搜档网
当前位置:搜档网 › 最新初中数学投影与视图知识点总复习附答案

最新初中数学投影与视图知识点总复习附答案

最新初中数学投影与视图知识点总复习附答案
最新初中数学投影与视图知识点总复习附答案

最新初中数学投影与视图知识点总复习附答案

一、选择题

1.如图是某个几何体的三视图,该几何体是()

A.三棱柱B.圆柱C.六棱柱D.圆锥

【答案】C

【解析】

【分析】

由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.

【详解】

解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,

故选C.

【点睛】

本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.

2.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体

A.10:2B.9:2

C.10:1D.9:1

【答案】C

【解析】

【分析】

由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.

解:这个几何体由10个小正方体组成;

∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,

∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.

故选:C .

【点睛】

本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.

3.如图所示,该几何体的主视图是( )

A .

B .

C .

D .

【答案】D

【解析】

【分析】

从前往后看到一个矩形,后面的轮廓线用虚线表示.

【详解】

该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.

故选D .

【点睛】

本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.

4.一个几何体的三视图如图所示,则这个几何体的表面积是( )

A .25cm

B .28cm

C .29cm

D .210cm

【解析】

【分析】

由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.

【详解】

由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,

所以其面积为:()()2211121210cm

??+?+?=,

故选D .

【点睛】

本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.

5.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )

A .

B .

C .

D .

【答案】A

【解析】

从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,

故选A .

6.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为( )

A .60πcm 2

B .65πcm 2

C .90πcm 2

D .130πcm 2

【答案】B

【解析】

【分析】 先利用三视图得到底面圆的半径为5cm ,圆锥的高为12cm ,再根据勾股定理计算出母线长

为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.

【详解】

解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,

所以圆锥的母线长=22

51213

+=(cm)

所以这个圆锥的侧面积=1

251365

2

ππ

??=

g(cm2),

故选:B.

【点睛】

本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.

7.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()

A.4个B.5个C.6个D.7个

【答案】B

【解析】

【分析】

由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.

【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:

则搭成这个几何体的小正方体最少有5个,

故选B.

【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.

【详解】

请在此输入详解!

【点睛】

请在此输入点睛!

8.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )

A.B.

C.D.

【答案】C

【解析】

【分析】

根据轴对称图形和中心对称图形的概念结合各几何体的主视图逐一进行分析即可.

【详解】

A、主视图是正方形,正方形是轴对称图形,也是中心对称图形,故不符合题意;

B、主视图是矩形,矩形是轴对称图形,也是中心对称图形,故不符合题意;

C、主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形,故符合题意;

D、主视图是圆,圆是轴对称图形,也是中心对称图形,故不符合题意,

故选C.

【点睛】

本题考查了立体图形的主视图,轴对称图形、中心对称图形,熟练掌握相关知识是解题的关键.

9.如图是一个正六棱柱的茶叶盒,其俯视图为()

A.B.C.D.

【答案】B

【解析】

【详解】

解:正六棱柱的俯视图为正六边形.

故选B.

考点:简单几何体的三视图.

10.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )

A.B.C.D.

【答案】B

【解析】

【分析】

找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中

【详解】

从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,

故选B.

【点睛】

本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.

11.某个几何体的三视图如图所示,该几何体是( )

A.B.C.D.

【答案】D

【分析】

根据几何体的三视图判断即可.

【详解】

由三视图可知:该几何体为圆锥.

故选D.

【点睛】

考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.

12.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().

A.主视图的面积为4 B.左视图的面积为4

C.俯视图的面积为3 D.三种视图的面积都是4

【答案】A

【解析】

【分析】

根据三视图的绘制,首先画出三视图再计算其面积.

【详解】

解:A.主视图的面积为4,此选项正确;

B.左视图的面积为3,此选项错误;

C.俯视图的面积为4,此选项错误;

D.由以上选项知此选项错误;

故选A.

【点睛】

本题主要考查三视图的画法,关键在于正面方向.

13.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()

A.3个B.5个C.7个D.9个

【答案】B

【分析】

由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.

【详解】

由主视图和左视图可确定所需正方体个数最少时的俯视图(数字为该位置小正方体的个数)为:

所以搭成这个几何体的小正方体最少有5个.

故选B.

【点睛】

本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的关键.

14.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()

A.8 B.7 C.6 D.5

【答案】B

【解析】

【分析】

易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.

【详解】

解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几

+=个.

何体的小正方体最多为437

故选:B

【点睛】

考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.15.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()

A .主视图

B .左视图

C .俯视图

D .主视图和左视图

【答案】C

【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.

【详解】观察几何体,可得三视图如图所示:

可知俯视图是中心对称图形,

故选C.

