搜档网
当前位置:搜档网 › 作物育种学名词解释

作物育种学名词解释

作物育种学名词解释
作物育种学名词解释

作物育种学名词解释

作物育种学:研究选育和繁殖作物优良品种的理论与方法的科学。

作物品种:人类在一定生态条件和经济条件下,根据自身需要所选育的某种作物群体。该群体具有相对稳定的遗传特性(稳定性,Stability ),同时在生物学、形态学及经济性状上具有相对的一致性(一致性,Uniformity),并在这些性状上与同一作物的其他群体有所区别(特异性, Distinctness)

种(species):具有一定的自然分布区和一定的生理化、形态特征的生物群,是分类的基本单位。种内个体具有相同的遗传性状,可以彼此交配产生后代,种间存在生殖隔离。

亚种(subspecies):不同分布区的同一种植物,由于生境不同导致两地植物在形态结构或生理功能上存在差异。

变种(variety):具有相同分布区的同一种植物,由于微生境不同导致植物间具有可遗传的差异。

作物品质:指作物经济器官满足人类需求的程度。

株型:指作物的茎、枝、叶等主要光和器官在植株上的着生态势。

合理的株型可使作物充分利用光能资源,提高有机物的合成,为高产打好基础。

有性繁殖(Sexually propagating):由雌雄配子结合,经过受精过程形成种子繁衍后代的繁殖类型。自花授粉(self-pollination )异花授粉(cross-pollination )常异花授粉(often-cross pollination )

无性繁殖(Asexually propagating ):不经过两性配子的受精过程繁衍后代的繁殖类型。

自花授粉同一花朵内花粉传到同一朵花的雌蕊柱头,或同一株的花粉传到同株的雌蕊柱头上的授粉方式。

异花授粉雌蕊柱头接受异株花粉受精的授粉方式

常异花授粉:同时依靠自花授粉和异花授粉两种方式繁衍后代的授粉方式。

自交不亲和性:具有两性花并可形成正常雌、雄配子的某些植物,缺乏自花授粉结实能力的一种自交不育性。自交不亲和性是一种受遗传控制的、提高植物自然异交率的特殊适应性。雄性不育性:植物花粉败育,不能产生有功能的雄配子的特性。

营养体繁殖:利用植物营养器官的再生能力,使其长成新的植物体的繁殖方式。

无性系(clone):由营养体繁殖的后代。

无融合生殖:不经过受精,即不经过雌、雄配子融合而形成种子繁衍后代的繁殖方式。

无孢子生殖:无大孢子形成,有胚珠中不同位置的体细胞进行有丝分裂直接形成二倍体胚囊,最后形成种子的生殖方式。

二倍性孢子生殖:大孢子母细胞不经减数分裂而进行有丝分裂形成二倍体胚囊,最后形成种子。

不定胚生殖:由珠心或子房壁的二倍体细胞经过有丝分裂形成胚,由正常胚囊中的极核发育形成胚乳,从而形成种子。

孤雌生殖:胚囊中的卵细胞未与精核结合直接发育成单倍体胚,育正常胚乳形成单倍体种子。孤雄生殖:进入胚囊中的精核未与卵细胞结合而直接发育成单倍体胚,育正常胚乳形成单倍体种子。

自交衰退:杂合基因型的作物,自交后代的生活力减退,称为自交衰退。表现为生长力下降,繁殖力、抗逆性减弱,产量降低等。

近等基因系:一组遗传背景相同,只在个别性状上存在差异的自交系品种。

重组近交系(recombinant inbred strain RI):指由两个近交系杂交后,经连续20代以上兄妹交配培育成的近交系,称重组近交系

引种(crop introduction ): 广义的引种是指从外地或外国引进新植物、新作物、新品种、品系以及供研究用的各种遗传资源材料。作为育种途径之一的引种是指从将外国或外地的作物品种、品系,通过适应性试验证明适合本地区栽培后,直接引入并在本地推广种植的方法。 驯化(crop domestication ):指通过搜集、引进种质资源,在人类的选择培育下,使野生植物成为栽培植物;使外地的作物品种成为本地的作物和品种的措施和过程。

气候相似论:某作物原产地区与引进地区之间,在影响作物生产的主要气候因素上,应相似到足以保证作物品种互相引种成功时,引种才有成功的可能性。

生态因素:作物生存繁衍的环境条件中,对作物生长发育有明显影响和直接为作物所同化的因素称为生态因素。包括气候、土壤、生物因素等。

生态环境:各种生态因素构成一个相互作用、相互影响的复合体,复合体中的每一因素对作物的影响都不是孤立的,而是通过复合体起综合作用,这一复合体称为生态环境。

生态型:一种作物在一定的生态环境作用下所形成的遗传适应性品种类群,称为该作物的生态类型。

生态区:对于一种作物具有大致相同的生态环境的地区,称为生态区。

个体(单株)选择法:在原始品种群体中,选择优良个体(单株、单穗、单铃),分别收获、脱粒,下一季节分别播种成株行,进行比较鉴定,淘汰不符合要求的株行,选择优良株行。 混合选择法:从原始品种群体中,根据一定的性状(如成熟期、株高、产量等)表现,选择优良个体,混合脱粒,下季混合播种,并与原始品种和对照品种进行比较。

选择育种:人为选择作物品种在种植和引种过程中群体内自然发生的优良遗传变异,从而培育新品种的过程。

系统育种:应用单株选择法对自花授粉、常异花授粉和无性繁殖作物进行的选择育种又称系统育种。

倍性育种:以人工诱发植物染色体数目发生变异后所产生的遗传效应为根据的育种技术,包括多倍体育种、单倍体育种。

染色体组:一个属内各个种所特有的、维持其生活机能的最低限度的一组染色体。 多倍体:凡是体细胞中具有三个和三个以上染色体组的植物。

二倍体:含有两套染色体, 分别来自父本和母本

单倍体:指体细胞中含有本物种配子染色体数目的个体

诱变育种:利用物理或化学因素人为诱发植物发生可遗传性变异,然后根据育种目标进行选择,从而育成新品种或获得新的种质资源的方法。

半致死剂量(LD50):诱变处理后,植株能开花结实存活一半的剂量。

半致矮剂量(D50):诱变处理后,植株生长受到抑制,苗高降低到对照的一半所需的剂量。 临界剂量:诱变处理后植株成活率约40%的剂量。

突变率(Mutation Rate) 是指一定的基因在单位时间内(如每一个世代)发生突变的几率。突变率一般通过突变频率或突变体频率进行估测。

突变频率(Mutation Frequency) 突变频率是指在一生物群体中一定时间内发生的突变类型显现几率。 突变频率(%)= × 100

突变体频率(Mutant Frequency )是指在某一群体内所有突变类型突变体出现的频率。 M 2代出现的突变数 M 2代穗(株)行数

突变体频率(%)=

× 100

突变谱(Mutation Spectrum) 指作物经诱变处理所产生的各种突变类型多少。

核心种质(Core Germplasm ) 又称核心样品( Core Collection )。它是指用最小的种质资源样品最大程度地代表种质资源的遗传多样性。

不完全双二倍体(partial amphiploid) :由双亲的一部分染色体组结合而成的新物种。

异附加系:在一个物种正常染色体组的基础上添加另一个物种的一对或两对染色体而形成一种新类型。

异代换系:某物种的一对或几对染色体被另一物种的一对或几对染色体代换后的新类型。 易位系:某物种的一段染色体被另一物种的一段染色体所代换后形成的新类型。

回交育种:两个品种杂交后,子一代与其亲本之一再进行杂交,称为回交。采用连续回交改进品种的个别性状的育种方法 ,称为回交育种。

轮回亲本:用于多次回交的亲本称轮回亲本(亲本A );

非轮回亲本:只在第一次杂交时应用的亲本称非轮回亲(亲本B )。

受体亲本:有利性状(目标性状)的接受者,称受体亲本(亲本A );

