搜档网
当前位置:搜档网 › 风力发电机轴承的更换过程

风力发电机轴承的更换过程

发电机轴承更换作业指导书

S50/750风力发电机组电机前轴承更换 作业指导书

目录 1 范围 (3) 2 规范引用文件 (3) 3 更换前准备工作 (3) 3.1更换零件说明 (3) 3.2 更换人员具备的条件 (3) 3.3 更换所用工具 (3) 4 执行工序 (4) 5 安全注意事项 (5)

作业指导书 1范围 本标准适用于S50/750风力发电机组电机前轴承的更换工作指导,其他的更换作业按照项目指导书执行,本章不做详细介绍。 2规范性引用文件 编制本指导书引用文件:金风750KW机组技术资料、现场施工安全规范。 3更换前准备工作 更换零件说明 永济异步发电机厂生产的型号:YJ50C;编号:250C5076发电机的前轴承。 人员准备见表1 表2 人员准备 更换所用工具见表2 表1 使用工具

4执行工序 拆卸连轴器护罩 用13#开口扳手或棘轮拆掉连轴器护罩。 拆卸连轴器 用750N和300N力矩扳手拆掉连轴器。 拆卸锥形套 用13#开口扳手松掉收缩盘上锥形套上的螺栓,然后用氧炔焰加热,再用斧头和手锤将其敲出。 拆卸收缩盘 将三爪拉模固定到收缩盘上,旋紧顶杆螺栓,用氧炔焰边加热边旋紧顶杆螺栓,直到将收缩盘拉出。 拆卸电机压盖 用24#开口扳手松掉螺栓,用5mm的内六方卸掉压盖油嘴卡圈,卸掉压盖。 拆卸电机端盖

用36套筒的力矩扳手松掉螺栓,将电机端盖取下。 拆卸轴承挡圈 用氧炔焰边加热边用撬棍撬,直到取出。 拆卸轴承 由于轴承受损,不便于拆卸,一般都采取破坏拆除。用氧炔焰割掉轴承外套,再将内套加热取掉。 清洁修复 清除拆卸件上的污垢,观察电机主轴是否受损,如果受损用锉刀和砂纸修复。 更换安装 轴承的安装过程大体上就是拆卸的逆过程,需要注意的几点是:轴承外套要嵌入到电机端盖中,与电机端盖一起装;轴承的内挡圈位置要摆放正确,便于电机压盖的安装;轴承内挡圈装上电机端盖后,再装上;轴承最好用油加热,条件不具备也可用氧炔焰。 5 安全注意事项见表3 表3 安全注意事项

风机轴承更换(通用)培训资料

风机轴承更换(通用)培训资料 一、检修前的准备工作: 1、备件确认,轴承型号确认油隙检测(符合规范要求) 2、申请好吊车。 3、自制拆除风机叶轮、联轴器用的拉玛。 二、施工步骤: 1、停电挂牌。 2、在联轴器上做标记,拆除联轴器螺栓、拆除风机机壳上半部,利用吊车或手拉葫芦将其吊开。同时拆除仪表。 3、做好标记,拆开风机轴承座上盖及端盖,注意防止纸垫损坏。 4、利用吊车或手拉葫芦将风机转子叶轮吊下来,做好支架水平放置固定好。 5、拆除叶轮:上面吊住叶轮,利用拉玛、千斤顶拆除叶轮,必要时用两把烤枪加热,抓紧时间,快速拉出。 6、拆除转子上半联轴器:利用三爪拉玛或自制拉玛拆除半联轴器,必要时用两把烤枪加热,迅速拆除。 7、更换轴承:用气割分上下割开轴承外圈,轻微加热轴承内圈,用两把手锤、暂子将轴承内圈拆出。用游标卡尺检查联轴器与轴径尺寸,应保证过盈,即轴孔比轴径小0.02mm左右。用0#砂布砂光两头轴径。用煮油加热法加热轴承,温度控制在120度-130度左右,检测轴承内圈,膨胀量达0.10mm以上,备好大锤、铜棒迅速安装轴承,待轴承冷却至常温,检查轴承是否运转灵活,再检测轴承游隙,必须达标。检查两端盖油封是否需更换。装好两端盖。 8、安装叶轮:利用吊车或手拉葫芦将叶轮吊起与转子中心高度水平,砂光叶轮轴孔,测量孔、轴径,键与键槽配合合适,用两把烤枪加热叶轮内孔,温度达到200度以上,检测内孔膨胀量,确保不少于0.10mm,备好大锤、铜棒迅速安装好叶轮。 9、按半联轴器:检测半联轴器内孔与轴配合,应保证过盈,即轴孔比轴径小0.02mm左右。键与键槽配合合适。如果时间允许,则用

