s i n -+=,关于s in x 的二次方程的判别式?=--??≥()144902

y y ,即-≤≤112112y ,所以y y max min ==-112112

,。剖析:若取y =±112,将导致sin x =±32的错误结论,此题错在忽视了隐含条件|s i n |x ≤1。正解:原函数化为490

2

y x x y s i n s i n -+=,当y =0时,解得s i n x =0,满足s in x ≤1 当

y ≠0

时,解得

s i n x y y

=

±-1114482

,又

s i n |s i n |x R x ∈≤,1

,则有114401111448122

-≥-≤

+-≤?

??

?

?y y y 或

114401111448122-≥-≤--≤????

?

y y

y ,解得-≤≤1131

13y ,所以y y max min =

=-1131

13

, 难点 化简与求值

【例】已知

2

π<β<α<

43π,cos(α-β)=13

12,sin(α+β)=-53

,求sin2α的值_________.

[例1]不查表求sin 220°+cos 2

80°+3cos20°cos80°的值.

解法一:sin 220°+cos 280°+3sin 2

20°cos80°=21 (1-cos40°)+2

1 (1+cos160°)+ 3sin20°cos80°

=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-21cos40°+2

1 (cos120°cos40°-sin120°

sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1-21cos40°-4

1

cos40°-43sin40°+43sin40°-

2

3sin 2

20° =1-43cos40°-43(1-cos40°)= 4

1

解法二:设x =sin 220°+cos 280°+3sin20°cos80°,y =cos 220°+sin 2

80°-3cos20°sin80°,则

x +y =1+1-3sin60°=

2

1

,x -y =-cos40°+cos160°+3sin100°=-2sin100°sin60°+3sin100°=0 ∴x =y =41,即x =sin 220°+cos 2

80°+3sin20°cos80°=4

1.

[例2]关于x 的函数y =2cos 2

x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=2

1的a 值,并对此时的a 值求y 的最大值.

解:由y =2(cos x -2

a )2-22

42+-a a 及cos x ∈[-1,1]得:

f (a )??

?

????≥-<<-----≤)2( 41)22( 122

)

2( 12a a a a a a ,∵f (a )=21,∴1-4a =21?a =81?[2,+∞),故-22a -2a -1=21,解得:a =-1,此时,

y =2(cos x +

21)2+2

1

,当cos x =1时,即x =2k π,k ∈Z ,y max =5. 难点训练

1.(★★★★★)已知方程x 2

+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,

π),则tan

2

β

α+的值是( )

A.

2

1

B.-2

C.

34 D. 2

1

或-2 3.设α∈(43,4ππ),β∈(0,4π),cos(α-4π)=5

3

,sin(43π+β)=135,则sin(α+β)=_________.

4.不查表求值:

.10cos 1)

370tan 31(100sin 130sin 2?

+?+?+? 5.已知cos(4

π

+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.

7.扇形OAB 的半径为1,中心角60°,四边形PQRS 是扇形的内接矩形,当其面积最大时,求点P 的位置,并求此最大面积. 8.已知cos α+sin β=

3,sin α+cos β的取值范围是D ,x ∈D ,求函数y =10

43

2log 2

1

++x x 的最小值,并求取得最小值时x 的值.

参考答案

难点磁场

解法一:∵2π<β<α<4

3π,∴0<α-β<4π.π<α+β<

4

,∴sin(α-β)=.5

4)(sin 1)cos(,135)(cos 122

-=+--=+=--βαβαβα∴sin2α=sin [(α

-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).65

56

)53(1312)54(135-=-?+-?=。解法二:∵sin(α

-β)=

13

5,cos(α+β)=-54,

∴sin2α+sin2β=2sin(α+β)cos(α-β)=-65

72

sin2α-sin2β=2cos(α+β)sin(α-β

)=-65

40

∴sin2α=65

56

)65406572(21-=--

难点训练

一、1.解析:∵a >1,tan α+tan β=-4a <0。tan α+tan β=3a +1>0,又α、β∈(-

2π,2π)∴α、β∈(-2π

,θ),则2

βα+∈(-2π,0),又tan(α+β)=

342

tan 12tan

2)tan(,34)13(14tan tan 1tan tan 2

=β+α-β+α=β+α=+--=βα-β+α又a a ,整理得2tan 222tan 32-β+α+β+α=0.解得tan 2

β+α=-2.答案:

B

3.解析:α∈(

43,4ππ),α-4π∈(0, 2π),又cos(α-4π)=5

3. 65

56

)sin(.