供体亲本:目标性状的提供者,称供体亲本(亲本B ) 。

协同进化自然条件下寄主植物与寄生物各具遗传多样性,并且各有独立的遗传系统,双方通过相互适应和选择而协同进化。

定向选择:抗病品种大面积推广应用后,相应的毒性小种便会大量繁殖增多,形成优势小种,最终导致品种抗病性丧失。

稳定化选择:感病品种面积扩大时,强毒性小种适应性差,竞争不过无毒性或弱毒性小种而使频率降低,无毒性或弱毒性小种频率升高,不能形成优势小种。

避病(Escape )寄主品种在一定条件下避开病原菌的侵染而未发病的现象称为避病,包括时间避病和空间避病两类。

时间避病 易受感染的生育期错开了病原菌侵染的高峰期或适于发病的环境条件。

空间避病 因寄主作物的株型、组织结构、开花习性等阻碍了病原菌与寄主的接触而表现不发病或发病较轻。

耐病(tolerance )当某一寄主品种被病原菌侵染,其发病程度与感病品种相当,但产量、籽粒饱满度及其他农艺性状等不受损害或影响较小,这类品种称为耐病品种。

抗病(Resistance ):当出现某种病害流行时,农作物品种对这种病害不感染或感染较轻,生长发育和农艺性状受害较小,该品种则具有抗病性。

过敏性坏死反应(hypersensitive necrosis reaction )是寄主对病原菌抗扩展反应的一种重要类型,当病原菌侵人具有这种抗性的植物体内时,受侵染细胞及其邻近细胞高度敏感,原生质体迅速坏死,形成枯死斑,病原菌被封杀在枯斑组织中不能扩展。这种抗性多由单基因控制,对病原菌表现为高抗或免疫,是抗病育种中利用最多的一种抗病性。

免疫(Immune ):指完全抗性,寄主植物没有任何病征。

感病(Susceptibility ):病原菌侵人寄主体内建立寄生关系并大量繁殖,寄主表现出明显病征。

毒性(virulence ):病原菌能克服某一专化抗病基因而侵染某品种的特殊能力。是一种质量性状,因某种毒性只能克服其相应的抗病性,所以又称为专化性致病性(specific pathogenecity )。

侵袭力(agressivenese ):在能够侵染寄主的前提下,病原菌在寄生生活中的生长繁殖速率M 2代出现的突变株数 M 2代群体的总株数

和强度。是一种数量性状,它没有专化性,即不因品种而异,故又称非专化性致病性(non specific pathogenecity)

生理(毒性)小种(physiological race)

同一种病原菌可以分化成许多类型,不同类型之间对某一品种的专化致病性有明显差异,这种根据病原菌致病性差别划分出的类型,就是生理小种,也称毒性小种。

鉴别寄主:用于鉴别不同生理小种的一套寄主作物品种。

异核现象(heterokaryosis)不同生理小种的菌丝或芽管联结,进行核交换,使单个菌丝的细胞或孢子中含有遗传性质不同的核。具有异核的个体叫异核体。

拟性重组(parasexual recombination)异核体中的两个异质核发生融合,形成杂合二倍体,杂合二倍体在有丝分裂过程中进行单倍体化和有丝分裂交换,产生遗传性不同于亲本的单倍体后代,这种基因重组叫拟性重组。

垂直抗病性(vertical resistance)寄主品种对病原菌某个或少数生理小种免疫或高抗,而对另一些生理小种则高度感染。又称小种特异性抗病性或专化性抗性。

水平抗病性(horizontal resistance)又称非小种特异性抗病性和非专化性抗性,即寄主的某个品种对所有小种的反应是一致的,对病原菌的不同小种没有特异反应或专化反应。

群体改良(Population Improvement)对变异群体进行周期性选择和重组来逐渐提高群体中有利基因和基因型的频率,以改进群体综合表现的育种方法。

轮回选择:通过循环式多次交替进行选择和互交改进作物群体遗传结构,以提高群体中有利基因频率的育种方法。

表型轮回选择:在异花授粉作物群体中,根据单株表现型进行周期性的选择,称为表现型轮回选择。

半同胞家系轮回选择(Half-sib Family Recurrent Selection):中选的植株和一个共同的测验种进行测交(测交后代组成半同胞家系),鉴定每一株半同胞后代的性状表现,表现好的中选个体互交形成一个新的群体。

自交后代选择(S1 or S2 family recurrent selection):根据自交后代的性状表现进行的群体内改良的方法。

群体间改良的轮回选择法:同时对两个群体进行改良的轮回选择方法,通过两个群体的改良,使它们的优缺点能够互相补充,从而提高两个群体的杂种优势。

综合品种(synthetic cultivar):根据配合力测定选出相当数量的自交系,在隔离条件下经过几轮随机交配所形成的群体品种。这些品种由天然授粉保持其典型性和某种程度的杂种优势。

杂种优势:两个或几个遗传性不同的亲本杂交所产生的杂种,在生长势、体积、结实性、发育速度以及对不良环境条件的抗性等方面优于亲本的现象。

中亲优势(超均优势)(mid—parent heterosis):指杂种F1的产量或某一数量性状的数值与双亲(P1和P2)同一性状的平均值差数的比率。

F1-(P1+P2)/2

中亲优势(%)= ------------------- ⅹ100%

(P1+P2)/2

超高亲优势(over high parent heterosis):指杂种F1的产量或某一数量性状的数值与高值亲本(HP)同一性状数值差值的比率。

F1-HP

超高亲优势(%)= -----------------ⅹ100%

HP

超低亲优势(over low parent Heterosis): 指杂种F1的产量或某一数量性状的数值与低高

值亲本(LP)同一性状数值差值的比率。

F1-LP

超低亲优势(%)= --------------ⅹ100%

LP

超标优势(over-standard heterosis):指杂种F1的产量或某一数量性状的数值与当地推广品种或对照品种(CK)同一性状数值差值的比率。

F1 - CK

超标优势(%)=-------------------ⅹ100%

CK

杂种优势指数(index of heterosis): 指杂种F1的产量或某一数量性状的数值与双亲(P1和P2)同一性状的平均值的比率。

F1

杂种优势指数(%)= -------------------ⅹ100%

(P1+P2)/2

原始材料:地方品种和推广品种、各类杂交种、综合品种或人工组成的群体。

一环系(first cycle line):从品种群体和品种间杂交种选育的自交系。

二环系(second cycle line):从自交系间杂交种选育的自交系。

一般配合力(GCA):一个被测自交系和其它自交系组配的一系列杂交组合表型值的平均表现。

特殊配合力(SCA):某一特定组合的表型值与用该组合双亲一般配合力效应预测值的偏差。测交(test crossing):测定自交系配合力所进行的杂交。

测验种(tester):测交所用的共同亲本。

测交种(test cross variety):测交所得后代。

顶交种:品种—自交系间杂交种是用自由授粉品种和自交系组配的杂交种,又称顶交种

核质杂交种:通过核代换将不同种属的细胞质和细胞核结合在一起的可育材料。异源质核结合后可产生一定杂种优势。

标记性状制种:利用作物特殊的形态上标记性状,区分真假不育系及真伪杂种。有显性的(如水稻的紫色叶枕,小麦的红色芽鞘、高粱的紫色芽鞘、棉花的红叶和鸡爪叶等);有隐性的(棉花的芽黄和无腺体)

质核互作雄性不育是受细胞质不育基因和对应的细胞核不育基因共同控制的不育类型,常被简称为胞质不育(CMS)

雄性不育系:具有雄性不育特征的品种或自交系。S(rr)

雄性不育保持系:给不育系授粉使后代保持雄性不育特性的类型。N (rr)

雄性不育恢复系:具有恢复不育系育性能力的类型。S(RR);N (RR)

孢子体不育花粉育性的表现由孢子体的基因型控制,与配子本身的基因无关。当母本基因型为S(rr)时,花粉全部败育。当母本基因型可育时,花粉全部可育。不育系与恢复系杂种F2会发生育性的分离。

配子体不育花粉的育性受配子体本身基因型控制。不育系与恢复系杂种F2不出现育性的分离。

隐性核雄性不育的遗传一般核不育基因是隐性的,而正常品种具有显性可育基因,所以核不育的恢复品种很多,但保持品种没有,不能实现三系配套。

隐性核不育后代分离符合孟德尔定律。

显性核雄性不育的遗传不育性受一对显性基因(MsMs)控制时,用带隐性基因(msms)的可育材料与它杂交,杂种全部植株都是雄性不育的,继续用可育系(msms)与它杂交,

杂种呈现1:1分离,这个分离群体内同胞交,从不育株上所收种子种成群体,可育株与不育株各占一半,单基因控制的显性核不育可以作为自花授粉作物进行轮回选择的异交工具,但是一般不用于杂种优势利用,因为它不能得到稳定的不育系。