风力发电机用轴承大致可以分为三类

风力发电机用轴承大致可以分为三类,即:偏航轴承、变桨轴承、传动系统轴承(主轴和变速箱轴承)。偏航轴承安装在塔架与座舱的连接部,变桨轴承安装在每个叶片的根部与轮毂连接部位。每台风力发电机设备用一套偏航轴承和三套变桨轴承(部分兆瓦级以下的风力发电机为不可调桨叶,可不用变桨轴承)。 1代号方法 风力发电机偏航、变桨轴承代号方法采用了JB/T10471—2004中转盘轴承的代号方法,但是在风力发电机偏航、变桨轴承中出现了双排四点接触球式转盘轴承,而此结构轴承的代号在JB/T10471—2004中没有规定,因此,在本标准中增加了双排四点接触球转盘轴承的代号。由于单排四点接触球转盘轴承的结构型式代号用01表示,而结构型式代号02表示的是双排异径球转盘轴承结构,因此规定03表示双排四点接触球转盘轴承结构。 2技术要求 2.1材料 本标准规定偏航、变桨轴承套圈的材料选用42CrMo,热处理采用整体调质处理,调质后硬度为229HB—269HB,滚道部分采用表面淬火,淬火硬度为55HRC-62HRC。由于风力发电机偏航、变桨轴承的受力情况复杂,而且轴承承受的冲击和振动比较大,因此,要求轴承既能承受冲击,又能承受较大载荷。风力发电机主机寿命要求20年,轴承安装的成本较大,因此要求偏航、变桨轴承寿命也要达到20年。这样轴承套圈基体硬度为229HB-269HB,能够承受冲击而不发生塑性变形,同时滚道部分表面淬火硬度达到55HRC-62HRC,可增加接触疲劳寿命,从而保证轴承长寿命的使用要求。 2.2低温冲击功 本标准对偏航、变桨转盘轴承套圈低温冲击功要求:—20℃Akv不小于27J,冷态下的Akv值可与用户协商确定。风力发电机可能工作在极寒冷的地区,环境温度低至—40吧左右,轴承的工作温度在—20~C左右,轴承在低温条件下必须能够承受大的冲击载荷,因此,要求轴承套圈的材料在调质处理后必须做低温冲击功试验,取轴承套圈上的一部分做成样件或者是与套圈同等性能和相同热处理条件下的样件,在—20~C环境下做冲击功试验。 2.3轴承齿圈 由于风力发电机轴承的传动精度不高,而且齿圈直径比较大,齿轮模数比较大,因此,一般要求齿轮的精度等级按GB/T10095.2---2001中的9级或者10级。但是由于工作状态下小齿轮和轴承齿圈之间有冲击,因此,轴承齿圈的齿面要淬火,小齿轮齿面硬度一般在60HRC,考虑到等寿命设计,大齿轮的齿面淬火硬度规定为不低于45HRC。 2.4游隙 偏航、变桨轴承在游隙方面有特殊的要求。相对于偏航轴承,变桨轴承的冲击载荷比较大,风吹到叶片上震动也大,所以要求变桨轴承的游隙应为零游隙或者稍微的负游隙值,这

2017.7.10主要通风机更换轴承箱

同发东周窑1#主扇更换轴 承箱及叶片 安 全 技 术 组 织 措 施 同发东周窑煤业有限公司 2017年7月1日

同发东周窑1#主扇轴承箱及叶片更换措施审批表同煤集团公司领导: 集团公司机电副总工程师: 集团公司机电处:

审批总工程师: 安全副总经理: 机电副总经理: 通风副总工程师: 机电副总工程师: 调度室: 机电部: 安监部: 通风区: 大型设备队队长: 大型设备队技术负责人: 编制:王全明

一、概述 根据《AGF606-3.8-1.8-2轴流式通风机安装和使用维护说明书》,AGF606-3.8-1.8-2主通风机轴承箱累计运行16000小时,需更换轴承箱,我矿根据使用情况,决定先更换1#主通风机轴承箱及叶片,2#主通风机单机运行。为保证1#主通风机轴承箱及叶片安全顺利更换,特制定如下措施。 主要技术参数: 1、主通风机:AGF606-3.8-1.8-2型双级轴流式通风机 2、叶轮直径3.8米 3、轮毂直径1.8米 4、设计出风量28035m3/min 5、负压:容易期为1921.97Pa困难期为3213.43Pa 6、现风叶角度:-10° 7、现风机风量:20000m3/min 8、返风方式:电机反转返风 9、主电机:额定功率2500kW,额定电流185.1A 二、组织机构: 总负责人:魏波 施工负责人:吕瑞 安全负责人:王兴乐 技术负责人:肖杰

负责人职责: 总负责人:对施工项目全面负责,统一指挥所有施工人员。 施工负责人:严格执行有关技术质量、安全文明施工、工程进度、现场管理等方面工作。 安全负责人:认真贯彻“安全第一、预防为主”的方针,严格安全管理,认真组织落实搞好施工安全防范措施,督促作业人员严格按工艺、规章施工,制止违章指挥和冒险作业的行为。 技术负责人:组织技术人员编制施工组织安全技术措施,并进行审批。严格要求作业人员在施工过程中按照组织措施作业。 三、作业时间 更换施工时间:2017年7月10日~2017年7月14日空载试运行时间:2017年7月14日19:00~2017年7月17日19:00 四、施工单位 中煤三建安装处 五、施工地点及内容 主通风机房,更换1#风机轴承箱及叶片 六、施工前准备

浅谈风力发电机专用的轴承(20200521122350)