【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.

16.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )

A .60π

B .70π

C .90π

D .160π

【答案】B

【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒, ∴该几何体的体积为()

22431070ππ-?=.

故选B.

考点:由三视图求体积.

17.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()

A.B.C.D.

【答案】C

【解析】

【分析】

根据简单几何体的三视图即可求解.

【详解】

解:左视图有3列,每列小正方形数目分别为2、1、1.

故选:C.

【点睛】

此题主要考查简单几何体的三视图,熟练画图是解题关键.

18.下列水平放置的几何体中,俯视图是矩形的为()

A.B. C.D.

【答案】B

【解析】

【分析】

俯视图是从物体上面看,所得到的图形.

【详解】

A.圆柱俯视图是圆,故此选项错误;

B.长方体俯视图是矩形,故此选项正确;

C.三棱柱俯视图是三角形,故此选项错误;

D.圆锥俯视图是圆,故此选项错误;

故选B.

【点睛】

本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.

19.下图是由6个大小相同的小正方体组成的几何体,它的左视图是()

A.B. C.

D.

【答案】B

【解析】

【分析】

根据三视图的意义进行分析,要注意观察方向是从左边看.

【详解】

解:从物体左面看,是左边1个正方形,中间2个正方形,右边1个正方形.

故选B.

【点睛】

考核知识点:简单组合体的三视图.

20.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )

A.B.C.D.

【答案】D

【解析】

【分析】

根据从上边看得到的图形是俯视图,可得答案.

【详解】

解:从上边看是一个圆形,圆形内部是一个虚线的正方形.

故选:D.

【点睛】

本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.

(完整word版)投影与视图知识点总结,推荐文档

投影与视图知识点总结 知识点一:中心投影 有关概念 1. 投影现象:物体在光线的照射下,会在地面或其他平面上留下它的影子,这 就是投影现象,影子所在的平面称为投影面。 2. 手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成 的投影称为中心投影 n

知识点三:平行投影及应用 1.平行投影的定义 太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影 当平行光线与投影面垂直,这种投影称为正投影 2.平行投影的应用: (1)等高的物体垂直地面放置时,太阳光下的影长相等。 (2)等长的物体平行于地面放置时,太阳下的影长相等。 3.作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子 的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子。 例1:如图,小华(线段CD)在观察某建筑物AB (1)请你根据小华在阳关下的影长(线段DF),画出此时建筑物AB在阳光下的影子。 (2)已知小华身高1.65m,在同一时刻,测得小华和建筑物AB的影长分别为1.2m 和8m,求建筑物AB的高。 例2:小明在公园游玩,想利用太阳光下的影子测量一颗大树AB的高,他发现大树的影子恰好落在假山坡面CD和地面BC上,如图所示,经测量CD=4m,BC=10m,CD与地面成30度的角,此时量得1m标杆的影长为2m,请你帮助小明求出大树AB的高度?

知识点四:视图 1.常见几何体的三视图 2.三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。 注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高.因此,在画三视图时,对应部分的长要相等。 例1:如图是几个相同的小正方体组成的一个几何体,请画出它的三视图。 例2:画出下列物体的三视图

人教版初中数学投影与视图知识点总复习有答案

人教版初中数学投影与视图知识点总复习有答案 一、选择题 1.如图所示的几何体的主视图是() A.B.C.D. 【答案】A 【解析】 【分析】 找到从正面看所得到的图形即可. 【详解】 解:从正面可看到从左往右2列一个长方形和一个小正方形, 故选A. 【点睛】 本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 2.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是() A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【答案】B 【解析】 【分析】 根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案. 【详解】 主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变; 左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变; 俯视图底层的正方形位置发生了变化. ∴不改变的是主视图和左视图. 故选:B.

本题考查了简单组合体的三视图,利用三视图的意义是解题关键. 3.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则 S =俯( ) A .243x x ++ B .232x x ++ C .221x x ++ D .224x x + 【答案】A 【解析】 【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案. 【详解】 解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x , ∴主视图的长3x =+,左视图的长1x =+, 则俯视图的两边长分别为:3x +、1x +, S 俯2(3)(1)43=++=++x x x x , 故选:A . 【点睛】 此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键. 4.一个几何体的三视图如图所示,则这个几何体的表面积是( ) A .25cm B .28cm C .29cm D .210cm 【答案】D 【解析】 【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.