回交转育在已有不育系或不育材料的基础上,为了丰富不育系的类型,可用回交转育的方法选育同质异核的新不育系。

人工制保利用大田发现的不育株或人工诱变获得的不育株,可以通过杂交、项交、自交、测交进行人工制保。

杂交育种:用基因型不同的亲本材料,通过有性杂交,使符合育种目标的性状在杂种后代中组合在一起,经过对杂种后代的选择培育新品种的方法。

组合育种:将分属不同品种、控制不同性状的优良基因随机结合后,通过定向选择选育集双亲优点于一体的新品种。其遗传机理为基因重组和互作。

超亲育种:将双亲中控制同一性状的不同微效基因累积于一个杂种个体,形成在该性状上超过亲本的类型。其遗传机理为基因累加和互作。

单交(成对杂交): 两个亲本进行的杂交。表示方式:A×B 或A/B。

复交(复合杂交):两个以上亲本间的二次以上的杂交。

遗传标记:用于研究基因遗传变异规律的可识别的等位基因

1Restriction Fragment Length Polymorphism (RFLP,限制性片段长度多态性)利用放射性或非放射性物质标记探针,与转移于支持膜上的经特定限制性内切酶消化的基因组DNA杂交,通过显示限制性片段的长度多态性来检测生物个体间差异的分子标记技术。

RAPD: random amplified polymorphic DNA以随机的寡核苷酸序列(通常为10个碱基)作引物,通过PCR扩增,产生不连续的DNA扩增产物,用于检测DNA序列的多态性。Microsatellite Marker or Simple Sequence Repeat (SSR,微卫星标记) 其基础是动植物基因组中串联重复DNA序列重复次数的改变而引起重复DNA片段大小的变异。散布于真核生物基因组中,在高等植物中具有高度多态性. 由于每个微卫星DNA的两端一般是相对保守的单拷贝序列,据此可通过设计一对特异引物扩增每个位点的微卫星序列,再经聚丙烯酰胺凝胶电泳,比较扩增产物的长度变化,即可显示不同基因型的个体再每个微卫星位点的多态性。Amplified Fragment Length Polymorphism (AFLP, 扩增片段长度多态性)AFLP是一种将RFLP和PCR相结合检测限制性片段长度多态性的分子标记技术.

Sequence tagged site(STS,序列标定位点)STS是指基因组中长度为200-500bp,且核苷酸顺序已知的单拷贝序列,通过PCR可将其专一扩增出来。其基本原理是,依据两端序列,设计合适的引物,进行PCR扩增,电泳显示扩增产物多态性。

single nucleotide polymorphism(SNP,单核苷酸变异)染色体基因组水平上某个特定位置单碱基的置换、缺失、或插入引起的序列变异。

转基因育种利用现代植物基因工程技术将某些与作物高产、优质和抗逆性状相关的基因导入受体作物中以培育出具有特定优良性状的新品种。

共抑制:向受体植物种导入一个与受体内某基因同源的基因,导入的基因及受体内与它同源的基因表达都可能减弱的现象。

基因沉默:转基因植株由于外源基因的结构被破坏或者外源基因插入了染色体异染色质区域,出现外源基因序列不表达。

重组DNA(recombinant DNA)技术:用人工方法在体外对DNA进行切割、连接、重组成杂合DNA分子的技术.

基因工程(gene engineering) 用人工方法,对DNA(基因)分子在体外(in vitro)进行切割、连接、组成重组DNA分子.再导入生物体内,并使其在异种生物内复制、表达,从而使受体生物获得新的遗传性状,这一全过程称为基因工程

逆境:对植物生长发育有不利影响的环境因素

环境胁迫:逆境对植物生长发育的影响称为环境胁迫

植物细胞工程(plant cell engineering)以植物组织和细胞培养技术为基础,以细胞为单位,在体外(in vitro)条件下进行培养,按人们的意愿改变细胞内的遗传结构或获得细胞产品的一门综合技术。

体细胞无性系变异:植物体细胞发生的可遗传变异

变异体:不加任何选择压力而筛选出的变异个体

突变体:经过施加某种选择压力而筛选出的个体

不对称体细胞杂交:利用射线将供体原生质体钝化,并破坏其染色质,与未经辐照的受体原生质体融合。由于所得融合产物含全套受体染色体及部分供体染色体,故称不对称体细胞杂种

果树栽培学试题

《果树栽培学》试题库建设试题及题型分配 3 3.1.1.1主干 答:根颈到第一主枝之间的树干部分。中 3.1.1.1树冠 答:树体主干以上部分的总称。中 3.1.1.1骨干枝 答:树冠内起骨架作用的永久性大枝。如中心干、主枝、侧枝等。中 3.1.1.1中心干 答:又叫中央领导干或零级骨干枝,指处于树冠中心的骨干枝,是指主干向上垂直延伸的部分。中心干与主干之合称为树干。有些果树无中心干,如核果类无中心干。中 3.1.1.1主枝 答:指着生在树干(或中心干)上的骨干枝,也称一级骨干枝。中 3.1.1.1侧枝答:指着生在主枝上的骨干枝,亦称二级骨干枝。中 3.1.1.1结果枝组 答:又称枝组、枝群、单位枝。是着生在各级骨干枝上、有两次以上分枝、不断发展变化的、大大小小的枝群,是果树生长结果的基本单位。名词解释(第小题1分)难 3.1.1.1叶幕 答:指叶片在树冠内的集中分布区。它是一个与树体结构相一致的群体。难 3.1.1.1骨干枝的数量和分布排列状况决定树体形态和结构,而树体结构的好坏与果树受光量和光合作用效率密切相关,是决定果树能否获得优质丰产的关键。(√)难3.1.1.1结果枝组在骨干枝上配置合理与否,直接响果树光能利用率高低,是果树能否获得优质丰产的又一个关键。(√)难 3.1.1.1结果枝组以其体积大小、所含枝条多少、疏密程度和形态特征不同,又可分为大型枝组、中型枝组和中型枝组;()和()枝组。 答:紧密型松散型中 3.1.1.1结果枝组以其着生部位和长相不同又可分为多轴集团式、单(轴)式、背上直立枝组、侧生枝组、背斜枝组、()和()等。 答:水平枝组下垂枝组中 3.1.1.1果树的骨干枝和结果枝组之间()互相转化。答:A A.能 B.不能 C.不一定 D.能或不能 3.1.1.2果树的根系按照来源和发生,可归纳为()三种类型。答:ACD 中A、实生根系B、分蘖根系C、茎源根系D、根蘖根系E、须根系 3.1.1.2实生根系