6556

13554)1312(53)43sin()4sin()43cos()4cos()]

43()4cos[(]2

)43()4sin[()sin(.

13

12

)43cos(,135)43sin().,43(43).4,0(,54)4sin(=

β+α=?+-?-=β+π?π-α+β+π?π-α-=β+π

+π-α-=π

-β+π+π-α=β+α∴-=β+π∴=β+πππ∈β+π∴π∈β=π-α∴即答案:

65

56

三、4.答案:275285

3)54(25

7)

4cos()

4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54

)4sin(,2435,471217.

25

7

)4(2cos 2sin ,53)4cos(:.522=-?=++=-+=

-

+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x

x x x x x x x x x x x x x x x x x ππ

ππππππππ又解

7.解:以OA 为x 轴.O 为原点,建立平面直角坐标系,并设P 的坐标为(cos θ,sin θ),则

|PS |=sin θ.直线OB 的方程为y =

3x ,直线PQ 的方程为y =sin θ.联立解之得Q (

3

3

sin θ;sin θ),所以|PQ |=cos θ-33sin θ。于是S PQRS =sin θ(cos θ-33sin θ)=33(3sin θcos θ-sin 2

θ)=33(2

3sin2θ-22cos 1θ-)=33(23sin2θ+21cos2θ-21)= 33sin(2θ+6π)-63.∵0<θ<3π,∴6π<2θ+6π<6

5π.∴21<

sin(2θ+6π)≤1.∴sin(2θ+6π)=1时,PQRS 面积最大,且最大面积是63,此时,θ=6

π

,点P 为的中点,P (21,23).

8.解:设u =sin α+cos β.则u 2+(3)2=(sin α+cos β)2+(cos α+sin β)2=2+2sin(α+β)≤4.∴u 2

≤1,-1≤u ≤1.即D =[-

1,1],设t =

3

2+x ,∵-1≤x ≤1,∴1≤t ≤

5.x =2

32-t ..2

1,232,2,258log 2log 82log ,0log .8

2

,2,42.

8

2

24142142104325.05.05

.0min 5.0max 2-==+==-==∴>=====≤+=+=++=

∴x x t y M M y M t t

t t

t t t x x M 此时时时是减函数在时即当且仅当

[提高训练C 组]

一、选择题 5 已知sin sin α

β>,那么下列命题成立的是( ) A 若,αβ是第一象限角,则cos cos αβ> B 若,αβ是第二象限角,则tan tan αβ> C 若,αβ是第三象限角,则cos cos αβ> D 若,αβ是第四象限角,则tan tan αβ>

二、填空题

1 已知角α的终边与函数)0(,0125≤=+x y

x 决定的函数图象重合,α

ααsin 1

tan 1cos -

+

的值为_________

2 若α是第三象限的角,β是第二象限的角,则

2

β

α-是第 象限的角

4 如果,0sin tan <αα且,1cos sin 0<+<αα那么α

的终边在第 象限

5 若集合

|,3A x k x k k Z ππππ??

=+≤≤+∈????

,{}|22B x x =-≤≤,则B A =_______________________

三、解答题

1 角α的终边上的点P 与

),(b a A 关于x 轴对称)0,0(≠≠b a ,角β

的终边上的点Q 与A 关于直线x y =对称,求

β

αβαβαsin cos 1tan tan cos sin +

+值 3 求66

44

1sin cos 1sin cos αααα

----的值

参考答案

一、选择题

5 D 画出单位圆中的三角函数线 二、填空题

1 77

13

-

在角α的终边上取点1255(12,5),13,cos ,tan ,sin 131213

P r ααα-==-

=-= 2 一、或三 111222

322,(),222,(),22

k k k Z k k k Z ππππαππαππ+<<+∈+<<+∈ 1212()()422k k k k παβπππ--+<<-+

4 二 2sin tan sin 0,cos 0,sin 0cos α

ααααα

=<<>

三、解答题

1 解:22

22

(,),sin ,cos ,tan b a b P a b a

a b a b ααα--=

=

=-

++ 22

22

(,),sin ,cos ,tan a b a Q b a b

a b a b βββ==

=

++ 222

22

sin tan 110cos tan cos sin b a b a a

ααββ

αβ+∴++

=--+= 3 解:66224224

44221sin cos 1(sin cos )(sin sin cos cos )1sin cos 1(12sin cos )αααααααααααα---+-+=---- 22

221(13sin cos )31(12sin cos )2

αααα--==--

【练习】

一、选

1、函数

的值域是

( )

A. [-1,

1]

B.[-2,2]

C. [0,2]

D.[0,1]

5

二、填

3、已知f (x )=asinx -bcosx 且x = 为f (x )的一条对称轴,则a :b 的值为 .