浅谈风力发电机专用的轴承 风力发电机常年在野外工作,工况条件比较恶劣,温度、湿度和轴承载荷变化很大, 风速最高可达23m/s,有冲击载荷,因此要求轴承有良好的密封性能和润滑性能、耐冲 击、长寿命和高可靠性,发电机在2-3级风时就要启动,并能跟随风向变化,所以轴承结 构需要进行特殊设计以保证低摩擦、高灵敏度,大型偏航轴承要求外圈带齿,因此轴承设 计、材料、制造、润滑及密封都要进行专门设计。 1. 风机轴承技术要点分析 1.1 偏航轴承总成(660PME047) 偏航轴承总成是风机及时追踪风向变化的保证。风机开始偏转时,偏航加速度ε将产 生冲击力矩M=Iε(I为机舱惯量)。偏航转速Ω越高,产生的加速度ε也越大。由于I非常大,这样使本来就很大的冲击力成倍增加。另外,风机如果在运动过程中偏转,偏航齿 轮上将承受相当大的陀螺力矩,容易造成偏航轴承的疲劳失效。 根据风机轴承的受力特点,偏航轴承采用“零游隙”设计的四点接触球轴承,沟道进行 特别设计及加工,可以承受大的轴向载荷和力矩载荷。偏航齿轮要选择合适的材料、模 数、齿面轮廓和硬度,以保证和主动齿轮之间寿命的匹配。同时,要采取有针对性的热处 理措施,提高齿面强度,使轴承具有良好的耐磨性和耐冲击性。 风机暴露在野外,因此对该轴承的密封性能有着严格的要求,必须对轴承的密封形式 进行优化设计,对轴承的密封性能进行模拟试验研究,保证轴承寿命和风机寿命相同。风 机装在40m的高空,装拆费用昂贵,因此必须有非常高的可靠性,一般要求20年寿命,再加上该轴承结构复杂,因此在装机试验之前必须进行计算机模拟试验,以确保轴承设计参 数无误。 1.2 风叶主轴轴承(24044CC) 风叶主轴由两个调心滚子轴承支承。由于风叶主轴承受的载荷非常大,而且轴很长, 容易变形,因此,要求轴承必须有良好的调心性能。 确定轴承内部结构参数和保持架的结构形式,使轴承具有良好的性能和长寿命。 1.3 变速器轴承 变速器中的轴承种类很多,主要是靠变速箱中的齿轮油润滑。润滑油中金属颗粒比较 多,使轴承寿命大大缩短,因此需采用特殊的热处理工艺,使滚道表面存在压应力,降低 滚道对颗粒杂质的敏感程度,提高轴承寿命。同时根据轴承的工况条件,对轴承结构进行 再优化设计,改进轴承加工工艺方法,进一步提高轴承的性能指标。 1.4 发电机轴承 发电机轴承采用圆柱滚子轴承和深沟球轴承。通过对这两种轴承的结构设计、加工工 艺方法改进、生产过程清洁度控制及相关组件的优选来降轴承振动的噪声,使轴承具有良 好的低噪声性能。 1.5 轴承装机试验技术研究

风力发电机轴电压轴电流的研究。

风力发电机轴电压轴电流对轴承影响及防范措施 摘要:风力发电机轴承失效频繁发生,在研究应用条件和调查轴承失效的基础上,基本确认了造成轴承失效的根本原因:双馈感应发电机变频驱动所导致的轴承过电流和相应的电腐蚀及润滑、磨损等。本文概述分析了轴电压轴电流产生的原理和造成的危害,详述了对轴电压的抑制措施,并在风电场推广应用,实践验证了轴电流抑制技术的有效性。 关键词:风力发电;轴承;轴电流;解决方案 Wind turbine generator shaft voltage and shaft current on the bearing and preventive measures CHEN Guo-qiang,CHEN Guo-zhong,XXX Shen Hua Ji Tuan Guo Hu(TongLiao)Wind power Abstract:Bearing failures of windturbine generator are occurring frequently. Based on application studies and bearing investigations main root causes have been identified: electrical current passage, electrical erosion respectively, due to frequency converter supply of doubly-fedinduction generator sand lubrication and wear related problems.This paper analyzed the cause of shaft voltage and shaft current and its related harm in doubly-fed wind turbine architecture. Measures to suppress the shaft voltage and shaft current are detailed and put into practice in pilot wind farms. The effectiveness of the measures are approved by field data. Key words:wind power generation;Bearing;Shaft current;The solution 一、研究背景 xx风电场,装有56台华锐SL1500机组,于2015年1月并网发电,在运行的2年中由于发电机轴承的损坏给机组正常运行产生了严重的影响,造成一定的经济损失。经统计2013年共计更换发电机驱动侧轴承19次,年损坏率达28%,更换非驱动侧轴承22次,年损坏率达33%,造成直接和间接经济损失近百万元,因此,研究发电机轴承的损坏原因并提出改进措施显得尤为重要。 二、研究目的