植物学名词解释

绿色植物:从营养方式来看,绝大多数植物种类,其细胞中都具有叶绿体,能够利用光能自制养料,它们被称为绿色植物或光能自养植物。 非绿色植物:另一类植物(如真菌、细菌)的体内不含叶绿体,称为非绿色植物。 寄生植物:寄生在其他生物体上,从寄主身体上吸取养料的植物,称为寄生植物。 腐生植物:从死亡的生物体上吸取养料的植物,称为腐生植物。 异养植物:寄生植物和腐生植物合称异养植物。 陆生植物:绝大多数植物种类都生长在陆地上,通称陆生植物。 水生植物:少数植物生于水里,通称水生植物。 化能合成菌:非绿色植物中有少数种类,如硫细菌、铁细菌等,可以借氧化无机物获得能量而自制养料,它们被称为化能合成菌。 矿化作用:通过非绿色植物(菌类)的作用,将复杂的有机物分解为简单的无机物(矿物质)的过程,称为矿化作用。 拟核:由一条环状DNA链构成,DNA不与或很少与蛋白质结合,外无核膜。 原核生物:由原核细胞构成的生物。 真核生物:由真核细胞构成的生物。 根毛:幼根根毛区表皮细胞,常常向外产生一条长管状突起。 细胞壁:具有一定硬度和弹性的结构,它构成了细胞的外壳。 原生质体:由原生质分化而来,是细胞内有生命的部分,包括细胞膜,细胞质和细胞核等结构。 后含物:一些细胞代谢产物如淀粉,蛋白质和脂类等,常呈一定结构分布于细胞质内。 原生质:不是单一的物质,而是由复杂的有机物和无机物组成,具有一定弹性和黏度的,半透明的,不均一的亲和胶体。 蛋白质:是构成原生质的一类极其重要的高分子有机化合物,又是细胞参与调节各种代谢活动,完成各种功能,维持生命活动过程所不可决少的重要物质。核酸:普遍存在于生活细胞中,担负着贮存和复制遗传信息的功能,同时还和蛋白质的合成有密切关系。 脂类:是一类不溶于水非极性溶剂的有机化合物。 糖类:由C,H,O三种元素组成的一大类有机化合物。 胞间层:又称中层或果胶层,是相邻的两个细胞向外分泌的果胶物质构成的。 初生壁:是新细胞最初产生的壁层,也是细胞生长增大体积时所形成的壁层,是由邻接的细胞分别在胞间层两面沉积物质而成,其主要成分是纤维素,半纤维素和果胶物质等。 次生壁:是细胞停止生长后,在初生壁内表面继续积累的壁层。 构架物质:形成细胞壁网络构架中的物质。 衬质:是指填充在构架中的物质。 半纤维素:是存在于纤维素分子间的一类基质多糖。 果胶多糖或果胶质:是胞间层和双子叶植物初生壁的主要成分,而单子叶植物中含量较少。 细胞壁蛋白:包括结构蛋白,酶以及尚未确定其功能的蛋白质。 内镶物质:是指构架物质和衬质的基础上,进一步附着与生理功能分化的物质。 覆饰物质:是指覆盖在细胞壁外表的一些物质。 木质化:木质素填充到细胞壁中去的变化称木质化 角质化:在细胞壁上增加角质的变化称角质化 栓质化:细胞壁上增加栓质的变化 矿质化:细胞壁中增加矿质的变化 细胞膜:与细胞壁相邻,包围于细胞质外的一层膜 细胞内膜;细胞膜内构成各种细胞器的膜 生物膜:外周膜与细胞内膜的统称 初生纹孔场:在细胞的初生壁上有一些明显的凹陷的较薄区域。 纹孔:在没有次生壁沉积的地方,只存在初生壁和胞间层,细胞壁的这种比较薄得区域就叫纹孔。 纹孔对:相邻细胞的纹孔相对而生的。 纹孔膜:纹孔对之间的隔层。 纹孔腔:纹孔膜两侧的空腔。 胞间连丝:是穿过细胞壁的细胞质细丝,它连接相邻细胞的原生质体。 细胞质:真核细胞核以内,细胞核以外的部分,由半透明的胞基质以及分布其中的多种细胞器和细胞骨架系统组成。 胞基质:细胞质中除细胞器和细胞骨架系统以外的、较为均匀的、半透明的液态胶状物质(又名细胞质基质、基质、透明质)。 胞质环流:在生活细胞中,胞基质是处于不断的运动状态,它能带动其中的细胞器,在细胞内作有规则的持续的流动,这种流动称为胞质环流。 旋转运动:当生活细胞中,只有一个大液泡时,胞基质沿细胞壁围绕着中央大液泡坐同向流动,称为旋转运动。 循环运动:当生活细胞中,存在多个小液泡时,胞基质以不同方向围绕着小液泡流动,称为循环运动。 细胞器:细胞质内由原生质分化形成的具有特定结构和功能的亚细胞结构。 质体:绿色植物细胞特有的细胞器,体积较线粒体大,在高等植物中常呈圆盘形、卵圆形成不规则形,直径5~8微米,厚约1微米。 片层:质体内部基质中着发达程度不同的膜系统。 类囊体:叶绿体内部的基质中悬浮着由膜所围成的圆盘状或片层状的囊。 基粒:一些类囊体整齐地垛叠在一起,形成一个个柱状体单位。 白色体:一种不含色素的质体,多存在于幼嫩或不见光的组织中。 内质网:由单层膜围成的小管、小囊或扁囊构成的一个网状系统。 细胞液:液泡内的液汁。 溶酶体:存在于动、植物细胞内,具有单层膜的囊泡状结构。 微体:由单层膜包被的圆球形小体,直径约为0.2-1.5微米。 核糖体:一种无膜包被的细胞器,电镜下成小而圆的颗粒,其直径约为15~25纳米,主要成分rRNA和蛋白质。 原纤维:由α-微管蛋白质与β-微管蛋白质连接在一起形成二聚体,再由二聚体组成的线体聚合体。 中间纤维:由柔韧性很强的蛋白质丝构成,中空管状,直径约为10nm。 核孔:核被膜的内、外膜在一定部位相互融合,形成的一些环形开口。 核纤层:核被膜的内膜内侧一层蛋白质网络结构。 后含物:指植物细胞原生质体代谢过程中的产物,包括贮藏的营养物质、代谢废弃物和植物次生物质。 单宁:一种无毒、不含氮的水溶性酚类化合物,存在于一些植物细胞的细胞质基质、液泡或细胞壁中。 细胞周期:持续分裂的细胞,从结束一次分裂开始,到下一次分裂完成所经历的整个过程。 纺锤丝:分裂前期之末当染色体形成后,从分裂极向细胞核中央放射状地形成许多由微管组成的丝状结构。 染色体牵丝:从分裂极发出并连接在染色体着丝点上的纺锤丝。 连续纺锤丝:从一极到另一极而不与染色体相连的纺锤丝。

景观生态学试题及答案

景观生态学 一. 名词解释 1.景观:是一个由不同土地单元镶嵌组成,具有明显视觉特征的地理实体:它处于生态系统 之上、大地理区域之下的中间尺度:兼具经济、生态和文化的多重价值。 2.斑块:是外观上不同于周围环境的相对均质的非线性地表区域。 3.斑块化:是指斑块空间格局及其变异,通常表现在斑块大小,内容,密度,多样性,排列 状况,结构,和边界特征等方面。 4.廊道:是指不同于两侧基质的狭长地带,可以看作是线状或带状的斑块。 5.基质:景观中面积最大、连通性最好的景观要素类型,如广阔的草原、沙漠等 6.景观异质性:景观要素及其属性在空间上的变异性,或者说景观异质性是景观要素及其属 性在空间分布上的不均匀性和复杂性。 7.景观空间格局:一般指大小和形状不一的景观斑块在空间上的配置 8.景观多样性:指由不同类型的景观要素或生态系统构成的景观在空间结构和功能方面的多 样性和变异性,反映的是景观的复杂程度。 9.内缘比;斑块内部与外侧边缘带的面积之比 10..网络:网络通常由结点和连接廊道构成分布在基质上 11.干扰:系统中一个偶然发生的不可预知的事件,是在不同时空尺度上发生的现象(不 用背) 12.景观破碎化:是指由于自然或人为因素的干扰所导致的景观由简单趋于复杂的过程,即景 观由单一、均质和连续的整体趋向于复杂、异质和不连续的斑块镶嵌体的过程 13.景观连接度:是描述景观中廊道或基质在空间上如何连接和延续的一种测定指标。 14.生态流:景观中物质、能量和物种在景观要素之间的流动 15.meta种群:同种的局域种群在不同斑块上分布的总和 16.景观生态分类:根据生态系统内部水热状况的分异物质能与能量交换形式的差异以及反映 到自然要素和人类活动的差异,按照一定的原则、依据、指标,把一系列相互区别、各具特色的景观生态类型进行个体划分和类型归并,揭示景观的内部格局、分布规律、演替方向。(未知) 17.景观生态规划:指运用景观生态学原理,一区域景观生态系统整体优化为目标,在景观生 态分析、综合和评价的基础上,建立区域景观生态系统优化利用的空间结构和模式。 18.最佳的景观结构:含有细粒区域的粗粒景观最有利于获得大型斑块带来的生态效应,也有 利于包括人类在内的多生境物种生存,并能提供比较全面的环境资源和条件,具备了粗粒和细粒的有点 二. 填空 19.景观要素的三种类型:斑块、廊道、基质 20.斑块的分类:干扰斑块、残存斑块、环境资源斑块、引进斑块 21.廊道的类型:A)按起源可分为:环境资源廊道、干扰廊道、残存廊道、引进廊 道 B )按宽度分:线状廊道、带状廊道 C )按构成分:绿道、蓝道、灰道、暗道、明道、(必考) 22.廊道的功能:生境、通道、过滤、源和汇 23.基质的判断依据(标准):相对面积、连接度、动态控制 24.基质的特征:连接度、狭窄地带、孔隙度

医学统计学 名词解释+问答题-1

医学统计学 1、应用相对数时应注意的事项 ①计算相对数时分母不能太小; ②分析时不能以构成比代替率; ③当各分组的观察单位数不等时,总率(平均率)的计算不能直接将各分组的率相加求其平均; ④对比时应注意资料的可比性:两个率要在相同的条件下进行,即要求研究方法相同、研究对象同质、观察时间相等以及地区、民族、年龄、性别等客观条件一致,其他影响因素在各组的内部构成应相近; ⑤进行假设检验时,要遵循随机抽样原则,以进行差别的显著性检验。 2、正态分布的特点及其应用 性质:①两头低中间高,略呈钟形; ②只有一个高峰,在X=μ,总体中位数亦为μ; ③以均数为中心,左右对称; ④μ为位置参数,当σ恒定时,μ越大,曲线沿横轴越向右移动; σ为变异度参数,当μ恒定时,σ越大,表示数据越分散,曲线越矮胖,反之,曲线越瘦高; ⑤对于任何服从正态分布N(μ,σ2)的随机变量X作的线性变换,都会变换成u 服从于均数为0,方差为1的正态分布,即标准正态分布。 应用:①概括估计变量值的频数分布; ②制定参考值范围; ③质量控制; ④是许多统计方法的理论基础。 3、确定参考值范围的一般原则和步骤、方法 一般原则和步骤:①抽取足够例数的正常人样本作为观察对象; ②对选定的正常人进行准确而统一的测定,以控制系统误差; ③判断是否需要分组测定; ④决定取单侧范围值还是双侧范围值; ⑤选定适当的百分范围; ⑥选用适当的计算方法来确定或估计界值。 方法:①正态分布法:②百分位数法(偏态分布) 4、总体均数的可信区间与参考值范围的区别 概念:可信区间是按预先给定的概率来确定的未知参数μ的可能范围。 参考值范围是绝大多数正常人的某指标范围。所谓正常人,是指排除了影响所研究指标的疾病和有关因素的人;所谓绝大多数,是指范围,习惯上指正常人的95%。 计算公式:可信区间① ② ③ 参考值范围①正态分布 ②偏态分布 用途:可信区间用于总体均数的区间估计 参考值范围用于表示绝大多数观察对象某项指标的分布范围

