搜档网
当前位置:搜档网 › 无刷直流电机调速--C语言源程序

无刷直流电机调速--C语言源程序

无刷直流电机调速--C语言源程序
无刷直流电机调速--C语言源程序

附录

1. C语言源程序:

#include"stdio.h"

#include"myapp.h"

#include"ICETEK-VC5502-EDU.h"

#include"scancode.h"

#include"lcd.h"

#define CTRSTATUS (*(unsigned int * )0x608000) //port8000

#define CTRLED (*(unsigned int * )0x608004) //port8004

#define MCTRKEY (*(unsigned int * )0x608005) //port8005

#define CTRCLKEY (*(unsigned int * )0x608006) //port8006

#define CTRMOTORBSPEED (*(unsigned int * )0x608003)

void InitMcBSP();

void INTR_init( void );

void InitForMotorB( void );

void showparameters();

void LCDPutString(unsigned int * pData,int x,int y,unsigned int nCharNumber,unsigned color);

void PIDControl(int rk,int yk);

void PrintParameters();

//定时器分频参数

#define T100 99 // 100个时钟周期中断一次

#define T2Hz 20000 // 20000个时钟周期读取速度一次

//工作变量

usigned int uWork,uN,nCount,nCount1,nCount2,nCount3,nCount4;

int nSSS,nJSSpeed,pwm1;

int md,wc;

unsigned int nScreenBuffer[30*128];

float a=0.6f,b=0.2f,c=0.1f,duk;

int ek,ek1,ek2,tz;

int nInput;

unsigned int *www=(unsigned int *)0x608003;

Int m_nSpeed,m_bPCSet;

// 主函数

main()

{

unsigned char ccc;

int speed[100],sp,lj;

float ljh;

int i,w1,w2,w3;

unsigned int uWork1;

unsigned int bWork1,*pWork;

int breakflage;

// 初始化工作变量

for ( sp=0;sp<100;sp++ )speed[sp]=0;

for ( sp=0;sp<1024;sp++ ) nScreenBuffer[sp]=0;

sp=nSSS=nCount=nCount1=nCount2=nCount3=nCount4=nJSSpeed=0;nInput=tz=wc =0;

ek=ek1=ek2=0;

uN=40;md=70;pwm1=60;

m_nSpeed=70;m_bPCSet=0;

inputspeed=0;

uWork1=0;

breakflage=0;

initemif();

CLK_init();

*(int*)0x400001=1;

CREG=1; //使能外部总线接口

InitCTR();

CTRGR=0x80;

CTRGR=0;

CTRGR=0x80;

LCDTurnoff();

// 设置显示参数和内容

LCDSetDelay(1); //设置延时等待参数LCDSetScreenBuffer(nScreenBuffer); // 显示缓冲区

for (bWork=0,pWork=nScreenBuffer;bWork<30*128;bWork++,pWork++) (*pWork=0)

LCDTurnOn();//打开显示

LCDCLS();//清除显示内存

LCDPutCString(str1,0,127,8,0);

LCDPutCString(str2,0,111,2,1);

LCDPutCString(str3,68,111,2,1);

LCDPutCString(str4,68,79,2,1);

LCDPutCString(str5,68,95,2,1);

LCDPutCString(str6,0,95,2,1);

LCDPutCString(str7,0,79,3,1);

ShowParamctors();//参数显示

InitMcBSP();

INTR-init();

InitForMotorB();

While(!breakflage)

if(nCount==0) //读取键盘标志

uWork=MCTRKEY;

CTRCLKEY=0;

Switch(uWork1)

Casc 128;

if(inputspecd!=0)

Md=inputspecd;

Inputspecd=0;

LCDPutCString(numbers+104,104,79,1,1);

LCDPutCString(numbers+104,112,79,1,1);

LCDPutCString(numbers+104,120,79,1,1);

LCDRefreshScreen();

break;

case 64;

breakflage=1;

case 1;

inputspeed=inputspeed+1

break;

case 2;

inputspeed=inputspeed-1;

break;

case 4;

inputspeed=inputspeed+10;

break;

case 8;

inputspeed=inputspeed-10;

break;

if(inputspeed>90)

inputspeed=90;

if(inputspeed<0)

inputspeed=0;

w1=inputspeed%1000/100;w2=inputspeed%100/10;w3=inputspeed%10; LCDPutString(numbers+w1*8,104,79,1,1);