4、若函数

答案

解析 一

题:

1、选B.

,当x ≥0时,-2≤2sinx ≤2即-2≤y ≤2;当x<0时,y =0包含于[-2,2].于是可知所求函数

值域为[-2,2],故应选B. 5、选C.解析:由f(x)在区间[- , ]上递增及f (x )为奇函数,知f(x)在区间[- ,

]上递增,该区间长度应小于或等于f (x )的半个周

期.

,应选

二、填空题

3、答案:a :b =-1。解析:由题设得 ,又x = 为f (x )的一条对称轴,∴

当x = 时f(x)取得最值,∴即

a:b=

1

4、答案:,解析:

,∴由

①,注意到

,由①得:②,再注意到当且仅当

于是由②及 得

高中数学三角函数练习题1

高中数学必修四三角函数检测题 一选择题: 1.下列不等式中,正确的是( ) A .tan 5 13tan 4 13ππ< B .sin )7 cos(5 π π-> C .sin(π-1)cos B B. sin A

三角函数练习题及答案

创作编号:BG7531400019813488897SX 创作者: 别如克* 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β

7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=31 ,则sin β 的值是( ). A .3 1 B .-3 1 C . 3 2 2 D .- 3 2 2 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .??? ??2π ,4π∪??? ??4π5 ,π B .?? ? ??π ,4π C .?? ? ??4π5 ,4π D .??? ??π ,4π∪??? ? ?23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的2 1 倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ??? ? ? 3π - 2x ,x ∈R B .y =sin ?? ? ??6π + 2x ,x ∈R C .y =sin ??? ? ? 3π + 2x ,x ∈R D .y =sin ??? ? ? 32π + 2x ,x ∈R 二、填空题 11.函数f (x )=sin 2 x +3tan x 在区间??? ???3π4π ,上的最大值是 . 12.已知sin α= 552,2 π ≤α≤π,则tan α= . 13.若sin ??? ??α + 2π=53,则sin ?? ? ??α - 2π= . 14.若将函数y =tan ??? ? ? 4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ??? ? ? 6π + x ω的图象重合,则ω的最小值为 . 15.已知函数f (x )=21(sin x +cos x )-2 1 |sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ??? ? ? 3π + 2x ,x ∈R ,有下列命题:

高中三角函数典型例题(教用)

【典型例题】: 1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan == x x x ,又1cos sin 22=+a a , 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=???????==x x x x 2、求) 330cos()150sin()690tan() 480sin()210cos()120tan(οοοοοο----的值。 解:原式) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o ο οοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3、若 ,2cos sin cos sin =+-x x x x ,求x x cos sin 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=- 得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得 ,,??? ??? ?=-=???????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =10 3 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=-, 所以2 2)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,

2015年高中数学学业水平考试专题训练4 三角函数

2015年高中数学学业水平考试专题训练4 三角函数 基础过关 1.tan π 4=( ) A. 1 B. -1 C. 22 D. - 22 2.函数y =sin ? ? ???2x +π4的最小正周期是( ) A. π 2 B. π C. 2π D. 4π 3.已知扇形的周长为6 cm ,面积为2 cm 2,则扇形的中心的弧度数为( ) A. 1 B. 4 C. 1或4 D. 2或4 4.既是偶函数又在区间(0,π)上单调递减的函数是( ) A. f (x )=sin x B. f (x )=cos x C. f (x )=sin2x D. f (x )=cos2x 5.已知cos(π+α)=-12,3π 2<α<2π,则sin(2π-α)的值是( ) A. 1 2 B. ±3 2 C. 3 2 D. -3 2 6.已知 sin α-2cos α 3sin α+5cos α =-5,则tan α的值为( ) A. -2 B. 2 C. 23 16 D. -2316 7.函数y =sin(2x +5π 2)的图象的一条对称轴方程是( ) A. x =-π2 B. x =-π 4 C. x =π 8 D. x =5π4 8.若角的终边落在直线x +y =0上,则sin α1-sin 2α+1-cos 2α cos α的值为( ) A. 2 B. -2 C. 1 D. 0