《果树栽培学概论》

1.“扩穴”是属于哪一项果园土壤改良措施( C ) A.定植幼树 B.培土 C.深翻 D.土壤改良剂 C 13.果树树冠的层性是由枝芽的(A)作用的结果。A.芽的异质性和顶端优势B.芽的早熟性和成枝力强C.萌芽力及成枝力均强D.芽的早熟性及萌芽率高 A 2.绿枝扦插成活的关键在于( C ) A.枝条粗壮 B.枝条充分老熟 C.保持插条周围的湿度 D.去掉枝上的叶 C 3.柑橘果实类型从分类上讲属于( D ) A.仁果 B.核果 C.浆果 D.柑果 D 4.我国果树带共划分为( D ) A.5个 B.6个 C.7个 D.8个 D 5.在生产上柑橘常用树形是( B ) A.杯状形 B.自然圆头形 C.疏散分层形 B 6.下列各组果树种类中,完全是木本常绿果树的是(A ) A.柑桔、荔枝、龙眼、菠萝蜜; B.柚、甜橙、柿子、板粟、葡萄、椰子 C.香蕉、柑桔、芒果、龙眼、菠萝; D.板栗、李、柑桔、苹果、梨 A 7.下列各组柑桔种类中全都是宽皮柑桔类的是(A ) A.?柑、温州蜜柑、蕉柑、红桔; B.普通甜橙、脐橙、温州蜜柑、柚 C.普通甜橙、脐橙、柠檬、柚 D.?柑、脐橙、柠檬、蕉柑 A 8.多数南方梨品种成年结果树,结果枝以(A)为主。A.短果枝和短果枝群;B.中果枝; C.长果枝; D.中、长果枝 A 9.苗圃地选择,下列条件中(C)不适宜。A、沙壤土;B、开阔平地;C、低洼谷地;D、地下水位低 C 10.落叶果树种子采种后,下列措施中(B)是正确的。A、洗净、消毒、播种;B、层积处理并感受休眠;C、密闭贮藏;D、暴晒后贮藏 B 11.柑桔正常换叶期是(A )。A、春梢萌发时;B、夏季;C、秋季;D、冬季 A 12.柑桔结果树在(A)放秋梢为宜。A、7月中下旬到8月上旬;B、8月下旬到9月上旬; C、9月中上旬; D、10月中下旬 A 14.柑、桔、橙、柚等大多柑桔种类花芽分化时期是在(B )。

最新植物学名词解释

名词解释 1、器官:由多种不同组织构成的具有特定形态结构和生理功能的结构单位。 2、营养器官:与植物的营养生长有关的器官。根、茎、叶。 生殖器官:与植物的生殖生长和繁殖后代有关的器官。花、果实和种子。 3、主根:胚根直接生长而成的根。垂直向地下生长。 侧根:主根等产生的各级分支。 4、定根:主根和侧根称之为定根。主根来自于胚根,侧根来自中柱鞘一定部位的细胞恢复分裂发育而来。 不定根:由茎、叶、老根或胚轴上发生的根。不定根可产生各级侧根。 5、根尖:从根的顶端到着生有根毛的一段根,是根中生命活动最旺盛、最重要的部分。 6、根的伸长生长:根尖分生区的细胞不断进行细胞分裂增加细胞数量和根尖伸长区的细胞迅速伸长生长使根能够不断地伸长的过程。 7、初生生长:根尖的顶端分生组织经过分裂、生长、分化产生各类成熟组织的过程叫初生生长。 初生结构:初生生长过程中所产生的各种组织构成。 8、次生生长:初生生长完成后,由于形成层的发生和活动,不断产生次生维管组织和周皮,使根的直径增粗,称为次生生长。 次生结构:由次生生长产生的各种组织所构成的结构。 9、凯氏带:内皮层细胞的横向壁和径向壁上有一条带状木质化和栓质化增厚的结构,环绕成一圈,称凯氏带。 10、维管柱;由初生分生组织和原形成层发育而成,包括内皮层以内的所有组织:中柱鞘、初生韧皮部、初生木质部和薄壁细胞四部分组成。 11、外始式: 内始式: 12、内起源:根的中柱鞘一定部位。由于中柱鞘位于根内部,这种起源方式称为内起源。 外起源:起源于分生组织表面第一或第二、第三层细胞,这种起源方式称为外起源。(叶和芽的起源) 13、髓:有些植物根的中柱中央也有薄壁细胞,称为髓 14、苗:指除根系以外,植物地上器官—茎叶部分的总称。 枝条:着生有叶和芽的茎称为枝条。 实生苗:指由种子萌发长成的植物体。 年苗:一年中苗的生长量(芽发育和生长成一段新枝条)。 15、节:茎上着生叶的部位。 节间:相邻两节之间的茎段。 芽:位于叶腋或茎顶端。 叶痕:叶子脱落后留下的痕迹。 维管束痕:叶柄中的维管束断裂后留下的痕迹。 皮孔:周皮上植物体和外界进行气体交换的一种通道。 芽鳞痕:顶芽鳞芽展开时,芽鳞片脱落留下的痕迹, 辨别枝条的年龄。 16、芽:芽是未发育的枝条、花或花序的原始体。 17、定芽:生长在茎固定位置上的芽,有顶、侧芽(腋芽)。 不定芽:常是从老根、茎、叶上产生的芽,其位置不固定。 18、活动芽:在其生长季节中能开放的芽。 休眠芽:在其生长季节中不开放的芽。

景观生态学考研必背知识分享

景观生态学考研必背

景观生态学 一.名词解释 1.景观:是一个由不同土地单元镶嵌组成,具有明显视觉特征的地理实体:它 处于生态系统之上、大地理区域之下的中间尺度:兼具经济、生态和文化的多重价值。 2.斑块:是外观上不同于周围环境的相对均质的非线性地表区域。 3.斑块化:是指斑块空间格局及其变异,通常表现在斑块大小,内容,密度, 多样性,排列状况,结构,和边界特征等方面。 4.廊道:是指不同于两侧基质的狭长地带,可以看作是线状或带状的斑块。 5.基质:景观中面积最大、连通性最好的景观要素类型,如广阔的草原、沙漠 等 6.景观异质性:景观要素及其属性在空间上的变异性,或者说景观异质性是景 观要素及其属性在空间分布上的不均匀性和复杂性。 7.景观空间格局:一般指大小和形状不一的景观斑块在空间上的配置 8.景观多样性:指由不同类型的景观要素或生态系统构成的景观在空间结构和 功能方面的多样性和变异性,反映的是景观的复杂程度。 9.内缘比; 斑块内部与外侧边缘带的面积之比 10..网络:网络通常由结点和连接廊道构成分布在基质上 11.干扰:系统中一个偶然发生的不可预知的事件,是在不同时空尺度上发生的 现象(不用背)

12.景观破碎化: 是指由于自然或人为因素的干扰所导致的景观由简单趋于复杂 的过程,即景观由单一、均质和连续的整体趋向于复杂、异质和不连续的斑块镶嵌体的过程 13.景观连接度:是描述景观中廊道或基质在空间上如何连接和延续的一种测定 指标。 14.生态流:景观中物质、能量和物种在景观要素之间的流动 15.meta种群:同种的局域种群在不同斑块上分布的总和 16.景观生态分类:根据生态系统内部水热状况的分异物质能与能量交换形式的 差异以及反映到自然要素和人类活动的差异,按照一定的原则、依据、指标,把一系列相互区别、各具特色的景观生态类型进行个体划分和类型归并,揭示景观的内部格局、分布规律、演替方向。(未知) 17.景观生态规划:指运用景观生态学原理,一区域景观生态系统整体优化为目 标,在景观生态分析、综合和评价的基础上,建立区域景观生态系统优化利用的空间结构和模式。 18.最佳的景观结构:含有细粒区域的粗粒景观最有利于获得大型斑块带来的生 态效应,也有利于包括人类在内的多生境物种生存,并能提供比较全面的环境资源和条件,具备了粗粒和细粒的有点 二.填空 19.景观要素的三种类型:斑块、廊道、基质 20.斑块的分类:干扰斑块、残存斑块、环境资源斑块、引进斑块 21.廊道的类型:A)按起源可分为:环境资源廊道、干扰廊道、残存廊道、 引进廊道