LCDPutString(numbers+w2*8,112,79,1,1);

LCDPutString(numbers+w3*8,120,79,1,1);

LCDRefreshScreen();

if(m-bPCSet)

m-bPCSst=0;

if (m-nSpeed>=0&&m-nSpeed<256)

md=m-nSpeed;

LCDPutCString(numbers+104,104,79,1,1); LCDPutCString(numbers+104,112,79,1,1); LCDPutCString(numbers+104,120,79,1,1); LCDRefreshScreen();

printparameters();

if(nJSSpeed==0) //读取速度标志

LED=1;

nJSSpeed=0;

ccc=CTRMOTORBSPEED; //读取端口速度计数ccc=ccc&0xff;

nSSS=ccc;

if(nSSS>=0 && nSSS<400) //合法性检测

speed(sp)=Nsss

sp++;sp%=33;

if(sp==0) //读取实际速度

lj=0;ljh=0;

for(i=0;i<33;i++)

if(speed(i)>=0&&speed(i)<400)

ljh+=speed(i);

lj++;

nCount3++;nCount3%=3;

if(nCount3==2)

PIDControl(md,wc); //调用PID算法控制程序uN=100-pwml; //利用占空比调整控制Showparameters(); //显示各参数到LCD

CloseCTR();

exit(0);

//PID算法控制子程序

void PIDControl(int rk,int yk)

ek=rk-yk;

duk=a*ek+b*ek1+c*ek2; //计算控制输出

ek2=ek1; ek1=ek;

tz=(int)duk;

pwm1+=tz; //计算当前占空比

if(pwml<0) pwml=0;

else if(pwml>99) pwml=99;

void interrupt Timer()

uWork=PCR1; //pwml输出

if(nCont1>u N)

uWork=4; //根据占空比设置FSR状态

else

uWork&=0x0fffb;

PCR1=uWork;

//设置中断控制寄存器

void INTR-init(void)

asm(“BSET INTM”);

IVPD=0x01;

IVPH=0x01;

IERO=0x10;

DBIERO=0x10;

IFRO=0xffff;

asm(“BCLR INTM”);

void InitForMotorB(void)

ioport unsigned int *GPTCTL1-0;

ioport unsigned int *GPTPRD1-0;

ioport unsigned int *GPTGCTL1-0;

*GPTCTL1-0=0;

*GPTPRD1-0=0x1d8;

*GPTGCTL1-0=0x3;

//显示参数到LCD

void ShowParameters()

int w1,w2,w3;

w1=md%1000/100;w2=md%100/10,w3=md%10; LCDPutString(numbers+w1*8,36,111,1,1); LCDPutString(numbers+w2*8,44,111,1,1); LCDPutString(numbers+w3*8,52,111,1,1);

if (ek>=0)

LCDPutString(numbers+88,36,95,1,1);

w3=((int)ek)%100;

else

LCDPutString(numbers+96,36,95,1,1);

w3=((int)(-ek))%100;

for (j=0;j<16;j++,k<<=1)

if (color==2) mcolor=2;

else

mcolor=(pData(1*8+i)&k)(1):(0);

if(color==0) mcolor=1-mcolor;

LCDPutPixel(x+1*8+I,y-j,mcolor);

int wwss;

void PrintParameters()

wwcc=wc-md;

printf(“测速(%3d) 设置(%3d) 误差(%+4d) PID调整量(%+3d) 占空比(%3d%%)\n”,

wc,md,wwcc,tz,pwm1);