九年级下册数学《投影与视图》知识点整理

投影与视图 知识要点 1、投影 (1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。 (2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影(parallel projection). (3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。 (4)正投影:投影线垂直于投影面产生的投影叫做正投影。 注:物体正投影的形状、大小与它相对于投影面的位置有关。 2、三视图 (1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。 将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。 (2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。 一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

最新初中数学投影与视图知识点总复习附答案

最新初中数学投影与视图知识点总复习附答案 一、选择题 1.如图是某个几何体的三视图,该几何体是() A.三棱柱B.圆柱C.六棱柱D.圆锥 【答案】C 【解析】 【分析】 由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 【详解】 解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱, 故选C. 【点睛】 本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 2.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体 A.10:2B.9:2 C.10:1D.9:1 【答案】C 【解析】 【分析】 由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.

解:这个几何体由10个小正方体组成; ∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1, ∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体. 故选:C . 【点睛】 本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体. 3.如图所示,该几何体的主视图是( ) A . B . C . D . 【答案】D 【解析】 【分析】 从前往后看到一个矩形,后面的轮廓线用虚线表示. 【详解】 该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示. 故选D . 【点睛】 本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法. 4.一个几何体的三视图如图所示,则这个几何体的表面积是( ) A .25cm B .28cm C .29cm D .210cm

投影与视图知识点总结

投影与视图知识点总结 精品文档 投影与视图知识点总结 知识点一:中心投影有关概念 1、投影现象:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面。 2、手电筒、路灯和台灯的光线可以看成是从一个点发出的,这样的光线所形成的投影称为中心投影 3、作一物体中心投影的方法:过投影中心与物体顶端作直线,直线与投影面的交点与物体的底端之间的线段即为物体的影子。 投影与视图知识点总结及练习 知识点2:视点、视线和盲区观测点的位置称为视点由视点发出的观测线称为视线 视线不能穿过障碍物,若视线遇到障碍物,则会有观测不到的地方,就称为盲区。 知识点三:平行投影及应用 1、平行投影的定义 太阳光线可以看成是平行光线,平行光线所形成的投影称为平行投影当平行光线与投影面垂直,这种投影称为正投影 2、平行投影的应用: 1 / 9 精品文档 (1) 等高的物体垂直地面放置时,太阳光下的影长相等。

(2) 等长的物体平行于地面放置时,太阳下的影长相等。 3、作物体的平行投影:由于平行投影的光线是平行的,而物体的顶端与影子的顶端确定的直线就是光线,故根据另一物体的顶端可作出其影子。 知识点四:视图 1、常见几何体的三视图 2、三视图的排列规则:俯视图放在主视图的下面,长度与主视图的长度一样;左视图放在主视图的右面,高度与主视图的高度一样,宽度与俯视图的宽度一样,可简记为“长对正;高平齐;宽相等”。 注意:在画物体的三视图时,对看得见的轮廓线用实线画出,而对看不见的轮廓线要用虚线画出。在三种视图中,主视图反映的是物体的长和高、俯视图反映的是物体的长和宽、左视图反映的是物体的宽和高。因此,在画三视图时,对应部分的长要相等。 投影与视图知识点总结及练习 3、由三视图还原几何体一般分为两种情况: (1)由三种视图判断几何体的形状。 (2)给出三种视图,求搭成该几何体的小正方体的个 2 / 9 精品文档 数。 2投影与三视图知识点总结 一、视角与盲区如图 小明眼睛的位置称为视点由视点出发的线称为视线,两条视线的夹角称为视角。小明看不到的地方称为盲区。 哪个区域是盲区,小丽坐在哪里,小明就可以看到明她, 二、投影:

投影与视图的知识点

投影与视图 知识点 知识结构框图 1.投影 一般地,用光线照射物体,在某个平面(地面墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.生活中有许多利用投影的例子,如手影表演,皮影戏等。 投影分为平行投影和中心投影. 由一点(点光源)发出的光线形成的投影是中心投影,如位似图。平面为投影面,各射线为投影线,空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线。中心投影后的图形与原图形相比虽然改变较多、但直观性强、看起来与人的视觉效果一致、最像原来的物体、所以在绘画时、经常使用这种方法,但在立体几何中很少用中心投影原理来画图。平行线在经过中心投影后有可能变成了相交的直线如果一个平面图形所在的平面与投射面平行、那么中心投影后得到的图形与原图形也是平行的、由平行光线形成的投影(太阳光等)称为平行投影,它是投射线相互平行的投影。平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两种。当投影线倾斜于投影面时,称斜投影;当投影线垂直于投影面时,称正投影。 光由一点向外散射形成的投影是中心投影,一束平行光线照射下形成的投影是平行投影,那么用灯泡照射物体和用手电筒照射物体形成的投影分别属于哪种投影。 从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。 平行投影和中心投影有什么不同 平行投影;发出来的光线是平行的(如太阳光),对应点的连线是平行的 中心投影:是从一点发出来的光(如灯泡的光)对应点的连线或延长线相交于一点 工程图样一般都是采用正投影 根据投影方法我们可以看到,当直线段平行于投影面时,直线段与它的投影及过两端点的投影线组成一个矩形,因此,直线的投影反映直线的实长。当平面图形平行与投影面时,不难得出,平面图形与它的投影为全等图形,即反映平面图形的实形。由此我们可得出:平行于投影面的直线或平面图形,在该投影面上的投影反映线段