医学统计学简答题

医学统计学简答题 1.简述标准差、标准误的区别与联系? 区别:(1)含义不同:标准差S表示观察值的变异程度,描述个体变量值(x)之间的变异度大小,S越大,变量值(x)越分散;反之变量值越集中,均数的代表性越强。标准误..估计均数的抽样误差的大小,是描述样本均数之间的变异度大小,标准误越大,样本均数与总体均数间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。 (2)与n的关系不同: n增大时,S趋于σ(恒定),标准误减少并趋于0(不存在抽样误差)。 (3)用途不同:标准差表示x的变异度大小、计算变异系数、确定医学参考值范围、计算标准误等,标准误用于估计总体均数可信区间和假设检验。 联系:二者均为变异度指标,样本均数的标准差即为标准误,标准差与标准误成正比。 2.简述假设检验的基本步骤。 1.建立假设,确定检验水准。 2.选择适当的假设检验方法,计算相应的检验统计量。 3.确定P值,下结论 3.正态分布的特点和应用:? 特点:?1、集中性:正态曲线的高峰位于正中央,即均数所在的位置;? 2、对称性:正态分布曲线位于直角坐标系上方,以x=u为中心,左右对称,曲线两端永远不与横轴相交; 3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降;?

4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平; ?5、u变换:为了便于描述和应用,常将正态变量作数据转换;?? 应用:?1.估计医学参考值范围?2.质量控制?3.正态分布是许多统计方法的理论基础 4.简述参考值范围与均数的可信区间的区别和联系 可信区间与参考值范围的意义、计算公式和用途均不同。 ?1.从意义来看?95%参考值范围是指同质总体内包括95%个体值的估计范围,而总体均数95%可信区间是指?95%可信度估计的总体均数的所在范围? 2.从计算公式看?若指标服从正态分布,95%参考值范围的公式是:±1.96s。?总体均数95%可信区间的公式是:??前者用标准差,后者用标准误。前者用1.96,后者用α为0.05,自由度为v的t界值。 5.频数表的用途和基本步骤。 用途:(1)揭示资料的分布特征和分布类型;(2)便于进一步计算指标和分析处理;(3)便于发现某些特大或特小可疑值。 基本步骤:(1)求出极差;(2)确定组段,一般设8~15个组段;(3)确定组距;组距=R/组段数,但一般取一方便计算的数字;(4)列出各个组段并确定每一组段频数。 6.非参数统计检验的适用条件。 (1)资料不符合参数统计法的应用条件(总体为正态分布、且方差相等)或总体分布类型未知;(2)等级资料;(3)分布呈明显偏态又无适当的变量转换方法使之满足参数统计条件;(4)在资料满足参数检验的要求时,应首选参数法,以免降低检验效能 7.线性回归的主要用途。

果树栽培学名词解释

1、下列果树中()属于坚果类。 A、苹果 B、桃 C、核桃 D、葡萄 2、一般水果果实内水分含量为()。 A、50%~60% B、60%~70% C、70%~80% D、80%~90% 3、下列果树中耐荫性较强的果树是()。 A、桃 B、葡萄 C、苹果 D、猕猴桃 4、一般落叶果树种子层积处理的温度为()℃。 A、-2~0 B、1~2 C、2~7 D、10~ 15 5、枇杷的结果枝都为()。 A、春梢 B、夏梢 C、秋梢 D、冬梢 6、形成枣树树冠骨架和结果基枝的基础是()。 A、枣头(一次性生长枝) B、永久性二次枝 C、枣股(短缩枝) D、枣吊(脱落性结果枝) 7、核桃属于()类型的植物。 A、雌雄异株 B、雌雄同株异花 C、雌雄同花 D、单性结实 1、C 2、D 3、D 4、C 5、C 6、A 7、B 名词解释: 1.果树栽培:从育苗开始,经过建园,管理直至采收的整个生产过程。 2.果树栽培学:研究果树的生长发育规律以及生长发育与环境条件的关系,应用栽培技术解决果树生产中存在的问题,提高果树产量,改进果实品质,发展果树生产的一门应用科学。 3.果树:指能生产人类食用的果实、种子及其他衍生物的木本或多年生草本植物。 4.果树幼年(童期)阶段:种子萌发到具有开花结果潜能所经历的时期。 5.成年阶段:实生果树进入性成熟阶段后,在适宜的外界条件下可随时开花结果,这阶段成为成年阶段。

6.年生长周期:果树一年中随外界环境条件的变化出现一系列的生理与形态的变化并呈现一定的生长发育规律性。 7.休眠期:果树的芽或其他器官生长暂时停顿,仅维持微弱的生命活动的时期。包括自然休眠和被迫休眠。 8.实生根系:从种子的胚根发育而来的成为实生根;茎源根系:用枝条进行繁殖时,根系起源于茎上的不定根。根蘖根系:在根段(蘖)上形成不定芽,发育成根系,最后形成独立的植株。 9.叶芽:只含有叶原基的芽。纯花芽:只含有花原基的芽。混合芽:叶与花原基共存于同一芽体中。 10.芽的异质性:枝条不同部位的芽体形成期,其营养状况、激素供应及外界环境条件不同,造成了它们在质量上的差异。 11.芽的早熟型:一些果树新稍上的芽当年就能大量萌发并可连续分枝,形成2次或3次稍,这种特性称为芽的早熟性。另一类果树的芽子,一般情况下不萌发,新稍也不能分枝,称为芽的晚熟性。 12.萌芽力:枝条上的芽能抽生枝叶的能力。 13.成枝力:萌发的芽可生长为长度不等的枝条,把抽生长枝的能力称为成枝力。 14.新稍:凡当年抽生,带有叶片,并能明显的区分出节和节间的枝条称为新稍,不易区分节间的称为缩短枝或叶丛枝。 15.叶面积指数:单位面积上所有果树叶面积总和与土地面积的比值。 16.果树夜幕:同一层骨干枝上全部叶片构成的具有一定形状和体积的集合体。 17.自花授粉:同一品种(或无性系)授粉属于自花授粉。自花授粉后能结果的称为自花结实。 18.单性结实:不经授粉,或虽然授粉而未完成受精过程而形成的果实的现象。 19.种子的层积处理:指落叶果树种子在适宜的外界条件下,完成种胚的后熟过程和解除休眠促进萌发的一项措施。 20.果树整枝:通过修剪,把树体建造成某种树形。 21.最佳夜幕动态:在较短的时间内达到最大,保持合适的叶面积并稳定较长时期。 22.尖削度:骨干枝分枝粗度与基枝粗度的比值。