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

无刷直流电机(BLDC)双闭环调速解析

无刷直流电机(BLDC)双闭环调速系统 在无刷直流电机双闭环调速系统中,双闭环分别是指速度闭环和电流闭环。对于PWM 的无刷直流电机控制来说,无论是转速的变化还是由于负载的弯化引起的电枢电流的变化,可控量输出最终只有一个,那就是都必须通过改变PWM的占空比才能实现,因此其速度环和电流环必然为一个串级的系统,其中将速度环做为外环,电流环做为内环。调节过程如下所述:由给定速度减去反馈速度得到一个转速误差,此转速误差经过PID调节器,输出一个值给电流环做给定电流,再由给定电流减去反馈电流得到一个电流误差,此电流误差经过PID 调节器,输出一个值就是占空比。 在速度环和电流环的调节过程中,PID的输出是可以作为任意量纲(即无量纲,用标幺值来表示;标幺值:英文为per unit,简写为pu,是各物理量及参数的相对单位值,是不带量纲的数值)来输入给下一环节或者执行器的,因此无需去管PID输出的量纲,只要是这个输出值反映了给定值和反馈值的差值变化,能够使这个差值无限趋近于零即可,相当于将输出值模糊化,不用去搞的太清楚,如果你要是一直在这里纠结输出值具体是个什么东西时,那么你就会瞎在这里出不来了。假如你要控制一个参数,并且这个参数的大小和你给定量和反馈量有着直接的关系(线性关系或者一阶导数关系或者惯性关系等),那么就可以不做量纲变换。比如速度环的PID之后的输出就可以直接定义为转矩,因为速度过慢就要提高转矩,速度过快就要减小转矩,PID输出量的意义是调整了这个输出量,就可以直接改变你要最终控制的参数,并且这个输出量你是可以直接来控制的,这种情况下PID输出的含义是你可以自己定的,比如直流电机,速度环输出你可以直接定义为转矩,也可以定义为电流,然后适当的调节PID的各个参数,最终可以落到一个你能直接控制的量上,在这里最终的控制量就是占空比的值,当占空比从0%—100%时对应要写入到寄存器里面的值为0—3750时,那么0—3750就是最终的控制量的范围。 在调速控制中,既要满足正常负载时的速度调节,还要满足过负载时进行电流调节。如果单独采用一个调节器时,其调节器的动态参数无法保证两种调节过程同时具有良好的动态品质,因此采用两个调节器,分别调节主要被调量转速和辅助被调量电流,以转速调节器的输出作为电流调节器的输入,电流环是通过电流反馈控制使电机电枢电流线性受控,可达到电机输出力矩的线性控制,并使其动态范围响应快,最后再输出去控制占空比,从而改变MOSFET的导通时间,二者之间实行串级连接,它是直流电力传动最有效的控制方案。 在双闭环调速系统中,输入参数有三个,分别为给定速度和反馈速度以及反馈电流,其中给定速度由用户指定,一般指定为旋转速度(RPM 转/分钟)或直线速度(m/s 米/秒)。而反馈速度和反馈电流则需要由传感器来获取,下面来讲一下在无刷直流电机控制系统中,反馈速度和反馈电流的获取。 反馈速度:简单点的就由电机内用来检测转子位置的三个霍尔元件来得到,高端点的就加光电编码器,分别称为霍尔元件测速和编码脉冲测速。 霍尔元件测速:在电机磁极对数为1的情况下,转子旋转一周的时间内,霍尔传感器输出3路各180度信号,其中每两个传感器之间有60度的交叠信号,只要检测其中一路霍尔传感器的信号宽度就能计算出电机的速度。用输入捕捉(CAP)端口在上升沿捕捉一个时间标签,再在下降沿捕捉一个时间标签,根据两个时间标签的差值得出周期,由于霍尔传感器是在电机内固定不变的,因此每次在霍尔传感器的信号宽度下旋转的角度是一定的(即走过的距离是固定的),最后用此固定的距离除以周期即可得到速度,即T法测速,测量两个信号

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

无刷直流电动机调速系统设计说明

目录 1绪论 (1) 1.1 直流无刷电动机发展状况 (1) 1.2直流无刷电机控制技术的发展 (1) 2 直流无刷电动机的工作原理 (2) 2.1 直流无刷电动机的结构与原理 (2) 2.2三相绕组直流无刷电动机控制主回路的基本类型 (4) 2.3直流无刷电动机控制系统中的PWM控制器 (5) 3 直流无刷电动机控制系统的数学模型 (6) 3. 1直流无刷电动机的基本方程 (7) 3. 2直流无刷电动机控制系统的动态数学模型 (10) 4 硬件电路 (12) 4.1 主电路 (12) 4.2换相电路 (14) 5 软件部分设计 (17) 5. 1软件总体构成 (17) 5. 2主程序的设计 (17) 5. 3中断子程序的设计 (19) 结论 (21) 参考文献 (22) 致谢 .............................................................. 错误!未定义书签。