人教版初中数学九年级知识点总结:29投影与视图

【人教版】初中数学九年级知识点总结:29投影与视图 【编者按】本章中我们将了解投影的基础知识,并借助投影的原理认识视图,然后进一步讨论:如何由立体图画出三视图,如何由三视图想象出立体图。通过本章学习,要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念;会画事物的三视图,学会关注生活中有关投影的数学问题,提高数学的应用意识。 一、目标与要求 通过本章知识点的归纳总结,同学们应该熟练掌握以下内容。 1.会从投影的角度理解视图的概念 2.会画简单几何体的三视图 3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系 4.明确正投影与三视图的关系 5.经历探索简单立体图形的三视图的画法,能识别物体的三视图 6.培养动手实践能力,发展空间想象能力。 二、知识框架

三、重点、难点 重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。 难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。 四、知识点、概念总结 1.投影:从初中数学的角度来说,一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影。 中心投影:由同一点(点光源发出的光线)形成的投影。 平行投影与中心投影的区别与联系: 区别联系 光线物体与投影面平行 时的投影 平行投影平行的投 射线 全等都是物体在 光线的照射下,在 某个平面内形成 的影子。(即都是 投影) 中心投影从一点出 发的投射 线 放大(位似变换)

中考数学知识点梳理试题分类汇编视图投影

A B C D 2011中考数学试题分类汇编(15)视图、投影 按住ctrl 键 点击查看更多中考数学资源 (2010哈尔滨)1。下列几何体中,俯视图是三角形的几何体是( ).B (2010珠海)2。一天,小青在校园内发现:旁边一颗树在阳光 下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的 影子恰好落在地面的同一点,同时还发现她站立于树影的中点 (如图所示).如果小青的峰高为1.65 米,由此可推断出树高是_______米. 3.3 1. (2010红河自治州)图1是由大小相同的5 个小正方体搭成的几何体,则它的主视图是 ( B ) 图1 (2010年镇江市)13.下面几何体的俯视图是 (A ) (玉溪市2010)4. 如图1 俯视图 1 3 2

B A D C 形中的数字表示该位置立方体的个数,则这个几何体的主视图是( D ) (2010年兰州)3.已知一个几何体的三种视图如右图所示, 则这个 几何体是 A .圆柱 B .圆锥 C .球体 D .正方体 答案 B (2010年连云港)3.如图所示的几何体的左视图是( ) 答案 B 4. (2010年金华)下图所示几何体的主视图是( ▲ )A A . B . C . D . 3.(2010年长沙)一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是 C A .三棱锥 B .长方体 C .球体 D .三棱柱 10.(2010湖北省咸宁市)一个几何体的三视图完全相同,该几何体可以是 . (写出一个即可) 正面

答案:球、正方体等(写一个即可) 9.(2010年怀化市)长方体的主视图、俯视图 如图3所示(单位:m ), 则其左视图面积是( ) A .42m B .122m C .12m D .32m 答案:D 8.(2010年济宁市)如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是 A . 3个 B . 4个 C . 5个 D . 6个 答案:B (2010年成都)4.如图是一个几何体的三视图,则这个几何体的形状是( ) (A )圆柱 (B )圆锥 (C )圆台 (D )长方体 答案:B 毕节11.观察下列几何体,主视图、左视图和俯视图都是..矩形的是( B ) 图3 (第8题)

【配套K12】北师大版九年级数学上册《投影与视图》知识点归纳

北师大版九年级数学上册《投影与视图》知 识点归纳 投影:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。影子所在的平面称为投影面。 中心投影:手电筒、路灯和台灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。 平行投影:太阳光线可以看成平行的光线,平行光线所形成的投影称为平行投影。 区分平行投影和中心投影:观察光源;观察影子。眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。 提示:点在一个平面上的投影仍是一个点; 线段在一个面上的投影可分为三种情况: 线段垂直于投影面时,投影为一点; 线段平行于投影面时,投影长度等于线段的实际长度; 线段倾斜于投影面时,投影长度小于线段的实际长度。 平面图形在某一平面上的投影可分为三种情况: 平面图形和投影面平行的情况下,其投影为实际形状; 平面图形和投影面垂直的情况下,其投影为一线段; 平面图形和投影面倾斜的情况下,其投影小于实际的形状。