风力发电原理

▲1-3 风能具有哪些特点? (1)风能蕴藏量大、分布广。(2)风能是可再生能源。(3)风能利用基本没有对环境的直接污染和影响。(4)风能的能量密度低。(5)不同地区风能差异大。(6)风能具有不稳定性。 ▲1- 风力发电技术的发展状况 当前风电技术和设备的发展主要呈现大型化、变速运行、变桨距、无齿轮箱等特点。 (1)水平轴风电机组技术成为主流。(2)风电机组单机容量持续增大。(3)变桨距技术得到普遍应用。(4)变速恒频技术得到快速推广。(5)直驱式、全功率变流技术得到迅速发展。(6)大型风电机组关键部件的性能日益提高。(7)智能化控制技术广泛应用。(8)叶片技术不断进步。(9)适应恶劣气候环境的风电机组得到重视。(10)低电压穿越技术得到应用。 (11)海上风电技术成为重要发展方向。(12)标准与规范逐步完善。 ▲2-8 为什么国际上通行的计算平均的时间间隔都取在10min至2h范围? 由范德豪芬的平均风速功率谱曲线可知,在10min至2h范围的平均风速功率谱低而平坦,平均风速基本上是稳定值,可以忽略湍流的影响。 ▲2-9 什么是风速廓线? 在大气边界层中,由于空气运动受地面植被、建筑物等得影响,风速随距地面的高度增加而发生明显的变化,这种变化规律成为风剪切或风速廓线。▲2-11 什么是风向玫瑰图? 风向玫瑰图常用来表示某一风向一年或一个月出现的频率。 ▲2-15 风在静止叶片上的空气动力是如何形成的? 由于叶片上方和下方的气流速度不同(上方速度大于下方速度),因此叶片上、下方所受的压力也不同(下方压力大于上方压力),总得合力F即为叶片在流动空气所受到的空气动力。 ▲2- 风的测量设备? 风向:风向标、光电管、码盘。风速:皮托管、热线风速仪、风杯、螺旋叶片。 ▲2- 风能资源评估及风电场选址 评估参数:平均风速、主要风向分布、风功率密度、年风能可利用小时。宏观选址:(1)风能质量好(2)风向基本稳定(3)风速变化小(4)尽量避开灾难性天气频发地区(5)发电机组高度范围内风速的垂直变化小。(6)地形条件好。(7)地址情况能满足塔架基础、房屋建筑施工的要求,远离强地震带等。(8)对环境的不利影响小。(9)尽可能接近电网并考虑并网可能产生的影响。(10)交通方便。微观选址:(1)考虑地形的影响(2)考虑机组的排列方式。 ▲4-7 什么是并网风力发电机变速恒频运行方式?哪些类型的发电机? 在不同风速下,为了实现最大风能捕获,提高风电机组的效率,发电机的转速必须随着风速的变化不断进行调整,处于变速欲行状态,其发出的频率需通过一定的恒频控制技术来满足电网要求。双馈异步交流发电机,永磁低速交流发电机 ▲4-8 双馈异步发电机的基本工作原理。 (公式)n2为转自中通入频率为f2的三项对称交流励磁电流后所产生的旋转磁场相对于转自本身的旋转速度(r\min),改变f2,即可改变n2。设n1为对应于电网频率50Hz时发电机的同步转速,而n为发电机转自本身的旋转速度,只要n+n2=n1,则定子绕组感应出的电动势的频率将始终维持为电网频率f1不变。由转差率公式s=。。。可得f2=sf1。所以只要在转子的三相对称绕组中通入转差频率的电流,双馈异步发电机可实现变速恒频运行的目的。 双馈型异步发电机实行交流励磁,励磁电流的可调量为其幅值、频率和相位。调节频率,可保证发电机转速变化时发出电能频率的稳定;调节幅值,可调节发出的无功功率;改变转子励磁电流的相位,调节了发电机的功率角。在一定工况下,转子也向电网馈送能量。 ▲4-9 叙述双馈异步发电机的功率流向。 (1)亚同步状态当n

发电机轴电压产生的原因、危害及处理措施

随着电源建设的迅猛发展, 单机容量的逐渐增大, 轴电压成为大型发电机采用静止自并励磁系统后的一个严重问题。研究轴电压、轴电流有着很重要的意义。轴电压的波形具有复杂的谐波脉冲分量, 对油膜绝缘特别有害当轴电压未超过油膜的破坏值时, 轴电流非常小。若轴电压超过轴承油层击穿电压, 则在轴承上形成很大的轴电流, 即所谓电火花加工电流, 将烧蚀轴承部件, 造成很大危害。磁路不对称、单极效应、电容电流、静电效应、静态励磁系统、外壳、轴等的永久性磁化均有可能引起轴电压。【文献2】 轴电压是指在电机运行时,电机两轴承端或电机转轴与轴承间所产生的电压。在正常情况下,轴电压较低时,燃气发电机转轴与轴承间存在的润滑油膜能起到较好的绝缘作用。但是,如果由于某些原因使得轴电压升高到一定数值时,就会击穿油膜放电,构成轴电流产生的回路。轴电流不但会破坏油膜的稳定性,使润滑冷却的油质逐渐劣化,同时,由于轴电流从轴承和转轴的金属接触点通过,金属接触点很小,电流密度很大,在瞬间会产生高温,使轴承局部烧熔。被烧熔的轴承合金在碾压力的作用下飞溅,将在轴承内表面烧出小凹坑。最终,轴承会因机械磨损加速而破损,严重时会烧坏轴瓦,造成事故被迫停机。【文献12】 发电机轴电压一直是存在的,但一般不高,通常不超过几V~十几V,但当绝缘垫因油污、损坏或老化等原因失去作用时,则轴电压足以击穿轴与轴承间的油膜而发生放电,久而久之,就会使润滑和冷却的油质逐渐劣化,严重者会使转轴和轴瓦烧坏,造成停机事故。 1、发电机轴电压产生的原因 (1)、磁不对称引起的轴电压它是存在于汽轮发电机轴两端的交流型电压。由于定子铁芯采用扇形冲压片、转子偏心率、扇形片的导磁率不同,以及冷却和夹紧用的轴向导槽等发电机制造和运行原因引起的磁不对称,结果产生包括轴、轴承和