9.若x ∈R ,则函数f (x )=3-3sin x -cos 2x 的( ) A. 最小值为0,无最大值 B. 最小为0,最大值为6 C. 最小值为-1 4,无最大值 D. 最小值为-1 4,最大值为6 10.函数y =A sin(ωx +φ)(ω>0,||φ<π 2,x ∈R )的部分图象如图, 则函数关系式为( ) A. y =-4sin(π8x +π 4) B. y =4sin(π8x -π 4) C. y =-4sin(π8x -π 4) D. y =4sin(π8x +π 4) 11.函数y =2cos x +1的定义域是( ) A. ??? ???2k π-π3,2k π+π3(k ∈Z ) B. ? ?? ?? ?2k π-π6,2k π+π6(k ∈Z ) C. ??? ???2k π+π3,2k π+2π3(k ∈Z ) D. ? ?? ?? ?2k π-2π3,2k π+2π3(k ∈Z ) 12.若将函数y =f (x )的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移π 2个单位,沿y 轴向下平移1个单位,得到函数y =1 2sin x 的图象则y =f (x )是( ) A. y =1 2sin(2x +π2)+1 B. y =1 2sin(2x -π2)+1 C. y =1 2sin(2x +π4)+1 D. y =1 2sin(2x -π4)+1 13.已知α,β∈R ,则“α=β”是“sin α=sin β”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 14.设f (x )是定义域为R ,最小正周期为3π 2的函数,若f (x )=

高中数学三角函数复习专题(2)

高中数学三角函数复习专题 一、知识点整理 1角的概念的推广: 正负,范围,象限角,坐标轴上的角; 2、角的集合的表示: ① 终边为一射线的角的集合: x|x 2k ② 终边为一直线的角的集合: xx k 3、任意角的三角函数: (1) 弧长公式:1 aR R 为圆弧的半径,a 为圆心角弧度数,1为弧长 (2) 扇形的面积公式 :S 1 -IR R 为圆弧的半径,1为弧长。 2 (3) 三角函数定义: 角 中边上任意一点P 为(x,y),设|OP| r 则: sin — ,cos r x J r tan y r=寸孑圧 x 女口:公式 cos( ) cos cos sin sin 的证明 (4)特殊角的三角函数值 ③两射线介定的区域上的角的集合: x2k ④两直线介定的区域上的角的集合: x k x k ,k Z ? k 360', k Z ,k Z = | ,k Z ; 反过来,角 的终边上到原点的距离为 r 的点P 的坐标可写为:P r cos ,r sin

4 x 4 4 sin cos tan - -si n + cos -ta n - + si n -cos -ta n + -si n -cos + tan 2 . -si n + cos -ta n 2k + + si n + cos + tan sin con tan 2 + cos + sin + cot 2 + cos -si n -cot 3 2 -cos -si n + cot 3_ 2 -cos + sin -cot 三角函数值等于 的同名三角函数值,前面 加 上一个把 看作锐角时,原三角函数值的 符 号;即:函数名不变,符号看象限 三角函数值等于 的异名三角函数值,前面 加 上一个把 看作锐角时,原三角函数值的 符号; 即:函数名改变,符号看象限: sin x 比如 cos 一 x 4 cos x cos x sin 一 (6)三角函数线:(判断正负、比较大小,解方程或不等式等) 如图,角 的终边与单位圆交于点P ,过点P 作x 轴的垂线, 垂足为M ,则 过点A(1,0)作x 轴的切线,交角终边0P 于点T ,贝U (7)同角三角函数关系式: ③ 平方关系:sin 2 a cos 2 a 1 ①倒数关系: tan acota 1 ②商数关系: tana ^ina cosa (8)诱导公试

高三三角函数专题复习(题型全面)