正投影:平行光线与投影面垂直,这种投影称为正投影。 视图:用正投影的方法绘制的物体在投影面上的图形,称为物体的视图。 在实际生活的工程中,人们通常从正面、左面和上面三个不同方向观察一个物体,分别得到这个物体的三个视图。这本个视图是常见的正投影,是当光线与投影垂直时的投影。 三个视图包括:主视图、俯视图和左视图。 主视图:从正面得到的视图。反映物体的长和高 俯视图:从上面视得的视图。反映物体的长和宽 左视图:从左面视得的视图。反映物体的高和宽 提示:在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。 三视图之间要保持长对正,高平齐,宽相等。 一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。 视图中每一个闭合的线框都表示物体上一个表面,而相连的两个闭合线框一定不在一个平面上。 在一个外形线框内所包括的各个小线框,一定是平面体上凸出或凹的各个小的平面体。

初三-上册第五章投影与三视图知识点

名师精编优秀资料 投影与视图; 一.投影: 1.光源 点光源:像手电筒、路灯、台灯都可以看成一个点光源。 平行光源:太阳光可以看成是一个平行光源 2.概念 定义:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。 (1)平行投影: 由平行光线(太阳的光线是平行光线)形成的投影。 (2)中心投影: 由同一点(点光源发出的光线)形成的投影。 (3)两者区别与联系: 区别 光线物体与投影面平行 联系 时的投影 平行投影平行的投射线全等都是物体在光 线的照射下,在某中心投影从一点出发的投射线放大(位似变换) 个平面内形成的影 子。(即都是投影) 3.投影知识点: 测量同一时刻物体的高度和影长时: ①若两物体的高度之比等于影长之比时,则这两个物体的影子是平行投影。 ②若两物体的高度之比不等于影长之比时,则这两个物体的影子是中心投影 4.投影的性质: ①将两个等高物体垂直于与地面放置时,离点光源较近的物体的影子较短,反之则越长。 ②将两个等高物体平行于与地面放置时,离点光源较近的物体的影子较长,反之则越短。5.易错题整理: 1)直线的平行投影一定是直线(×)原因: 2)矩形的投影一定是矩形(×)原因: 3)一个圆在平面上的投影一定是圆。(×)原因: 二.视图: 1.概念: 用正投影的方法绘制的物体在投影面上的图形,称为物体的视图。 2.分类: 视图有:主视图、左视图、俯视图 3.正方体的主要视图及展开: 正方体的展开图有11种: 1)1-4-1型:6种 2)2-3-1型:3种 3)2-2-2型:1种 4) 3-3 型:1种 4.看视图确定物体有多少正方体组成:在俯视图中画圈标注法,取较小数值的和。

投影基本知识习题及答案

一、填空题 1、工程上常采用的投影法是中心投影法和平行投影法,其中平行投影法按投射线与投影面是否垂直又分为正投影和斜投影法。 2、当直线平行于投影面时,其投影直线,这种性质叫真实性,当直线垂直投影面时,其投影点,这种性质叫积聚性,当平面倾斜于投影面时,其投影平面,这种性质叫类似性。 3、主视图所在的投影面称为正立面投影面,简称正立面,用字母V 表示,俯视图所在的投影面称为水平投影面,简称水平面,用字母H 表示。左视图所在的投影面称为侧立投影面简称侧立面,用字母W 表示。 4、三视图的投影规律是:主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图宽相等。 6、直线按其对三个投影面的相对位置关系不同,可分为投影面垂直线、投影面平行线、一般位置直线。 7、与一个投影面垂直的直线,一定与其它两个投影面平行,这样的直线称为投影面的投影面垂直线。 8、与正面垂直的直线,与其它两个投影面一定平行,这样的直线称为正垂线。 9、与一个投影面平行,与其它两个投影面倾斜的直线,称为投影面的投影面平行线,具体又可分为正平线、水平线、侧平线。 10、与三个投影面都倾斜的直线称为一般位置直线。 11、空间平面按其对三个投影面的相对位置不同,可分投影面垂直面、投影面平行面、一般位置面 12. 正垂面与正面垂直,与水平面倾斜,与侧面倾斜,正垂面在正面投影为直线,在水平面和侧面投影为投影面的类似性。 13.正平面与正面,与水平面,与侧面,正平面在正面投影为,在水平面投影和侧面投影为。