电机轴承常见7种异常声音的分析与解决

电机轴承常见7种异常声音的分析与解决 交流电机轴承声音异常的分析与解决 1、连续蜂鸣声“嗡嗡……” 原因分析: 电机无负荷运转是发出类似蜂鸣一样的声音,且电动机发生轴向异常振动,开或关机时有“嗡”声音 具体特点: 多发润滑状态不好,冬天且两端用球轴承的电机多发,主要是轴调心性能不好时,轴向振动影响下产生的一种不稳定的振动 解决方法 A、用润滑性能好的油脂 B、提高马达轴承座钢性 C、选用径向游隙小的轴承 D、加预负荷,减少安装误差 E、加强轴承的调心性 注:第五点起到根本改善的作用,采用02小沟曲率,01大沟曲率。 2、保持器声“唏利唏利……” 原因分析: 由保持器与滚动体振动、冲撞产生,不管润滑脂种类如何都可能产生,承受力矩、负荷或径向游隙大的时候更容易产生 解决方法: A、提高保持器精度 B、降低力矩负荷,减少安装误差 C、选用好的油脂 D、选用游隙小的轴承或对轴承施加预负荷 3、高频、振动声“哒哒…...” 具体特点: 声音频率随轴承转速而变化,零件表面波纹度是引起噪音的主要原因。 解决方法: A、改善轴承滚道表面加工质量,降低波纹度幅值

B、减少碰伤 C、修正游隙预紧力和配合,检查自由端轴承的运转,改善轴与轴承座的精度安装方法 4、杂质音 原因分析: 由轴承或油脂的清洁度引起,发出一种不规则的异常音 具体特点: 声音偶有偶无,时大时小没有规则,在高速电机上多发 解决方法: A、选用好的油脂 B、加强轴承的密封性能 C、提高注脂前清洁度 D、提高安装环境的清洁度 5、漆锈 原因分析: 由于电机轴承机壳漆油后干,挥发出来的化学成分腐蚀轴承的端面、外沟及沟道,使沟道被腐蚀后发生的异常音 具体特点: 被腐蚀后轴承表面生锈比第一面更严重 解决方法: A、把转子、机壳、晾干或烘干后装配 B、降低电机温度 C、用适应的油脂,脂油引起锈蚀少,硅油、矿油最易引起 D、改善电机轴承放置的环境温度 E、采用真空浸漆工艺 具体特点: 轴承运转后,温度超出要求的范围 原因分析: A、润滑脂过多,润滑剂的阻力增大 B、游隙过小引起内部负荷过大 C、安装误差

1#炉一次风机轴承更换

青海盐湖工业股份有限公司化工分公司企业标准 热电厂1#炉一次风机两端 轴承更换方案 编制人: 审核人: 安全审核人: 审批人: 2013—6—21发布 青海盐湖化工机修厂

目录 1、编制依据 (3) 2、设备概况 (3) 3、施工前准备 (3) 4、施工程序 (5) 5、试运转 (7) 6、安全及文明施工 (8)

1、编制依据 (1)广西电力勘察设计院提供的设计资料及相关图纸 (2)厂家设备技术协议和使用说明 (3)原电力部《电力安全工作规程》 (4) DL/T1035.1-2006循环流化床锅炉检修导则 (5) DL/Z870—2004 发电设备点检定修管理导则 2.设备概况及主要技术参数 2.1青海盐湖化工公司热电厂一期每台锅炉配备一台一次风机,通过该风机出来的空气分成三路送入炉膛,2013年6月20日晚,1#炉一次风机轴承温度过高,低速无杂音运转时,轴承滚珠之间碰撞声音明显,经检查,需更换两端轴承。 2.2主要技术参数 设备名称:1#炉一次风机 设备型号:CGXY-48No28.3F 设备厂家:四川鼓风机有限责任公司 转速:1450 rpm 流量:259468 m3/h 压力:23750Pa 介质温度:20℃ 配用电机:YKK710-4/2240KW(10KV) 3、施工前准备 3.1、审阅厂家设备技术协议和使用说明 3.2、施工工器具准备

3.3备件准备:双列向心球面滚子轴承23044CC/W33 3.4人员情况 总负责人1人技术负责人1人 更换负责人1人 更换成员:钳工4名起重工2名焊工1名3.5 专业主任技术交底和必要的技术培训