三 角 函 数 考点1:三角函数的有关概念; 考点2:三角恒等变换;(两角和、差公式,倍角半角公式、诱导公式、同角的三角函数关系式) 考点3:正弦函数、余弦函数、正切函数的图象和性质;(定义域、值域、最值;单调区间、最小正周 期、对称轴对称中心) 考点4:函数y =Asin()0,0)(>>+???A x 的图象与性质;(定义域、值域、最值;单调区间、最小 正周期、对称轴对称中心、图像的变换) 一、三角函数求值问题 1. 三角函数的有关概念 例1. 若角θ的终边经过点(4,3)(0)P a a a -≠,则sin θ= . 练习1.已知角α的终边上一点的坐标为(3 2cos ,32sin π π),则角α的最小正值为( ) A 、65π B 、32π C 、35π D 、6 11π 2、公式法: 例2.设(0,)2πα∈,若3 sin 5α=)4 πα+=( ) A. 75 B. 15 C. 75- D. 15 - 练习1.若πtan 34α??-= ??? ,则cot α等于( ) A.2- B.12 - C.12 D.2 2.α是第四象限角,5 tan 12 α=-,则sin α=( ) A .15 B .15- C .513 D .513 - 3. cos 43cos77sin 43cos167o o o o +的值为 。 4.已知1sin cos 5θθ+=,且324 θππ ≤≤,则cos2θ的值是 . 3.化简求值 例3.已知α为第二象限角,且sin α,求sin(/4)sin 2cos21 απαα+++的值 练习:1。已知sin α=,则44sin cos αα-的值为( ) A .15 - B .35 - C .15 D .35

高中数学基础知识典型例题4——三角函数

高中数学基础知识典型例题4——三角函数

数学基础知识与典型例题 第四章三角函数 三 角 函 数 相 关 知 识 关 系 表 角的概念1.①与α(0°≤α<360°)终边相 同的角的集合 (角α与角β的终边重 合):{}Z k k∈ + ? =, 360 |α β β ; ②终边在x轴上的角的集 合:{}Z k k∈ ? =, 180 | β β; ③终边在y轴上的角的集合: {}Z k k∈ + ? =, 90 180 | β β; ④终边在坐标轴上的角的集 合:{}Z k k∈ ? =, 90 | β β. 2. 角度与弧度的互换关系: 360°=2π180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数, 例1.已知2弧度的圆心 角所对的弦长为2,那么 这个圆心角所对的弧长 为( ) ()2 A ()sin2 B 2 () sin1 C ()2sin1 D 例 2. 已知α为第三象 限角,则 2 α 所在的象限 是( ) (A)第一或第二象限 (B)第二或第三象限 (C)第一或第三象限 (D)第二或第四象限 负角的弧度数为负数,零角的 弧度数为零,熟记特殊角的弧度制. 3.弧度制下,扇形弧长公式 1 2 r α =,扇形面积公 式2 11 || 22 S R Rα ==,其中α为弧所对圆心角的弧 度数。 三 角 函 数 的 定 义 1.三角函数定义:利用直角坐标系,可以把直角三角 形中的三角函数推广到任意角的三角数.在α终边 上任取一点(,) P x y(与原点不重合),记 22 || r OP x y ==+, 则sin y r α=,cos x r α=,tan y x α=,cot x y α=。 注: ⑴三角函数值只与角α的终边的位置有关,由 角α的大小唯一确定,∴三角函数是以角为自变量, 以比值为函数值的函数. ⑵根据三角函数定义可以推出一些三角公式: ①诱导公式:即 2 kπ αα ±→或 90 2 k αα ±→ 之间函数值关系() k Z ∈,其规律是“奇变偶不变, 符号看象限”;如sin(270) α -=cosα - ②同角三角函数关系式:平方关系,倒数关系,商 数关系. ⑶重视用定义解题. ⑷三角函数线是通过有向线段直观地表示出角的各 种三角函数值的一种图示方法.如单位圆 例 3.已知角α的终边经 过P(4,-3),求 2sinα+cosα的值. 例 4.若α是第三象限 角,且cos cos 22 θθ =-, 则 2 θ 是( ) ()A第一象限角 ()B第二象限角 () C第三象限角 () D第四象限角 例5. 若cos0, θ>sin20, θ< 且

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高中数学三角函数经典练习题专题训练(含答案)

高中数高中数学三角函数经典练习题专题训练 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题3分,共60分) 1.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别为() A.2,-B.2,-C.4,-D.4, 2.下列说法正确的个数是() ①小于90°的角是锐角;