14.参照图下图中的立体图,在三视图中填写物体的六个方位。(填前、后、左、右、上、下) 二、选择题(12分) 1.下列投影法中不属于平行投影法的是( A ) A 、中心投影法 B 、正投影法 C 、斜投影法 2、当一条直线平行于投影面时,在该投影面上反映( A ) A 、实形性 B 、类似性 C 、积聚性 3、当一条直线垂直于投影面时,在该投影面上反映( C ) A 、实形性 B 、类似性 C 、积聚性 4、在三视图中,主视图反映物体的( B ) A 、长和宽 B 、长和高 C 、宽和高 5、主视图与俯视图( ) A 、长对正 B 、高平齐 C 、宽相等 6、主视图与左视图( B ) A 、长对正 B 、高平齐 C 、宽相等 7、为了将物体的外部形状表达清楚,一般采用(A )个视图来表达。 A 、三 B 、四 C 、五 8、三视图是采用( B )得到的 A 、中心投影法 B 、正投影法 C 、斜投影法 9、当一个面平行于一个投影面时,必( B )于另外两个投影面 A 、平行 B 、垂直 C 、倾斜 10、当一条线垂直于一个投影面时,必( C )于另外两个投影面 A 、平行 B 、垂直 C 、倾斜 上 下 左 前 右 后

投影与视图知识点总复习附答案

投影与视图知识点总复习附答案 一、选择题 1.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D. 【答案】C 【解析】 试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯 视图都是,故选C. 2.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是() A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【答案】B 【解析】 【分析】 根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案. 【详解】 主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变; 左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变; 俯视图底层的正方形位置发生了变化. ∴不改变的是主视图和左视图. 故选:B. 【点睛】 本题考查了简单组合体的三视图,利用三视图的意义是解题关键.

3.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为( ) A .48 B .57 C .66 D .48236+ 【答案】C 【解析】 【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得. 【详解】 由题意,画出长方体如图所示: 由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形 AC BC ∴= 22218AC BC AB +==Q 3AC BC ∴== 则这个长方体的表面积为24233434184866AC BC AC CE ?+?=??+??=+= 故选:C . 【点睛】 本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键. 4.一个几何体的三视图如图所示,则这个几何体的表面积是( )

投影与视图—知识讲解

投影与视图—知识讲解 【学习目标】 1.在观察、操作、想象等活动中增强对空间物体的把握和理解能力; 2.通过实例了解中心投影与平行投影; 3.会画直棱柱、圆柱、圆锥和球的三种视图; 4.能根据三种视图描述简单的几何体. 【要点梳理】 要点一、投影 1.投影现象 物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面. 2. 中心投影 手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线照射在物体上所形成的投影,称为中心投影. 相应地,我们会得到两个结论: (1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长. (2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短. 在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置. 要点诠释: 光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧. 3.平行投影 1.平行投影的定义 太阳光线可看成平行光线,平行光线所形成的投影称为平行投影. 相应地,我们会得到两个结论: ①等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长. ②等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.

2. 物高与影长的关系 ①在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长. ②在同一时刻,不同物体的物高与影长成正比例. 即:. 利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等. 注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长. 要点诠释: 1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻. 2.物体与影子上的对应点的连线是平行的就说明是平行光线. 4、正投影 如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,当平行光线与投影面垂直时,这种投影称为正投影. 要点诠释: 正投影是特殊的平行投影,它不可能是中心投影. 要点二、中心投影与平行投影的区别与联系 1.区别: (1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例. (2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向. 2.联系: (1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线. (2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化. 要点诠释: 在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.

投影与三视图知识点总结汇编

投影与三视图 一、视角与盲区 如图,小明眼睛的位置称为视点 由视点出发的线称为视线, 两条视线的夹角称为视角. 小明看不到的地方称为盲区。 哪个区域是盲区? 小丽坐在哪里,小明就可以看到明她? 二、投影: 1、定义:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。 (1)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影。 (2)中心投影:由同一点(点光源发出的光线)形成的投影。 (3)两者区别与联系: 区 别 联系 光线 物体与投影面平行时的投影 平行投影 平行的投射线 全等 都是物体在光线的照射下,在某个平面内形成的影子。(即都是投影) 中心投影 从一点出发的投射线 放大(位似变换) 例1. 有两根木棒AB 、CD 在同一平面上竖着,其中AB 这根木棒在太阳光下的影子BE 如下图所示,则CD 这根木棒的影子DF 应如何画? 分析:利用平行投影的相关性质。 解析:画法: (1)连接AE 小明 小丽