浅谈风机发电机轴承损坏原因及预防措施

浅谈风机发电机轴承损坏原因及预防措施 摘要:发电机轴承是发电机的重要组成部分,双馈发电机组随着运行时间的增长,轴承失效问题不断增多,本文简单讨论了发电机轴承损坏的原因,制定了一 些预防措施,通过制定合理日常运行维护方案,有效地延长轴承的使用寿命。 关键词:轴承;失效;预防 Abstract:The bearing of generator is an important part of generator. With the increase of operation time, the problem of bearing failure is increasing. This paper simply discusses the cause of the damage of generator bearing, and makes some preventive measures. The service life of bearing can be effectively extended by making reasonable daily operation and maintenance plan. Key words: pillow damage prevent 0.引言 目前风电行业内使用的发电机有双馈异步发电机、鼠笼异步发电机、高速永 磁发电机、中速永磁发电机、低速永磁发电机、高速电励磁发电机与低速电励磁 发电机等。作为风力机组的主要部件,随着运行时间的增长,轴承损坏问题一直 困扰的各个风电企业,尤其是双馈发电机组。其多采用双轴承结构,即前后各一 个深沟球圆珠滚子轴承。机组日常运行维护不到位或不彻底,导致发电机轴承损 坏故障逐年增多,更换轴承周期长,成本高,工艺复杂。严重影响了机组安全和 发电效率,大大降低了机组的可利用率。 1.发电机轴承损坏原因分析 1.1润滑不良 润滑油脂的组成:润滑油脂主要由基础油、添加剂和稠化剂三部分组成; 基础油:它是润滑脂中的重要组成部分,基础油的润滑质决定了润滑脂的润 滑性质,所以正确选择基础油是非常重要的。 添加剂:它的作用是改善润滑脂的某些性能。如加入极压添加剂,可以提高 润滑脂的极压性能; 加入防锈添加剂可提高润滑脂的防锈性能等。 稠化剂:是润滑脂中的重要组成部分,它在润滑脂中形成骨架,将基础油吸 附和固定在骨架上形成胶体。稠化剂的性质和含量决定了润滑脂的粘稠程度以及 耐水性和耐热等使用性能。 润滑油脂填充量:润滑脂的填充量,以填充轴承和轴承壳体空间的三分之一 至二分之一为宜,若加脂过多,滚动体散热受阻,高温还会使油脂变质恶化或软化。作为高速运转的发电机轴承应仅填充至三分之一或更少。用于低速运转的主 轴轴承,为防止外部异物进入轴承内,可以填满壳体空间。 随着风电行业的快速发展,大部分机组已运行超过5年,发电机的润滑一般 分为定期手动注入和润滑油泵自动注入两种。新油脂的注入一般不存在问题,但 很多机组的废油口堵塞,废油脂无法及时排出,导致大量油脂在高温的条件下气化,出现油脂分离,即基础油与添加剂分离,油顺着轴承缝隙渗出,而添加剂及 稠化剂则残留在轴承内,这些残留物不但对轴承起不到润滑作用,还会加速轴承 的老化、损伤,损伤的轴承在运行过程中温度会不断升高,又加速了油脂的气化 分离,如下图所示。久而久之,轴承的损坏在所难免。而行业内因机组轴承损毁、卡死导致机组起火、烧机的事故也时有发生。 图1 图2 1.2腐蚀

风力发电原理

力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。 现状:风力发电正在世界上形成一股热潮,风力发电在芬兰、丹麦等国家很流行;我国风能资源十分丰富,我国也在西部地区大力提倡,管理滞后影响风电“进步” 首先,我国对风能资源的普查、评价、规划管理严重滞后,资源分散,缺少整合,没有形成全国统一的国家级风电产业研机机构,缺少对产业资源的集中和整合。 其次,单位kW造价高,火电平均4500元/kW,风电平均每8000~9000元/kW,平均造价高于火电。火电平均电价0.36元/千瓦时,风电平均电价为0.56元/千瓦时,在我国南方地区电价,还要略高于北方地区。影响电网并网发电的积极性。 第三,目前市场和产业化基本上没有形成,风电机组和系统设计技术、设备性能、效率以及技术工艺水平与欧洲相比存在很大差距。国产风电关键部件,如液压系统、联合器、电控等可靠性差,技术不够成熟。 改善“环境”加快风电步伐 前景:它的优势不需要燃料、不占耕地、没有污染,运行成本低。;风力发电产业发展前景非常广阔, 为风力发电没有燃料问题,也不会产生辐射或空气污染。 我国风能资源十分丰富,它是一种干净的可再生能源;风力发电产业发展前景非常广阔, 优缺点:它的优势不需要燃料、不占耕地、没有污染,运行成本低,我国风力资源丰富,缺点,效率低,造价昂贵,技术有待改进,管理不够完善 回答者:31373674 - 见习魔法师二级 7-18 11:08 提问者对于答案的评价:很好,谢谢评价已经被关闭目前有 1 个人评价 好 100% (1)不好 0% (0) 其他回答共 1 条 风力发电是继IT等产业后的又一个朝阳产业,发展和利用风能等可再生资源已经成为国际电力发展的大趋势。据报道,到2020年,风力发电可提供世界电力需求的12%,可创造180万个就业机会,可在全球范围内减少二氧化硫等废气的排放100多亿吨。 根据世界风能委员会(GWEC)的报道,2004年世界风能工业增长20%,新装机的风电能力为7976MW,风力发电总能力已经达到47407MW。2004年,欧洲新装机的风力发电能力约占全球新增风力发电装机容量的71.46%。其次是亚洲、北美和太平洋地区,分别为15.9%、6.4%、4.1%。德国、西班牙、美国、丹麦和印度是风力发电装机能力最大的国家。 据统计,2004年欧洲继续统治着全球风力发电市场,新建风力发电装备价值57亿欧元,新增风力发电能力5744MW,大约有5700MW的新增风电并入欧洲电网,使得欧洲风力发电的装机容量达到34205MW。在欧洲,利用风能最成功的国家是德国、西班牙和丹麦。在这些国家,风力发电能力占本国总发电量分别为7%、6.5%、20%。欧洲的电力供应一直在增长,1997年增长率为14%,估计2010年将达到21%,在新增的装机容量中,大约有二分之一的电力将由风能提供。