1绪论 1.1 直流无刷电动机发展状况 电动机作为机电能量转换装置,其应用围已经遍及国民经济的各个领域,电动机主要类型有同步电动机、异步电动机与直流电动机三种。直流电动机具有运行效率高和调速性能好等诸多优点,因此被广泛应用于各种调速系统中。但传统的直流电动机均采用机械电刷的方式进行换向,存在相对的机械摩擦,和由此带来的噪声、火花、无线电干扰以及寿命短等致命弱点。因此,早在1917年,Bulgier就提出了用整流管代替有刷直流电机的机械电刷,从而诞生了无刷直流电机(BLDCM: Brushless Direct Current Motor)的基本思想。 1955年,美国D·Harrison等人首次申请了用晶体管换向线路代替有刷直流电机机械电刷的专利,标志着无刷直流电机的诞生。1978年,原联邦德国MANNESMANN公司的Indramat分部在汉诺威贸易展览会上正式推出其MAC永磁无刷直流电机及其驱动系统,标志着永磁无刷直流电机真正进入了实用阶段。二十世纪80年代国际上对无刷电机开展了深入的研究,先后研制成方波和正弦波无刷直流电机,在10多年的时间里,无刷直流电机在国际上己得到较为充分的发展。现代电力电子器件工艺日臻成熟,出现了功率晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET),特别是绝缘栅双极晶体管(IGBT ), MOS可控晶闸管(IGCT)的开发成功,使无刷直流电机功率驱动电路的可靠性和稳定性得到保障。直流无刷电动机的发展也使得传统的电机学科同当代许多新技术的发展密切相关。随着大功率半导体器件、电力电子技术、微电子技术、数字信号处理技术、现代控制理论的发展以及高性能永磁材料的不断出现,如今的无刷直流电机系统己经成为集特种电动机、功率驱动器、检测元件、控制软件与硬件于一体的典型的机电一体化产品,体现了当今工程科学领域的许多最新成果。 1.2直流无刷电机控制技术的发展 常规控制器(PID控制)尽管控制精度较高,但它需要建立描述动态系统的精确的数学模型,对于未知动态变化的系统要建立精确的数学模型是比较困难的。比如干扰、参数漂移和噪声等不可能在很高的精度下进行模型化。

直流电机调速方案及优缺点教学文案

直流电机调速方案及优缺点 1、电枢回路串联电阻调速 可在电源电压不变的情况下,改变电枢回路中的电阻,达到调速的目的。调速的机械特性如下图所示。当电枢回路中串联的电阻越大,直线的倾斜率越小。 电枢回路串联电阻调速优缺点 1、 由于电阻智能分段调节,因此调速的平滑性比较差。 2、 低速时,调速电阻上有较大电流,损耗大,电机效率低。 3、 轻载时调速范围比较小。 4、 串入电阻阻值越大,机械特性越软,稳定越差。 2、降低电源电压调速 根据直流电动机机械特性方程式可以知道,改变电额定电压,因此电枢电压只能在额定电压一下进行调节。 N T Tn n T

降低电源电压调速的优点 1、电压便于平滑性调节,调速平滑性好,可实现无级调速。 2、调速前后机械斜率不变,机械特性硬度高,稳定性好,调速范围广。 3、调速是损耗小,调速经济性好。 4、改变励磁磁通道调速 根据机械特性方程可以知道,当u为恒定时,调节励磁磁通,也可以实现电动机转速的目的。额定运行的电动机,其磁通已基本饱和,因此改变磁通只能从额定值往下掉。 Tn T 改变励磁磁通道调速的优点 1、调节平滑,可实现无级调速。 2、励磁电流小,能量损耗小,调节前后电动机的效率不变,经济性好。 3、机械特性较硬,转速稳定。 4、本次我们用的是pwm即脉冲宽度调节。 它主要是通过改变输出方波的占空比,使得负载上的平均接通时间从0-100%变化,以达到调整负载速度的目的。脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图2-3a所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图2-3中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。