②钝角一定大于第一象限角; ③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0°. A.0B.1C.2D.3 3.若0<y<x<,且tan2x=3tan(x-y),则x+y的可能取值是()A.B.C.D. 4.已知函数y=tan(ωx)(ω>0)的最小正周期为2π,则函数y=ωcosx的值域是()A.[-2,2]B.[-1,1]C.[-,]D.[-,] 5.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为() A.正三角形B.直角三角形 C.等腰直角三角形D.等腰三角形 6.已知函数f(x)=cosxsin2x,下列结论中错误的是() A.f(x)既是偶函数又是周期函数 B.f(x)最大值是1 C.f(x)的图象关于点(,0)对称 D.f(x)的图象关于直线x=π对称 7.sin55°sin65°-cos55°cos65°值为() A.B.C.-D.- 8.若角α终边上一点的坐标为(1,-1),则角α为() A.2kπ+B.2kπ-C.kπ+D.kπ-,其中k∈Z

初中三角函数专项练习题及答案

初中三角函数基础检测题 山岳 得分 (一)精心选一选(共36分) 1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定 2、在Rt △ABC 中,∠C=90 ,BC=4,sinA=5 4 ,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且 sinA=31 ,则( ) A 、00<∠A<300 B 、300<∠A<450 C 、450<∠A<600 D 、600<∠A<900 4、若cosA=31,则A A A A tan 2sin 4tan sin 3+-=( ) A 、74 B 、31 C 、21 D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:22 6、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sin B B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( ) A .sinB=23 B .cosB=23 C .tanB=23 D .tanB=3 2 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )

A .(32,12) B .(-32,12) C .(-3 2,-12) D .(-12,-32) 9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.?某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,?若这位同学的目高1.6米,则旗杆的高度约为( ) A .6.9米 B .8.5米 C .10.3米 D .12.0米 10.王英同学从A 地沿北偏西60o方向走100m 到B 地,再从B 地向正南方向走 200m 到C 地,此时王英同学离A 地 ( ) (A )350m (B )100 m (C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30?, 向高楼前进60米到C 点,又测得仰角为45?,则该高楼的高度大约为( ) A.82米 B.163米 C.52米 D.70米 12、一艘轮船由海平面上A 地出发向南偏西40o的方向行驶40海里到达B 地,再由B 地向北偏西10o的方向行驶40海里到达C 地,则A 、C 两地相距( ). (A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填(共33分) 1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______. 图1 45? 30? B A D C

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

高中数学三角函数专题专项练习

高中数学三角函数专题专项练习 一、 忽略隐含条件 例3. 若01cos sin >-+x x ,求x 的取值范围。 正解:1 )4sin(2>+π x ,由22 )4sin(>+π x 得)(432442Z k k x k ∈+<+<+πππππ∴ ) (2 22Z k k x k ∈+ <<π ππ 二、 忽视角的范围,盲目地套用正弦、余弦的有界性 例4. 设α 、β为锐角,且α+β?=120,讨论函数 βα2 2cos cos +=y 的最值。 错解 ) cos(21 1)cos()cos(1)2cos 2(cos 211βαβαβαβα--=-++=++=y ,可见,当1)cos(-=-βα时, 23max = y ;当1)cos(=-βα时,21 min = y 。分析:由已知得?<>+=x b a x b x a y 的最小值。 错解 )12sin 0(42sin 4cos sin 2sin cos )2() 1(2 222≤<≥=≥+=x ab x ab x x ab x b x a y Θ,∴当12sin =x 时, ab y 4min = 分析:在已知条件下,(1)、(2)两处不能同时取等号。正解: 2 222222222222)(2)cot tan ()cot 1()tan 1(b a ab b a x b x a b a x b x a y +=++≥+++=+++=,当且仅当x b x a cot tan =,即 a b x = tan ,时, 2min )(b a y += 【经典题例】 例4:已知b 、c 是实数,函数f(x)=c bx x ++2 对任意α、β∈R 有:,0)(sin ≥αf 且,0)cos 2(≤+βf (1)求f (1)的值;(2)证明:c 3≥;(3)设 )(sin αf 的最大值为10,求f (x )。 [思路](1)令α=2π ,得 ,0)1(≥f 令β=π,得,0)1(≤f 因此,0)1(=f ;(2)证明:由已知,当11≤≤-x 时, ,0)(≥x f 当31≤≤x 时,,0)(≤x f 通过数形结合的方法可得:,0)3(≤f 化简得c 3≥;(3)由上述可知,[-1, 1]是 )(x f 的减区间,那么,10)1(=-f 又,0)1(=f 联立方程组可得4,5=-=c b ,所以45)(2+-=x x x f 例5:关于正弦曲线回答下述问题:

高中数学三角函数小练习(二)

高中数学三角函数小练习(二) 1、若且是,则是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 2、函数的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, D. -2, 3、已知函数的一部分图象如下图所示,如果, 则( ) A. B. C. D. 4、=( ) A. B. C. 2 D. 5、已知<β<α<,cos(α-β)=,sin(α+β)=-,则sin2α的值为 A . B . C . D . 6.若,则的取值范围是:( ) (A) (B) (C) (D) 7.为了得到函数的图象, 只需把函数的图象( ) A 、向左平移 B 、向左平移 C 、向右平移 D 、向右平移 8.已知,且在区间有最小值,无最大值,则=__________. 9.已知函数 (Ⅰ)求函数的最小正周期和图象的对称轴方程 (Ⅱ)求函数在区间上的值域 参考答案 sin 0α ><4A =6π ?=1ω=4B =0 203sin 702cos 10--12 2π43π1312535665-5665±5665 51302,sin απαα≤≤>α,32ππ?? ???,3ππ?? ???4,33ππ?? ???3,32ππ?? ???)63sin(π +=x y x y 3sin =6π18π6 π18π()sin (0)363f x x f f ωωπππ??????=+>= ? ? ???????, ()f x 63ππ?? ???,ω()cos(2)2sin()sin()344 f x x x x πππ=-+-+()f x ()f x [,]122ππ -

三角函数专题知识点及练习

三角函数知识总结一、知识框架 二、知识点、概念总结 1.Rt△ABC中 (1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边 斜边 (2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边 斜边 (3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边 (4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边 2.特殊值的三角函数: a sina cosa tana cota 30°1 2 3 2 3 3 3 45° 2 2 2 2 1 1 60° 3 2 1 2 3 3 3 3.互余角的三角函数间的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 4. 同角三角函数间的关系 平方关系: sin2(α)+cos2(α)=1 tan2(α)+1=sec2(α) cot2(α)+1=csc2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 5.三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。

(3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤∠A≤90°间变化时, 0≤sinα≤1, 1≥cosA≥0, 当角度在0°<∠A<90°间变化时, tanA>0, cotA>0. 6.解直角三角形的基本类型 解直角三角形的基本类型及其解法如下表: 7.仰角、俯角 当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 要点一:锐角三角函数的基本概念

【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学】三角函数的诱导公式重难点题型【举一反三系列】 三角函数的诱导公式 【知识点1诱导公式】 【知识点2诱导公式的记忆】 诱导公式一: sin(α+2kπ) = Sin a , cos(α + 2kπ) = COSα, taιι(α + 2kπ) = xana ,其中 k ∈Z 诱导公式二: sin(∕r + G) = -Sin a, cos(∕r+α) =—COSα, tan(∕r+α) = tana,其中keZ 诱导公式三: sin(-a) =-Sina, cos(-a) = COSa , tan(-a) = -taιιa ,其中k ∈Z 诱导公式四: cos(∕F -a) = -cosa, taιι(^?-a) = -tana,其中k ∈Z 诱导公式五: Sin π ——a 2 COS π ——a 2 = Sina ,其中R ∈Z 诱导公式六: Sin π —+a 2 COS —+a =-sinα ,其中k ∈Z U 丿

记忆11诀“奇变偶不变,符号看象限”,意思是说角k-90 ±a(k 为常整数)的三角函数值:当k 为奇数 时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视Q 为锐角 时原函数值的符号. 【考点1利用诱导公式求值】 【方法点拨】对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化 过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完 成求值. 【例1】(2018秋?道里区校级期末)已知点P(l,l)在角Q 的终边上,求下列各式的值. T 、 COS (Λ^ + α)sin(^? - a) (I )------------------------------------- ; tan(∕r + α) + sin 2 (彳-a) sin(- + α)cos(- 一 a) (II) 、 2 、——召—— cos^ a - sm^ a + tan(;T - a) 【分析】由条件利用任意角的三角函数的定义求得smα, cosα, Sna 的值,再利用诱导公式即可求得要 求式子的值. 【答案】解:?.?角α终边上有一点P(l,l), .x = l , y = l , r =|OP I= √7, Sill CL = — = _ , COS Ct = — = — , tan Ct — -- = It r 2 r 2 X ([) cos(∕r + α)sin(%-α) 、 -、,兀 、 tan(^? + α) + sιn^ (― 一 a) ./3∕r 3π ([[)SInq-+Q )COS (T _Q ) _ (γosα)(-smα) cos 2 a - sin 2 a + tan(∕r - a) cos 2a - sin 2a 一 tan a 【点睛】本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思 想,属于基础题. 【变式1-1】 (2019春?龙潭区校级月考)己知tan(^+ ?) = -!,求下列各式的值: -COSa ?smα ton a + cos 2(x