发电机轴承绝缘电阻和轴电压测量

发电机绝缘电阻的测试 1发电机在起动前或停机后,应测量发电机及励磁回路各部分绝缘电阻值,并记入绝缘登记台帐中。如果电气回路无工作,且停机时间不超过24小时,起动前可不测绝缘电阻,但停机后必须测量,以便与上一次阻值相比较。如果阻值出现异常,应立即汇报领导。 2定子绝缘电阻由检修测量。在定子不通水的情况下,定子绕组绝缘应用2500V摇表进行测量;不同温度所测的绝缘值应换算到75℃时,绝缘电阻R(75℃)≥4.4MΩ,在不同温度下其 绝缘电阻可使用下面的公式换算: R1 = R2 ×1.5 (t1-t2) /10 R1— t1℃时实测所得的发电机绝缘电阻值(单位是MΩ); R2—换算成规定温度下的发电机绝缘电阻值(单位是MΩ); t1—实测时的测量温度(单位是℃)。 t2—规定的换算温度(单位是℃)。 3在定子通水状态下,用水内冷电机绝缘电阻测定仪测量,其值不做具体规定,但必须与上次的测量值进行比较,在相同的情况下应不低于上次的1/5~1/3,最低不低于每千伏1兆欧, 即:20 MΩ。 4发电机转子绕组绝缘电阻应由检修用500V摇表测量,在25℃时不应小于10MΩ。 5 无刷励磁系统的绝缘电阻测定:断开F10、F20、Q10、Q20,退出主励磁机磁场接地检测 装置和发电机磁场接地检测装置。用500V摇表进行测量,其绝缘电阻规定如下: (1).副励磁机定子线圈对地绝缘电阻不低于0.5 MΩ。 (2).主励磁机定子励磁线圈对地绝缘电阻不低于0.5 MΩ。 (3).旋转部分(包括发电机转子励磁线圈、旋转整流盘、主励磁机转子线圈及引线)的对地绝缘电阻不低于0.5 MΩ。 6发电机集电环绝缘电阻用500V摇表测量,在25℃时不应小于10MΩ。 7机械系统的绝缘电阻测定:用1000V摇表进行测量发电机、主励磁机轴承座对地绝缘电阻及进出油管道、拾振装置、测温装置等设备对轴承座绝缘电阻不低于1.0 MΩ。 8定子绕组绝缘吸收比R60〞/R15〞≥1.3 ,阻值与上次比较不应低于上次的1/5~1/3。 9励磁调节柜只测对地绝缘,各阻值应不小于0.5MΩ, 10励磁系统不允许用摇表测量直流“+”“-”极间的绝缘电阻及交流相间绝缘电阻,防止整流二极管或可控硅整流三极管反向击穿而造成设备损坏的故障。 11以上测量结果若有问题时必须查明原因,在未查明原因时不能启动并网,应汇报值长联系有关部门处理。

增压风机风机轴承进油管泄露在线抢修更换

增压风机风机轴承进油管泄露在线抢修更换 摘要:对豪顿ANN型增压风机润滑油系统进行了分析,介绍了脱硫取消旁路烟道后,风机润滑油进油管严重泄漏时风机不停运,机组不停机在线处理方案,并针对此类型风机油系统运行与维护提出一定的技术改进建议 关键词:ANN型风机油管泄露在线处理技术改进 1、概述 我厂脱硫系统增压风机采用豪顿华ANN-4494/2120B型单级动叶调节轴流风机,风机轴承箱布置在进气箱内,与烟气隔离,风机轴承箱与电机通过中间轴段连接。风机轴承润滑采用外置循环润滑冷却系统,与电机前后轴瓦共用一套润滑设备,三路润滑油进油可以根据要求单独调节进油流量。润滑油进油均采用耐压金属软胶管,回油采用不锈钢管连接。风机进油管进入轴承箱后分支路对三组轴承进行喷淋润滑,设计正常风机润滑油流量≮19L/min,电机润滑油流量≮4.5L/min。回油管接在轴承箱的最底部保证了回油畅通。某天风机润滑油进油管严重泄露,机组在不降负荷不停机的情况下在线进行了更换,保证了风机设备、机组的稳定运行。 2、风机轴承进油管泄露及处理过程 2.1轴承进油管泄露 我厂#2机组增压风机风机润滑油进油管一直存在漏油现象,由于脱硫旁路烟道取消,增压风机不能停运处理,某天中班18:30左右漏油管忽然开裂增大,油箱油位直线下降,油箱容积396L,最高油位容量316L,短时间补油量迅速增加,当时机组负荷600mw,现场积极调运所有46#压力润滑油进行临时补油处理,整个从泄露开始至处理结束共计消耗约11桶润滑油(208L/桶)。 2.2 采取的泄露处理方案 根据现场泄露情况,派专业堵漏人员进里面检查,发现油管接头、管路多处有渗漏现象,油管严重腐蚀老化,不能进行常规堵漏的处理,一旦整个油管断裂,增压风机就得停运,机组就得停机。专业人员组织紧急进行会议讨论,决定采用临时将风机轴承外循环润滑冷却改成自油浴润滑,同时迅速更换进油管的技术方案:维持轴承箱油位,调整风机润滑油进油流量至最低流量(以能保证轴承温度不迅速上升为宜),迅速将回油管堵死,建立轴承箱最低润滑油位(等到轴承旋转能带起润滑油自润滑即可),关闭风机轴承润滑油进油流量阀,更换润滑油进油管,缓慢打开润滑油进油流量阀至最小流量,迅速恢复润滑油回油管路,调整润滑油进油流量至正常流量,处理过程结束。 2.3泄露处理过程