植物学名词解释大集合

1 "虫瘿” insect gall 虫瘿是植物组织遭受昆虫等生物取食或产卵刺激后,细胞加速分裂和异常分化而长成的畸形瘤状物或突起,它们是寄生生物生活的""房子""。 引起植物产生虫瘿的生物很多,可分为动物和微生物两大类,常见的致瘿动物主要有昆虫、螨、线虫等,常见的致瘿微生物有细菌、真菌和病毒等,其中 昆虫是植物虫瘿主要的致瘿生物。 2 "二叉分枝” diehotomous branching 植物分枝类型的一种。植物体的主轴重复地分成两个分枝。由于主轴顶端的原始细胞长成两个生长点,均等地长出两个分枝,分枝顶端重复这过程而不断 形成二歧的各级分枝。二叉分枝是原始的分枝类型,苔藓、蕨类(石松)等植物 均有之。高等植物的二叉分枝式曾称为“二歧式”。 3 "气室” air chamber 地钱目叶状体表皮气孔之下有菱形或多角形的小室,或蕨类孢蒴内的空腔部分,称为气室。 4 "气孔” air pore 指地钱目叶状体的气室向外开口处,叫气孔,是气体出入的通道。此种气孔与种子植物的气孔器不同,它由16个细胞组成烟囱状,不开闭。 5 "中肋” centre rib 指藓类叶片中央类似于种子植物叶脉的构造,通常由孢壁较厚的一群狭长形多层细胞构成,有长短及单、双肋之分,主要起机械支持作用。 6 "无性世代” asexual generations 植物生活史中,从雌、雄配子受精以后到减数分裂前,植物体细胞染色体数是双倍的,这个时期叫做无性世代,也叫孢子体世代。如蕨类植物的生活史中,从合子形成到孢子母细胞的产生为无性世代。 7 "中轴” axile 在藓类位于茎的中央,由厚壁和薄壁细胞组成,排列紧密。 8 "水孔” water pore 是指生在叶边排水的孔,比气孔较大,水孔两旁有分化不完全的保卫细胞,不能自动调节开闭。主要机能是排出植物体内过多的水分。 9 "叶状体” leaf shaped body 苔类植物中,植物体呈片状而没有茎与叶的分化,称为叶状体。 10 "叶鞘” leaf sheath 藓类植物中,叶片基部较宽而紧密抱茎的部分称为叶鞘。被子植物叶的基部扩大,包围着茎叫做叶鞘。禾本科和伞形科等植物,多具有明显的叶鞘。蓼科 植物茎节上的鞘状物是托叶的变态,叫做“托叶鞘”,也称“vagina”。 11 "叶耳” auricle 藓类植物中,叶片基部扩展而成耳状的部分,称为叶耳。禾本科植物叶鞘与叶片连接处的边缘部分延伸的突起,多呈耳状或镰刀状的叶耳。叶舌和叶耳的 形状、大小、色泽以及有无,常为鉴定禾本科植物种或品种的根据之一。 12 "生殖托” reproduction hold

景观生态学重点

Adobe Acrobat 7.0 Professional 景观生态学重点及参考答案 (特此感谢雷威、朱虹、汪峰、邓朝松、郑永锴总结参考答案,鼓掌!!!!) 1.名词解释 ①景观:在较大、中度尺度以及具有空间异质性的较小尺度的区域,都可视为景观;是一定的地表可见景象的综合;具美学方面的特征。 ④景观结构成分:在生态学性质和地理学中性质各异,而形态特征和空间分布特征相似的景观要素。 ⑦景观连接度:景观中各功能上和生态过程上的联系。一方面取决于景观元素的空间分布特征,另一方面还要通过斑块之间生物种迁徙或其他生态过程进展的顺利程度来反映。 ①干扰斑块:由于局部干扰而形成的斑块。 ④残存斑块:大面积干扰后残存下来的局部未受干扰的自然或般自然斑块。 ⑥边缘效应:景观单元边缘部分由于受外围影响而表现出与中心部分显著不同的生态学特征的现象。 ⑦景观孔隙度:单位面积的斑块数目。 ④生态交错带:指相邻生态系统之间的过渡区。 ⑤景观边界:指在特定时空尺度下,相对均质的景观之间所存在的异质性过渡区域。 ①景观格局:景观要素在景观空间内的配置和组合形式,是景观结构和景观生态过程相互作用的结果。 ①景观生态安全格局:景观中存在某种潜在的生态系统空间格局,它由景观中的某些关键的局部,其所处方位和空间联系共同构成。 ①景观异质性:由景观要素的多样性和景观要素的空间相互关系共同决定的景观要素属性的变异程度。 ⑦空间异质性:由景观要素的数量和比例、形状、空间分布及景观要素之间的空间邻接关系所决定的空间不均匀性。 ③时间异质性:作为空间某一点不同时间景观结构和组分变化的量

变。 ④景观破碎化:景观中景观要素斑块的平均面积减小、斑块数量增加的变化。 ⑤景观多样性:特定区域中景观要素及其空间结构类型、格局、过程的变异性和复杂性。④中继站:在链路上某一地点,传输设备的集合。 ⑨景观生态流:物质、能量、物种和信息在景观中毗邻的生态系统之间的流动或运动。 ③景观阻力: ①干扰:阻断原有生物系统生态过程的非连续性事件。 ④中度干扰假说:中等程度的干扰频率能维持较高的物种多样性。 ①景观变化:景观变化的速率有快有慢,规模有大有小,总是一个渐进的过程。②景观稳定性⑥破碎化⑨转移矩阵 ①群丛 1.简答题 ③景观生态学形成与发展的理论基础主要有哪些? 答1)德国生物学和地理学家定义景观为:将地球圈、生物圈和智慧圈的人类建筑综合在一起的,供人类生存的总体空间可见体。 2)荷兰景观生态学家普遍认为,景观是由生物、非生物和人类活动的相互作用产生和维持的,作为地球表面可识别的一部分,包括其部分形态与功能关系的综合体。 3)美国景观生态学家和法国地理学家认为,景观是指由一组类似方式重复出现的、相互作用的生态系统所组成的异质性陆地区域,其空间尺度在数千米到数十千米范围。 4)①环境资源斑块的特性是什么? 答:1)由于自然环境资源的空间分布格局具有相对稳定性,环境资源斑块的持续时间较长,即斑块寿命较长,周转速率很低 2)斑块与木底之间的生态交错区可能很宽,常形成逐步变化的梯度⑦斑块边缘对能量、养分、物种有何影响? 答:1)能量流动或物质交换随着边缘的增加而增加。 2)大型斑块有利于敏感物种生存,为大型脊椎动物提供核心生境躲

医学统计学名词解释

统计学(Statistics):运用概率论、数理统计的原理与方法,研究数据的搜集;分析;解释;表达的科学。 总体(population):大同小异的研究对象全体。更确切的说,总体是指根据研究目的确定的、同质的全部研究单位的观测值。 样本(sample):来自总体的部分个体,更确切的说,应该是部分个体的观察值。样本应该具有代表性,能反映总体的特征。利用样本信息可以对总体特征进行推断。 抽样误差(sampling error)在抽样过程中由于抽样的偶然性而出现的误差。表现为总体参数与样本统计量的差异,以及多个样本统计量之间的差异。可用标准误描述其大小。 标准误(Standard Error) 样本统计量的标准差,反映样本统计量的离散程度,也间接反映了抽样误差的大小。样本均数的标准差称为均数的标准误。均数标准误大小与标准差呈正比,与样本例数的平方根呈反比,故欲降低抽样误差,可增加样本例数 区间估计(interval estimation):将样本统计量与标准误结合起来,确定一个具有较大置信度的包含总体参数的范围,该范围称为置信区间(confidence interval,CI),又称可信区间。 参考值范围描述绝大多数正常人的某项指标所在范围;正态分布法(标准差)、百分位数法,参考值范围用于判断某项指标是否正常 置信区间揭示的是按一定置信度估计总体参数所在的范围。t分布法、正态分布法(标准误)、二项分布法。置信区间估计总体参数所在范围 参数统计(parametric statistics) 非参数统计(nonparametric statistics)是指在统计检验中不需要假定总体分布形式和计算参数估计量,直接对比较数据(x)的分布进行统计检验的方法。 变异(variation):对于同质的各观察单位,其某变量值之间的差异 同质(homogeneity):研究对象具有的相同的状况或属性等共性。 回归系数有单位,而相关系数无单位 β为回归直线的斜率(slope)参数,又称回归系数(regression coefficient)。 线性相关系数(linear correlation coefficient):又称Pearson积差相关系数(Pearson product moment coefficient),是定量描述两个变量间线性关系的密切程度与相关方向的统计指标。 参数(parameter):描述总体特征的统计指标。 统计量(statistic):描述样本特征的统计指标。 实验设计的基本原则