直流电机调速方法

直流电动机分为有换向器和无换向器两大类。直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。该法只适用在一些小功率且调速范围要求不大的场合。30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。

由式1可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 1. 改变电枢回路电阻调速 各种直流电动机都可以通过改变电枢回路电阻来调速,如图1(a)所示。此时转速特性公式为 (2) 式中Rw为电枢回路中的外接电阻(Ω)。 图1(a) 改变电枢电阻调速电路图1(b) 改变电枢电阻调速时的机械特性 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R=(Ra+Rw)增大,电动机转速就降低。其机械特性如图1(b)所示。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,调速比一般约为2:1左右,转速变化率大,轻载下很难得到低速,效率低,故现在已极少采用。 2. 改变电枢电压调速 连续改变电枢供电电压,可以使直流电动机在很宽的范围内实现无级调速。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

直流电动机设计方案

直流电动机设计方案 第1章前沿 1.1 课题研究的背景及意义 直流电动机以其良好的起动、制动性能,较宽范围内平滑调速的优点,在许多调速要求较高、要求快速正反向、以蓄电池为电源的电力拖动领域中得到了广泛的应用。近年来,虽然高性能交流调速技术得到了很快的发展,在某些领域交流调速系统已逐步取代直流调速系统。然而直流调速系统系统不仅在理论上和实践上都比较成熟,目前还在应用,比如轧钢机、电气机车等都还有用直流电机;而且从控制规律的角度来看,交流拖动控制系统的控制方式是建立在直流拖动控制系统的基础之上的,从某种意义上说有相似的地方。因此,掌握和了解直流拖动控制系统的控制规律和方法是非常必要的。 从生产机械的要求的角度看,电力拖动控制系统分为调速系统、伺服系统、多电动机同步控制系统、张力控制系统等多种类型。而各种系统大多都是通过控制转速来实现的,因此调速系统是电力拖动控制系统最基本的系统[1]。 从直流电机在国民生产生活中所占位置的角度来看,直流电机目前依旧应用于工业生产中,并广泛应用于人们的生活中。因此直流电机的控制技术的发展很大程度上影响着国民经济的增长,影响着人们的生产生活水平,因此,对直流电机调速系统的研究还是很有必要的。 1.2 课题发展历程及趋势 在很长的一段时间里直流电动机作为最主要的电力拖动工具,其应用已经渗透到人们的工作、学习、生活的各个方面。早期电动机调速控制器主要由模拟器件构成,由于模拟器件存在的固有缺点,比如存在温漂,零漂电压等,使系统控制精度和可靠性降低。后来,随着可编程控制器比如AT89C51,PLC等和IGBT、GTR等电力电子开关器件,传感器技术等的发展使得直流电机调速系统进入了数字控制的阶段,这使得直流电机调速系

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

无刷永磁直流电机调速系统

毕业设计论文 题目永磁无刷直流电机调速系统设计 (院)系电气与信息工程系 专业电气工程及其自动化班级 0001 学号 0001120121 学生姓名万志雄 导师姓名谢卫才 完成日期 2004-6-15

湖南工程学院 毕业设计(论文)任务书 设计(论文)题目:无刷永磁直流电机调速系统 姓名万志雄系别电气与信息工程系专业电气工程及其自动化班级0001 学号 指导老师谢卫才教研室主任 一、基本任务及要求: 阐述无刷直流电机的发展过程,基本原理和结构。从无刷永磁直流电动机的基本原理和调速原理出发,设计出一个无刷永磁直流电机和系统。 二、进度安排及完成时间: 2月16日明确设计任务书和具体安排 2月20日下午设计任务书抽查 2月16日-3月6日查阅资料、撰写文献综述、撰写开题报告 3月6日抽查文献综述、开题报告撰写情况 3月7日-3月21日毕业实习、撰写实习报告 3月22日-5月29日毕业设计 4月底毕业设计中期检查 5月30日-6月15日撰写毕业设计说明书(论文) 6月16日毕业设计说明书抽查(论文) 6月16日-6月20日修改、装订毕业设计说明书、指导教师评阅 6月18日-6月26日毕业设计答辩(公开答辩、分组答辩)