风力发电机后轴轴承更换作业指导书(修正)

风力发电机后轴轴承更换作业指导书 注:机舱作业注意事项见附件一 作业所使用工具见附件二 作业所使专用工具见附件三 具体作业流程如下: 一、发电机后轴承拆卸 1、进入风机前,在该检修机位后台由运行人员对该风机打维护;进入风机后,在塔底屏上使用维护钥匙打硬维护,顺时针旋转30°。 图一风机硬维护 2、登塔后,在机舱柜内断开208F5 24V电源(向下扳,高速轴刹车盘抱死),断开后检查高速后刹车盘确已抱死;在机舱柜内断开所有24V电源和400V电源(逆时针旋转90°),并挂“禁止合闸,有人工作”标示牌。 图一机舱柜24V电源

图二机舱柜400V电源 3、使用大十字起子拆卸发电机空空冷却器导风罩,使用17#开口扳手拆卸碳粉收集罩,拆卸后把电机空空冷却器导风罩妥善绑扎,把碳粉收集罩放于机舱底部,并使用盖板盖上孔 洞。 图一导风罩图二导风罩绑扎 图三收集罩

4、使用大一字拆卸编码器,10#开口拆卸编码器支架。 图一拆编码器 5、分别拆卸集电环罩左侧发电机转子接线盒端盖、右侧主碳刷侧端盖,后侧编码器侧端盖,三个端盖均使用13#开口扳手或电动套筒扳手;拔出主碳刷。 图一拆主碳刷侧端盖图二接线盒端盖图三拔主碳刷 6、使用24#开口扳手和套筒扳手拆卸空空冷却器与发电机连接接地线及连接螺栓,后使用千斤顶在发电机后端顶起空空冷却器,并用木块垫起。 图一拆地线、螺栓图二顶起冷却器图三垫起冷却器

7、使用24#开口扳手/套筒扳手/电动扳手拆卸发电机转子接线盒内转子进线电缆。 图一转子进线电缆 8、使用19#开口扳手拆卸主碳刷刷架上的转子侧电缆接线;拆掉主碳刷与接地碳刷信号线;使用12#开孔扳手拆卸轴承PT100。 图一转子进线电缆

汽轮发电机组发电机后轴承轴向振动大原因分析及处理

龙源期刊网 https://www.sodocs.net/doc/047426617.html, 汽轮发电机组发电机后轴承轴向振动大原因分析及处理 作者:徐冉郭刚 来源:《中国科技博览》2016年第02期 [摘要]山东济矿鲁能煤电股份有限公司阳城电厂安装2台150MW凝汽式汽轮机,两台机组发电机后轴承轴向振动均出现了振幅较大的问题,本文主要介绍了汽轮发电机组发电机后轴承轴向振动严重超标的几种原因及消除对策,结合现场实际情况,用简单的基础理论,解释较难解决的发电机后轴承轴向振动产生的因素。 [关键词]发电机组;轴承;轴向振动;转子弯曲;轴承座;力平衡 中图分类号:TM311 文献标识码:A 文章编号:1009-914X(2016)02-0040-01 1 概况 山东济矿鲁能煤电股份有限公司阳城电厂#2机组自2010年开始,发电机后轴承轴向的振动经常出现,而振动值明显地呈上升态势,振动值增大的幅度越发明显,致使振动值严重超标,经监视测量,轴承座顶部轴向振动值达300 μm以上。 汽轮发电机组的振动,是评价机组运行可靠性的重要指标。能引起汽轮发电机组振动的原因很多,这些原因不仅与制造、安装、检修和运行管理的水平有关,而且它们之间又互相影响。这种情况下,找出产生振源的主要因素、使振动叠加、放大、共振的重要因素,并非一件容易的事。本文主要研究大型汽轮发电机组发电机后轴承常见的轴向振动严重超标的几种原因及消除对策。 2 轴承轴向振动产生的原因 在测量机组振动的过程中,常常发现轴承的轴向振动过大,其轴向振动幅值往往是垂直和水平振动幅值的几倍甚至达到几十倍,而这种轴向振动过大现象,又绝大多数发生在发电机后轴承,联系阳城电厂#2机组#5轴承振动情况分析,引起发电机后轴承轴向振动过大的原因有如下几点。 2.1 转子弯曲 机组发电机转子前后轴颈之间轴向距离一般较长,加上材料的刚性及制造质量等诸多因素,就不可避免地使转轴存在一定的静挠度。发电机在运转时,如遇到转子同定子间空气间隙不均匀时,转子受到周期性的电磁力作用或转子置于不均匀温度场中,都可能使转子在力(热)的作用下发生弯曲。弯曲的转子在旋转时,轴颈产生偏转,轴颈在轴瓦内的油膜承力中

相关主题