(2)过点C作CF//AE (3)过点D作DF//BE,交CF于F,则DF即为所求。 点评:要解决此题首先要知道这两个物体都是竖直在地面上,而且是由太阳光即平行光所照射,则可知连接AE,过C点作CF平行AE,作DF//BE,交点为F,则DF为所求CD的影子。通过本题理解平行投影的性质。 三、简单物体的三视图: 1、正投影:在平行投影中,如果投射线垂直于投影面产生的投影。物体正投影的形状、大小与它相对于投影面的位置和角度有关。 如图所示,三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。可见只用一个方向的投影来表达形体形状是不行的。 2、三视图就是主视图、俯视图、左视图的总称。 (1)从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状。(2)从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状。(3)从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。 三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。 3.投影规则:主俯长对正、主左高平齐、俯左宽相等。(图2) 4. 三视图-画法: 根据各形体的投影规律,逐个画出形体的三视图。画形体的顺序:一般先实(实形体)后空(挖去的形体);先大(大形体)后小(小形体);先画轮廓,后画细节。画每个形体时,要三个视图联系起来画,并从反映形体特征的视图画起,再按投影规

初中数学第二十九章投影与视图知识点

第29章投影与三视图 一、目标与要求 1.会从投影的角度理解视图的概念 2.会画简单几何体的三视图 3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系 4.明确正投影与三视图的关系 5.经历探索简单立体图形的三视图的画法,能识别物体的三视图 6.培养动手实践能力,发展空间想象能力。 二、知识框架 四、重点、难点 重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。 难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。 四、中考所占分数及题型分布 本章在中考中会出1道选择或者填空,也有可能不出。在简答题中会在几何题中穿插应用,本章约占3-5分。

第29章 投影与三视图 29.1 投影 1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。 2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影. 3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。 4.正投影:投影线垂直于投影面产生的投影叫做正投影。 例.把一根直的细铁丝(记为线段AB)放在三个不同位置: (1)铁丝平行于投影面; (2)铁丝倾斜于投影面; (3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点). 三种情形下铁丝的正投影各是什么形状? 通过观察、测量可知: (1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =; (2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =; (3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A . 例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置: (1)纸板平行于投影面; (2)纸板倾斜于投影面; (3)纸板垂直于投影面。 三种情形下纸板的正投影各是什么形状?

投影与视图(知识点+题型分类练习)

投影与视图 知识梳理 【知识网络】 【考点梳理】 一、投影 1.投影 用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面. 2.平行投影和中心投影 由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.(1)平行投影:平行光线照射形成的投影(如太阳光线)。当平行光线垂直投影面时叫正投影。 投影三视图都是正投影。 (2)中心投影:一点出发的光线形成的投影(如手电筒,路灯,台灯) 3.正投影 投影线垂直投影面产生的投影叫做正投影. 要点诠释:正投影是平行投影的一种. 二、物体的三视图 1.物体的视图 当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图. 我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.

一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图. 要点诠释:三视图就是我们从三个方向看物体所得到的3个图象. 2.画三视图的要求 (1)位置的规定:主视图下方是俯视图,主视图右边是左视图. (2)长度的规定:长对正,高平齐,宽相等.画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线。三个图的位置展示: 要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.(1)主视图: 三视图(2)左视图: (3)俯视图:

投影与视图专题练习 类型一:平行投影 1.有两根木棒AB、CD在同一平面上竖着,其中AB这根木棒在太阳光下的影子BE如图(1)所示,则CD这根木棒的影子DF应如何画 2.如图所示,某居民小区内A、B两楼之间的距离MN=30米,两楼的高都是20米,A楼在B楼正南,B楼窗户朝南.B楼内一楼住户的窗台离小区地面的距离DN=2米,窗户高CD=米.当正午时刻太阳光线与地面成30°角时,A楼的影子是否影响B楼的一楼住户采光若影响,挡住该住户窗户多高若不影响,请说明理由.(参考数据:2≈,3≈,5≈) 3.如图所示,在一天的某一时刻,李明同学站在旗杆附近某一位置,其头部的影子正好落在旗杆脚处,那么你能在图中画出此时的太阳光线及旗杆的影子吗 4.已知,如图所示,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影.

九年级下册数学《投影与视图》知识点整理

投影与视图 有疑问的题目请发在“51加速度学习网”上,让我们来为你解答 51加速度学习网整理一、本节学习指导 本节知识点非常简单,同学们了解投影及、三视图的概念和特点即可。 二、知识要点 1、投影 (1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。 (2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影(parallel projection). (3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。 (4)正投影:投影线垂直于投影面产生的投影叫做正投影。 注:物体正投影的形状、大小与它相对于投影面的位置有关。 2、三视图 (1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。 将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。 (2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。 一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。三视图是从