前言 永磁无刷直流电动机由于没有换向火花,没有无线电干扰,既具有交流电动机的结构简单,运行可靠,维护方便等一系列优点,又具有直流电动机的运行效率高,无励磁损耗以及调速性能好等诸多特点,因此被广泛用于国民经济的各个领域,并且日益普及。所以,对于永磁无刷直流电动机的研究将是具有非常重要的意义.本文针对永磁无刷直流电动机所具有的各种优点 本课题对永磁无刷直流电动机的研究基于以下几个方面:无刷直流电机本体的研究, 气隙磁场和电磁转矩的研究, 电磁转矩的研究, 电气损耗的研究, 系统仿真的研究, 换向逻辑的问题的研究, 位置传感器的设计的研究. 但是,由于许多原因,无刷永磁直流电机还存在缺陷,并没有完全适应国民经济的发展,且电机的需求量在随着国民经济的迅猛增长而不断增大。由此可以看出,研究新型无刷直流电机是当务之急。 本课题主要从无刷永磁直流电动机的基本原理出发,阐述无刷永磁直流电动机的基本结构、控制和具体的应用,并且设计一台无刷永磁直流电动机。 本课题主要解决以下几个方面的问题:永磁无刷直流电动机的结构原理,电磁设计和具体应用.

无刷直流电机结构

无刷直流电机结构、类型和基本原理 一、概述 直流电动机的主要长处是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严峻地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。 随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。又具有交流电动机结构简朴、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。 元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。 二、无刷直流电动机的基本结构和类型 (一)基本结构 无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。其基本结构如图5一20所示。 电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成

对直流无刷电机的pid控制

PID闭环速度调节器采用比例积分微分控制 闭环速度调节器采用比例积分微分控制(简称PID控制),其输出是输入的比例、积分和微分的函数。PID调节器控制结构简单,参数容易整定,不必求出被控对象的数学模型,因此PID 调节器得到了广泛的应用。 PID调节器虽然易于使用,但在设计、调试无刷直流电机控制器的过程中应注意:PID调节器易受干扰、采样精度的影响,且受数字量上下限的影响易产生上下限积分饱和而失去调节作用。所以,在不影响控制精度的前提下对PID控制算法加以改进,关系到整个无刷直流电机控制器设计的成败。 2速度设定值和电机转速的获取 为在单片机中实现PID调节,需要得到电机速度设定值(通过A/D变换器)和电机的实际转速,这需要通过精心的设计才能完成。 无刷直流电机的实际转速可通过测量转子位置传感器(通常是霍尔传感器)信号得到,在电机转动过程中,通过霍尔传感器可以得到如图2所示的周期信号。 由图2可知,电机每转一圈,每一相霍尔传感器产生2个周期的方波,且其周期与电机转速成反比,因此可以利用霍尔传感器信号得到电机的实际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍尔传感器的一个正脉冲的宽度,则电机的实际转速为:但由于利用霍尔传感器信号测速,所以测量电机转速时的采样周期是变化的,低速时采样周期要长些,这影响了PID 调节器的输出,导致电机低速时的动态特性变差。解决的办法是将三相霍尔传感器信号相“与”,产生3倍于一相霍尔传感器信号频率的倍频信号,这样可缩短一次速度采样的时间,但得增加额外的硬件开销。直接利用霍尔传感器信号测速虽然方便易行,但这种测速方法对霍尔传感器在电机定子圆周上的定位有较严格的要求,当霍尔传感器在电机定子圆周上定位有误差时,相邻2个正脉冲的宽度不一致,会导致较大的测速误差,影响PID调节器的调节性能。若对测速精度要求较高时,可采用增量式光电码盘,但同样会增加了电路的复杂性和硬件的开销。 电机速度设定值可以通过一定范围内的电压来表示。系统中采用了串行A/D(如ADS7818)来实现速度设定值的采样。但在电机调速的过程中,电机控制器的功率输出部分会对A/D模拟输入电压产生干扰,进行抗干扰处理。 3非线性变速积分的PID算法 (1)PID算法的数字实现 离散形式的PID表达式为: 其中:KP,KI,KD分别为调节器的比例、积分和微分系数;E(k),E(k-1)分别为第k 次和k-1次时的期望偏差值;P(k)为第k次时调节器的输出。 比例环节的作用是对信号的偏差瞬间做出反应,KP越大,控制作用越强,但过大的KP会导致系统振荡,破坏系统的稳定性。积分环节的作用虽然可以消除静态误差,但也会降低系统的响应速度,增加系统的超调量,甚至使系统出现等幅振荡,减小KI可以降低系统的超调量,但会减慢系统的响应过程。微分环节的作用是阻止偏差的变化,有助于减小超调量,克服振荡,使系统趋于稳定,但其对干扰敏感,不利于系统的鲁棒性。 (2)经典PID算法的积分饱和现象 当电机转速的设定值突然改变,或电机的转速发生突变时,会引起偏差的阶跃,使|E(k)|增大,PID的输出P(k)将急剧增加或减小,以至于超过控制量的上下限Pmax,此时的实际控制量只能限制在Pmax,电机的转速M(k)虽然不断上升,但由于控制量受到限制,其增长的速度减慢,偏差E(k)将比正常情况下持续更长的时间保持在较大的偏差值,从而使得PID 算式中的积分项不断地得到累积。当电机转速超过设定值后,开始出现负的偏差,但由于积分项已有相当大的累积值,还要经过相当一段时间后控制量才能脱离饱和区,这就是正向积分饱和,反向积分饱和与此类似。解决的办法:一是缩短PID的采样周期(这一点单片机往往达不到),