植物学名词解释

人为分类系统:根据植物的用途或一两个性状对植物进行分类。 自然分类系统:利用现代科技手段,从形态学、比较解剖学、古生物学等不同角度给植物进行分类,试图寻找植物间的亲缘关系与演化关系。 颈卵器植物:雌性生殖器官以颈卵器的形式出现的植物。 颈卵器:颈卵器植物(苔藓、蕨类、裸子)的雌性生殖器官,形如瓶状,腹部具有卵细胞。种子植物:由种子进行繁殖的植物。 孢子植物:通过产生孢子进行繁殖的植物。 显花植物:能开花结实的植物。 隐花植物:没有开花结实现象的植物。 高等植物:具有根茎叶的分化,有专门的繁殖器官,生活史中有胚出现的植物。 低等植物:没有根茎叶的分化,没有专门的生殖器官,生活史中没有胚出现的植物。 双名法:用拉丁文或拉丁化的文字给植物取一个唯一的名称,该名称由两部分组成,第一个词为属名,第二个词为种加词,通常还在后面加上命名人姓氏的缩写。 原植体植物:结构简单,无根茎叶分化的植物。 异形胞:在蓝藻中,某些营养细胞特化,转变为能固氮的细胞叫异形胞。 藻殖段:丝状体的藻类,由于某种原因将藻丝折断,每一段都可发育为一个新个体,这样的片段叫藻殖段。 茸鞭型鞭毛:电子显微镜下,鞭毛鞘上有1列螺旋排列的鞭茸的鞭毛。 中核:细胞在进行有丝分裂时,核膜不消失,没有染色体纤丝出现,细胞核靠溢缩形成两个核。 营养繁殖:植物体的一部分脱离母体发育为新个体。 无性繁殖:以无性孢子进行繁殖。 有性生殖:两性配子相互结合完成繁殖。 配子:有性生殖的生殖细胞。 同配生殖:在形状、结构、大小和运动能力等方面完全相同的两个配子结合。 异配生殖:在形状和结构上相同,大小和运动能力上不同的两个配子结合。其中大而运动迟缓的为雌配子;小而运动能力强的为雄配子。 卵式生殖:在形状、大小和结构上都不相同的配子结合的生殖方式。其中大而无鞭毛,不能运动的为卵;小而有鞭毛能运动的为精子。 世代交替:在植物生活史中,无性世代与有性世代交替出现的现象。 单室孢子囊:为二倍体,分裂时只进行减数分裂的孢子囊。 多室孢子囊:为单倍体,不进行减数分裂,而进行有丝分裂的孢子囊。 寄生:直接从活的有机体中获取营养的方式。 腐生:从动植物的尸体或其它有机物质吸取养料。 只能寄生,为专性寄生;只能腐生,为专性腐生;以寄生为主兼腐生的,为兼性腐生;以腐生为主兼寄生的,为兼性寄生。 根状菌索:高等真菌的菌丝体密接成绳索状,外形似根的菌丝组织体,外层为皮层,由拟薄壁组织组成,内层为心层,由疏丝组织组成。 子座:是容纳子实体的褥座,是从营养阶段到繁殖阶段的一种过渡形式,由拟薄壁组织和疏丝组织构成。 菌核:是菌丝密接成的核状体,有的有组织分化,外层为拟薄壁组织,内层为疏丝组织,是渡过不良环境的休眠体,在条件适宜时,可以萌发为菌丝体或产生子实体。 双游现象:在鞭毛菌亚门中,产生连续两次的游动孢子的现象。 孢子囊的层出:孢子囊成熟后,顶端开一圆孔,游动孢子顺序的从孔口游出,此后在旧孢子

生态学名词解释

1.生态学名词解释 2.(Allen’s rule)艾伦规律:内温动物身体的突出部分,如四肢、尾巴、外耳等在气候寒冷的地区有 边短的趋向。 3.(Bergman’s rule)贝格曼规律:内温动物在冷的气候地区,身体趋向于增大,在温和的气候条件下, 趋向于减小的特征。 4.(Cope’s rule)科普氏规律:在某些分类单元内,动物个体大小的进化趋势是趋向于个体增大。 5.(Dehnel phenomenon)戴耐尔现象:全北区哺乳动物的体重在冬季趋于降低的现象。 6.(eutrophication)谢尔福德耐受性定律:每种生物对一种环境因子都有一个生态上的范围的大小,成 为生态幅(ecological amplitute),即有一个最低点和最高点,两者之间的幅度为耐性限度。 7.(Gloger’s rule)葛洛格规律:在寒冷干燥的地区,动物的体色较浅,在潮湿温暖的地区,其体色较 深。 8.(Jordan’s rule)乔丹规律:鱼类的脊椎数目在低温水域中比在温暖水域中多。 9.(Liebing rule)李比希最小因子定律:有机体的生长不是受需要量大的营养物质影响,而是受那些处 于最低量的营养物质成分的影响。 10.(Wilson’s rule)威尔逊规律:北极地区的物种比热带地区的物种皮层厚。 11.Hamilton 规则():个体由于利他行为而牺牲的直接适合度必须小于利他行为获得的间接适合度。 12.Linderman十分之一定律(林德曼定律):各营养层之间能量转化效率约为10%的规律。 13.r-K对策(r、K strategists):有利于发展较大的r的选择为r选择,有利于竞争能力的增强的选择位 K选择。r选择的物种称为r对策者,K选择的物种称为K对策者。 14.斑块(eutrophication):指与周围环境不同的空间实体,是构成景观的基本结构和功能单元。 15.边际值原理(marginal value theorem):不是这在一个斑块的最佳停留时间为不是这在离开这一板块时 的能量获取率(即这一斑块的边际值)。 16.变化(动态或波动)(dynamics, fluctuation):通常指无规则的或无平衡密度的变化,主要说非密度因 子的影响。 17.表面积规律(surface rule):个体较大的动物比个体较小的动物具有较小的体表面积与体积比率。 18.表型适应(phenotypic adaptation):描述的是有机体在个体水平上的变化,包括生理行为形态等方面, 时间尺度相对较短,变化的特征是可逆转的。19进化适应(evolutionary adaptation):指的是多个世代的变化,时间尺度比较长,有些特征是不可逆的没,是可遗传的。 19.产业生态学(industrial ecology ):是一门研究社会生产活动中自然资源从源、流到汇的全代谢过程及 其与生命支持系统相互关系的系统科学。 20.尺度(eutrophication):通常是指研究一定对象或现象所采用空间分辨率或时间间隔,同时又可指某一 研究对象在空间上的范围和时间上的发生频率。 21.初级生产(primary production):又称第一性生产,是指绿色植物和某些细菌的生产。 22.次级生产(secondary production,PS):又称为第二性生产,是指生态系统初级生产以外的生物有机体 的生产,就是异样生物的生产。 23.次生演替(secondary succession):是指在生物曾经占领过或原来曾有群落的地方开始的演替又叫次级 演替。 24.次要群落(minor community):必须依附与邻近群落,不能对立存在的生物集合体,如阴生植物群落、 动物群落。 25.存活曲线(survival curves):以生物的相对年龄(绝对年龄处以平均寿命)为横坐标,在一个年龄的 存活率Lx为纵坐标,由此所画出的曲线表示种群的存活率Lx随时间变化的过程。 26.存在度(presence):物种在不同群落中出现的概率。 27.搭载效应(hitchhiking effect):指一个等位技艺频率的改变不是因为它本身受选择影响,而是因为已

医学统计学-名词解释

统计学 1.医学统计学: 是运用统计学原理和方法研究生物医学资料的搜集、整理、分析和推断的一门学科。(医学研究的对象主要是人体以及与人体的健康和疾病相关的各种因素) 2.同质: 性质相同的事物成为同质的,否则成为异质的或间杂的。 (观察单位间的同质性的进行研究的前提,也是统计分析的必备条件,缺乏同质性的观察单位的不能笼统地混在一起进行分析的) 3.变异: 是指在同质的基础上各观察单位(或个体)之间的差异。 4.总体: 总体是根据研究目的所确定的同质观察单位的全体。 5.样本: 样本是从总体中随机抽取的部分个体。(样本中包含的个体数称为样本含量) 6.随机: 即机会均等,是为了保证样本对总体的代表性、可靠性,使各对比组间在大量不可控制的非处理因素的分布方面尽量保持均衡一致,而采取的一种统计学措施。(包括抽样随机、分组随机、实验顺序随机) 7.统计量: 由样本所算出的统计指标或特征值称为统计量。(反映样本特性的有关指标) 8.参数: 总体的统计指标或特征值称为参数。 (总体参数是事物本身固有的、不变的,为常数) 9.抽样误差: 从某总体中随机抽取一个样本来进行研究,而所得样本统计量与总体参数常不一致,这种由抽样引起的样本统计量与总体参数间的差异称为抽样误差。这种在抽样研究中不可避免。(抽样误差有两种表现形式:①样本统计量与总体参数间的差异②样本统计量间的差异)10.概率: 描述事件发生可能性大小的一个度量,常用P表示,取值为0≤P≤1。 11.频率: 用随机事件A发生表示观察到某个可能的结果,则在n次观察中,其中有m次随机事件A发生了,则称A发生的比例0≤f≤1为频率。显然有 f = m / n 12.小概率事件: 当某事件发生的概率小于或等于0.05时,统计学上称该事件为小概率事件,其涵义为该事件发生的可能性很小,进而认为其在一次抽样中不可能发生。(为进行统计推断的依据) 13.定量资料: 以定量值表达每个观察单位的某项观察指标,如血脂,心率等。 14.定性资料: 以定性方式表达每个观察单位的某项观察指标,表现为互不相容的类别或属性,如血型、性别等。 15.等级资料: 以等级表达每个观察单位的某项观察指标,如疗效分级、血粘度、心功能分级等。

相关主题