投影视图知识点汇总

投影视图知识点汇总公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

投影视图知识点汇总 【编者按】本章中我们将了解投影的基础知识,并借助投影的原理认识视图,然后进一步讨论:如何由立体图画出三视图,如何由三视图想象出立体图。通过本章学习,要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念;会画事物的三视图,学会关注生活中有关投影的数学问题,提高数学的应用意识。 一、目标与要求 通过本章知识点的归纳总结,同学们应该熟练掌握以下内容。 1.会从投影的角度理解视图的概念 2.会画简单几何体的三视图 3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系 4.明确正投影与三视图的关系 5.经历探索简单立体图形的三视图的画法,能识别物体的三视图 6.培养动手实践能力,发展空间想象能力。 二、知识框架 三、重点、难点

重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。 难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。 四、知识点、概念总结 1.投影:从初中数学的角度来说,一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。 平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影。 中心投影:由同一点(点光源发出的光线)形成的投影。 平行投影与中心投影的区别与联系: 正投影:投影线垂直于投影面产生的投影。物体正投影的形状、大小与它相对于投影面的位置和角度有关。 斜投影:投影线不平行于投影面产生的投影。

投影与视图经典题型总结(精)

数学学科教学案 教师: 学生: 日期: 星期: 时段:_______课题投影与视图 学习目标与考点分析1、经历由实物抽象出几何体的过程,进一步发展空间观念。 2、会画圆柱,圆锥,直棱柱的三视图,体会这几种几何体与其视图之间的相互转化 3、了解投影、投影面、中心投影、平行投影的概念、体会投影在生中的应用。 学情分析部分知识点比较薄弱。 学习重难点1、会画圆柱,圆锥,直棱柱的三视图。 2、体会这几种几何体与其视图之间的相互转化。 教学方法引导发现、精题剖析。 知识点一:三视图 1、画物体的三视图时,应首先确定的位置,画出,然后在主视图的下 面画出,在主视图的右面画出。 2、主视图反映物体的和,俯视图反映物体的和,左视图反映物体的 和,因此在画三视图时,主、俯视图要 ......对正,主、左视图要 .........平齐,左、俯视图要 ......... 相等 .. 3、在画视图时,看得见部分的轮廓线要画成线,看不见部分的轮廓线要画成线。 知识点二:投影 1、一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子 ..叫做物体的________,照射光线叫做________,投影所在的平面叫做___________。 2、有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是_____________。 3、太阳光与影子的关系:物体在太阳光照射的不同时刻,不但影子的大小在变化,而且影子的方向也在变化,在早晨太阳位于正东方,此时的影子较长,位于_______:在上午,影子随着太阳位置的变化,其长度逐渐变短,方向向正北方向移动;中午影子最短,方向正北;下午,影子的长度又逐渐______,其方向向正东移动。 3、由同一点(点光源发出的光线)形成的投影叫做__________。 4、投影线垂直于投影面产生的投影叫做_________。 5、产生中心投影光源的确定:分别自两个物体的顶端及其影子的顶端作_________,这两条直线的________,即为光源的位置。

初三-上册 第五章 投影与三视图知识点

新天宇培训学校初三第五章投影与视图 ___________________________________________________________________________________________________________ 投影与视图; 一.投影: 1.光源 点光源:像手电筒、路灯、台灯都可以看成一个点光源。 平行光源:太阳光可以看成是一个平行光源 2.概念 定义:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。 (1)平行投影: 由平行光线(太阳的光线是平行光线)形成的投影。 (2)中心投影: 由同一点(点光源发出的光线)形成的投影。 (3)两者区别与联系: 区别 光线物体与投影面平行 联系 时的投影 平行投影平行的投射线全等都是物体在光 线的照射下,在某中心投影从一点出发的投射线放大(位似变换) 个平面内形成的影 子。(即都是投影) 3.投影知识点: 测量同一时刻物体的高度和影长时: ①若两物体的高度之比等于影长之比时,则这两个物体的影子是平行投影。 ②若两物体的高度之比不等于影长之比时,则这两个物体的影子是中心投影 4.投影的性质: ①将两个等高物体垂直于与地面放置时,离点光源较近的物体的影子较短,反之则越长。 ②将两个等高物体平行于与地面放置时,离点光源较近的物体的影子较长,反之则越短。5.易错题整理: 1)直线的平行投影一定是直线(×)原因: 2)矩形的投影一定是矩形(×)原因: 3)一个圆在平面上的投影一定是圆。(×)原因: 二.视图: 1.概念: 用正投影的方法绘制的物体在投影面上的图形,称为物体的视图。 2.分类: 视图有:主视图、左视图、俯视图 3.正方体的主要视图及展开: 正方体的展开图有11种: 1)1-4-1型:6种 2)2-3-1型:3种 3)2-2-2型:1种 4) 3-3 型:1种 4.看视图确定物体有多少正方体组成:在俯视图中画圈标注法,取较小数值的和。

相关主题