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

直流电机调速(速度环)

测量电机转速方法主要采用测速发电机和光电编码器两种形式。 直流测速发电机由永久磁铁与感应线圈组成,用电枢获取速度信号。它具有灵敏度高、结构简单等特点,常用于高精度低速伺服系统,也可与永磁式直流电动机组成低速脉宽调速系统。直流测速发电机的输出信号是与输入轴的转速成正比的直流电压信号(模拟信号),信号幅度大,信号调理电路简单。由于输出电压信号有波纹,一般需要配置滤波电路。光电编码器(增量式)主要由旋转孔盘和光电器件组成。它具有体积小、使用方便、测量精度高等特点,常与直流电机配合使用构成脉宽调速系统。 增量式光电编码器输出的是与转角成比例的增量脉冲信号,可以通过脉冲计数获得角位置信号,也可以定时取样脉冲数的增量实现角速度测量。因此,可以同时测量转角和转速(数字信号)。 使用光电编码器来测量电机的转速,可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。具体的测速方法有M法、T法和M/T法3种。 1.M法在一定的时间Tc测区旋转编码器的脉冲个数M1,用以计算这段时间的平均转速,称作M法测速。M法又称之为测频法 2.T法测速是在编码器两个相邻输出脉冲的间隔时间,用一个计数器对一直的频率为fo的高频始终脉冲进行计数,并由此计算转速。 3.M/T法是把M法和T法结合起来,既检测Tc 时间旋转编码器输出的脉冲个数M1,又检测同一时间间隔的高频时钟脉冲的个数M2,用来计算转速。 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲

或数字量的传感器。这是目前应用最多的传感器,光电编码器的工作原理如图所示,在圆盘上有规则地刻有透光和不透光的线条,在圆盘两侧,安放发光元件和光敏元件。当圆盘旋转时,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经过整形后变为脉冲,码盘上有之相标志,每转一圈输出一个脉冲。此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号,如图所示。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B 两组脉冲相位差90°,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。

直流无刷电机工作原理

直流无刷电机工作原理 直流电机简介 无刷直流电机(BLDC)是永磁式同步电机的一种,而并不是真正的直流电机,英文简称BLDC。区别于有刷直流电机,无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机。 工作原理 直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。 直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 无刷电机优缺点 直流电动机具有快速响应,大起动转矩,从零速到额定转速,额定转矩可提供的性能,但直流电机的优点也是它的缺点,因为DC额定负载机密生产性能不断转移的时刻,电枢与转子磁场须保持恒定90度,这将用刷子和换向器。碳刷,换向器,继而引发电机,碳粉,所以除了元件造成损害的,有限的场合使用。交流无碳刷及整流子,免维护,可靠,应用范围广,但直流电机马达的特点,实现同等性能的必须使用复杂的控制得以实现。今天,功率半导体开关频率成分的快速发展,加快了许多,提升驱动电机的性能。微处理器的速度也越