高三数学三角函数专题训练

高三数学三角函数专题训练 1.为得到函数πcos 23y x ?? =+ ?? ? 的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12 个长度单位 C .向左平移 5π6 个长度单位 D .向右平移 5π6 个长度单位 2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则M N 的最大值为( ) A .1 B . 2 C . 3 D .2 3.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2倍(纵坐标不变),得到的图 象所表示的函数是( ) A .sin(2)3 y x π =-,x R ∈ B.sin( ) 2 6 x y π =+ ,x R ∈ C.s in (2)3 y x π =+,x R ∈ D.sin(2) 3 2y x π=+ ,x R ∈ 4.设5sin 7 a π=,2cos 7 b π=,2tan 7 c π=,则( ) A.c b a << B.a c b << C.a c b << D.b a c << 5.将函数sin(2)3 y x π =+ 的图象按向量α 平移后所得的图象关于点(,0) 12 π - 中 心对称,则向量α的坐标可能为( ) A .(,0)12π - B .(,0)6 π - C .( ,0)12 π D .( ,0)6 π 6.函数2 ()sin 3sin cos f x x x x =+ 在区间 ,42ππ?? ???? 上的最大值是( ) A.1 B.13 2 + C. 3 2 D.1+ 3 7.若,5sin 2cos -=+a a 则a tan =( ) A.2 1 B. 2 C.2 1- D.2-

高中数学三角函数练习题及答案

高中数学三角函数练习题及答案 高中数学三角函数练习题及答案 一、选择题 1.探索如图所呈现的规律,判断2013至2014箭头的方向是()图1-2-3 【解析】观察题图可知0到3为一个周期, 则从2013到2014对应着1到2到3. 【答案】B 2.-330是() A.第一象限角B.第二象限角 C.第三象限角D.第四象限角 【解析】-330=30+(-1)360,则-330是第一象限角. 【答案】A 3.把-1485转化为+k360,kZ)的形式是() A.45-4360B.-45-4360 C.-45-5360D.315-5360 【解析】-1485=-5360+315,故选D. 【答案】D 4.(2013济南高一检测)若是第四象限的角,则180-是() A.第一象限的角B.第二象限的角 C.第三象限的角D.第四象限的角

【解析】∵是第四象限的角,k360-90k360,kZ, -k360+180180--k360+270,kZ, 180-是第三象限的角. 【答案】C 5.在直角坐标系中,若与的终边互相垂直,则与的关系为() A.=+90 B.=90 C.=+90-k360 D.=90+k360 【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ. 【答案】D 二、填空题 6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同, =k360+60,kZ. 【答案】k360+60,kZ 7.是第三象限角,则2是第________象限角. 【解析】∵k360+180k360+270,kZ k180+90k180+135,kZ 当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角, 当k=2n+1(nZ)时,n360+270n360+315,nZ 2是第四象限角.

三角函数的易错点以及典型例题与高考真题

三角函数的易错点以及典型例题与真题 1.三角公式记住了吗两角和与差的公式________________; 二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。 万能公式: (1) (sinα)2 +(cosα)2 =1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC (证明:利用A+B=π-C ) 同理可得证,当x+y+z=n π(n ∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论: (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA )2+(cosB )2+(cosC )2=1-2cosAcosBcosC (8)(sinA )2+(sinB )2+(sinC )2=2+2cosAcosBcosC (9)设tan(A/2)=t sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z) tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z) cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z) 2.在解三角问题时,你注意到正切函数、余切函数的定义域了吗正切函数在整个定义域内是否为单调函数你注意到正弦函数、余弦函数的有界性了吗 3.在三角中,你知道1等于什么吗(x x x x 2222tan sec cos sin 1-=+=

相关主题