直流电机PWM调速系统参考论文

毕业论文 基于51单片机的直流电机PWM调速控制系统设计 所在学院 专业名称 年级 学生姓名、学号 指导教师姓名、职称 完成日期

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。 关键词:PWM信号,霍尔元件,液晶显示,直流电动机 I

目录 目录 ................................................................................................................................ III 1 引言 (1) 1.1 课题背景 (1) 1.1.2 开发背景 (1) 1.1.3 选题意义 (2) 1.2 研究方法及调速原理 (2) 1.2.1 直流调速系统实现方式 (4) 1.2.2 控制程序的设计 (5) 2 系统硬件电路的设计 (6) 2.1 系统总体设计框图及单片机系统的设计 (6) 2.2 STC89C51单片机简介 (6) 2.2.1 STC89C51单片机的组成 (6) 2.2.2 CPU及部分部件的作用和功能 (7) 2.2.3 STC89C51单片机引脚图 (8) 2.2.4 STC89C51引脚功能 (8) 3 PWM信号发生电路设计 (11) 3.1 PWM的基本原理 (11) 3.2 系统的硬件电路设计与分析 (11) 3.3 H桥的驱动电路设计方案 (12) 5 主电路设计 (14) 5.1 单片机最小系统 (14) 5.2 液晶电路 (14) 5.2.1 LCD 1602功能介绍 (15) 5.2.2 LCD 1602性能参数 (16) 5.2.3 LCD 1602与单片机连接 (18) 5.2.4 LCD 1602的显示与控制命令 (19) 5.3 按键电路 (20) 5.4 霍尔元件电路 (21) III

无刷电机结构图及里面的霍尔信号工作原理

无刷电机结构图及里面的霍尔信号工作原理 (2009-05-30 17:33:55) 转载 标 签: 教育 霍耳的红线一般接5-12v直流电。推荐5-7v。 霍耳的信号线传递电机里面磁钢相对于线圈的位置,根据三个霍耳的信号控制器能知道此时应该如何给电机的线圈供电(不同的霍耳信号,应该给电机线圈供相对应方向的电流),就是说霍耳状态不一样,线圈的电流方向不一样。 霍耳信号传递给控制器,控制器通过粗线(不是霍耳线)给电机线圈供电,电机旋转,磁钢与线圈(准确的说是缠在定子上的线圈,其实霍耳一般安装在定子上)发生转动,霍耳感应出新的位置信号,控制器粗线又给电机线圈重新改变电流方向供电,电机继续旋转(线圈和磁钢的位置发生变化时,线圈必须对应的改变电流方向,这样电机才能继续向一个方向运动,不然电机就会在某一个位置左右摆动,而不是连续旋转),这就是电子换相。 电动车用无刷直流电机工作原理 摘要: 无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为bldc.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kw,可设计到400kw,可以解决产业界节电与高性能驱动的需求。. 关键词:无刷直流电机永磁同步电机直流变频钕铁硼 abstract: brushless direct current motor has the same dc motor output characteris tics, also named bldc. bldc have higher output torque in low speed, higher efficiency and better speed precision than any control modes of frequency converter drives. this chapte r introduce capacity up to 400kw for the industrial application. key words:brushless direct current motor permanent magnetic synchronous motor bldc ndfeb [中图分类号]tm921 [文献标识码]b 文章编号1561-0330(2003)06-00 1 无刷直流电动机简介 无刷直流电动机的学名叫“无换向器电机”或“无整流子电机”,是一种新型的无级变速电机,它由一台同步电机和一组逆变桥所组成,如图1所示。它具有直流电机那样良好的调速特性,但是由於没有换向器,因而可做成无接触式,具有结构简单,制造方便,不需要经常性维护等优点,是一种现想的变速电机。 在工作原理上有二种不同的工作方式: (1)直流无刷电机:又称“无换向器电机交一直一交系统”或“直交系统”,如图1所示。是将三相交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。(2)交流无刷电动机:它是利用交-交变频器向同步机供给交流电。

相关主题