搜档网
当前位置:搜档网 › 医用回旋加速器

医用回旋加速器

医用回旋加速器
医用回旋加速器

【医用回旋加速器】详细说明

近年来,随着核医学科建设的不断发展壮大,分子显像越来越多的应用到临床。PET/CT 已在全球临床医学领域得到广泛应用。正电子示踪剂是实施PET检查的先决条件,而要生产PET检查所需示踪剂中的放射性核素,医用回旋加速器是必需设备,起着至关重要的作用。回旋加速器生产正电子示踪剂的基础理念就是利用P/N(质子/中子)反应,用高能量的质子轰击靶原子核,将其中一个中子击出,质子留下,形成半衰期很短的新原子核。经过放化合成系统,通过化学反应,将新原子核标记到生理性代谢物质上(如葡萄糖、氨基酸、胆碱等),生成P ET检查所需的示踪剂。

设备主要特点:

(1)一键化操作:该设备整合了一套同位素发射器,基于显微放射化学技术和自动化质量控制,为生成PET示踪剂标记提供了有效、便捷的工具。

?简单的图形用户操作界面,可以导航客户对于设备的操作;

?嵌入式生产和自动化质量控制处理,使得对于操作人员的专业要求最小化;

?确保已有的技术人员能够快速、熟练的操作设备,并进行PET示踪剂标记;

(2)小型化设计理念:全新自屏蔽系统,占地小,低功率;

?一个完整PET示踪剂标记实验室,占地约30平方米;

?自屏蔽回旋加速器和显微化学系统,将辐射降到最低;

?运行维护成本低;

(3)高效率、低成本、快速制备:

?对于一个用户,可实现单次剂量制备;

?FDG工业剂量的快速生产;

?耗材:剂量合成卡和试剂盒;

?低设施要求;

?有效的降低运行成本;

(4)灵活、适用性强:适用于临床和科学研究;对于目前的临床需要,可实现临床P ET 示踪剂标记、FDG,也可用于将来放射性同位素研究。

?一个FDG剂量的单次剂量生产,每隔30分钟;

?F-18、C11生产;

?先进的F-18标记功能;

(5)低辐射:更低的能量使得该设备对环境、用户或操作人员的辐射更低,同时自屏蔽系统更是降低了这种影响。

技术指标:

1)低能量、正离子放射性同位素发生器

束特点

离子质子

内束能量7.5MeV

内束电流<5uAmps for F-18 内靶端口3(非同时)

物理设计:

电极直径74.8mm

Extraction半径35mm

Dee系统 4

Dee操作电压16kV Max.

频率72mHz

磁场

1.2Tesla 平均,最大1.8 Tesla

物理尺寸:

磁铁重量 3.5吨

回旋加速器高度0.37m

回旋加速器直径 1.25m

2)发生器屏蔽系统

外壳材料1/4inch 钢

屏蔽材料密实混凝土和硼化聚乙烯直径 2.39m

高度 1.63m

重量21吨

3)化学平台

尺寸81.3x68.6x101.6cm 辐射区域边界<1mR/hour

重量0.5吨

4)多靶端口和简单F-18靶设计最大化运行时间,并降低用户暴

漏时间

靶体体积<300ul

靶电流<5uAmps

靶材料不锈钢

F-18规格1mCi 轰击时间每分钟5)FDG生成

最终放射场1-~13mCi’s

最终生产量 2.0ml

控制系统人机界面、嵌入式控制耗材试剂盒、剂量合成卡7)安装要求

空间垂直高度 2.45m

空间宽度和长度 5.50m

电源240V,70Amps,单相冷却水系统6Kw 在16摄氏度

医用回旋加速器

【医用回旋加速器】详细说明 近年来,随着核医学科建设的不断发展壮大,分子显像越来越多的应用到临床。PET/CT 已在全球临床医学领域得到广泛应用。正电子示踪剂是实施PET检查的先决条件,而要生产PET检查所需示踪剂中的放射性核素,医用回旋加速器是必需设备,起着至关重要的作用。回旋加速器生产正电子示踪剂的基础理念就是利用P/N(质子/中子)反应,用高能量的质子轰击靶原子核,将其中一个中子击出,质子留下,形成半衰期很短的新原子核。经过放化合成系统,通过化学反应,将新原子核标记到生理性代谢物质上(如葡萄糖、氨基酸、胆碱等),生成P ET检查所需的示踪剂。 设备主要特点: (1)一键化操作:该设备整合了一套同位素发射器,基于显微放射化学技术和自动化质量控制,为生成PET示踪剂标记提供了有效、便捷的工具。 ?简单的图形用户操作界面,可以导航客户对于设备的操作; ?嵌入式生产和自动化质量控制处理,使得对于操作人员的专业要求最小化; ?确保已有的技术人员能够快速、熟练的操作设备,并进行PET示踪剂标记; (2)小型化设计理念:全新自屏蔽系统,占地小,低功率; ?一个完整PET示踪剂标记实验室,占地约30平方米; ?自屏蔽回旋加速器和显微化学系统,将辐射降到最低; ?运行维护成本低; (3)高效率、低成本、快速制备: ?对于一个用户,可实现单次剂量制备; ?FDG工业剂量的快速生产; ?耗材:剂量合成卡和试剂盒; ?低设施要求; ?有效的降低运行成本;

(4)灵活、适用性强:适用于临床和科学研究;对于目前的临床需要,可实现临床P ET 示踪剂标记、FDG,也可用于将来放射性同位素研究。 ?一个FDG剂量的单次剂量生产,每隔30分钟; ?F-18、C11生产; ?先进的F-18标记功能; (5)低辐射:更低的能量使得该设备对环境、用户或操作人员的辐射更低,同时自屏蔽系统更是降低了这种影响。 技术指标: 1)低能量、正离子放射性同位素发生器 束特点 离子质子 内束能量7.5MeV 内束电流<5uAmps for F-18 内靶端口3(非同时) 物理设计: 电极直径74.8mm Extraction半径35mm Dee系统 4 Dee操作电压16kV Max. 频率72mHz 磁场 1.2Tesla 平均,最大1.8 Tesla 物理尺寸: 磁铁重量 3.5吨 回旋加速器高度0.37m 回旋加速器直径 1.25m 2)发生器屏蔽系统 外壳材料1/4inch 钢 屏蔽材料密实混凝土和硼化聚乙烯直径 2.39m 高度 1.63m 重量21吨 3)化学平台

医用回旋加速器结构性能分析与技术进展_朱虹

.20《中国医疗器械信息》2011年第17卷第4期 Vol.17 No.4 收稿日期:2011-03-29 作者简介:朱虹,南京军区南京总医院核医学科主任;方可元,化学工程师 PET/CT(Positron emission computed tomography/CT ,正电子发射型计算机断层显像/X 线CT 显像仪)利用图像融合技术,综合了PET 功能、分子代谢影像与CT 精细解剖影像的优势,结合正电子放射性核素标记的多种分子探针的应用,在恶性肿瘤早期诊断与肿瘤分 期分级、临床疗效评估与随访监测,良、恶性病变鉴别, 协助临床治疗方案决策和放疗生物靶区确定,以及探 索肿瘤生物学特征等方面具有极为重要的作用,在心 脑血管疾病、神经变性性疾病、癫痫等的诊断、评估 等方面有独特价值,在临床的应用不断增加[1,2]。标 记各种分子探针所必需的正电子放射性核素如18F(氟-18)、11C(碳-11)、13N(氮-13)等的半衰期一般都很短, 依赖于医用回旋加速器即时生产制备。随着我国PET/CT 应用的迅速发展,对医用回旋加速器的需求也快速增长,据2010年全国调查,国内医用回旋加速器需求的年增长率达两位数[2]。本文分析医用回旋加速器的结构组成和性能特点,介绍相关技术进展。1 医用回旋加速器工作原理[3~5]回旋加速器是“粒子加速器”的一种,其设计、制造的理论基础是拉摩尔定律和劳伦斯回旋加速理论。现代回旋加速器则结合了托马斯提出的磁场强度随方位角变化的AVF 原理,采用规律变化的磁场系统,修正粒子加速过程中的相位移动、相对速度减慢和粒子回旋频率变化等,提高粒子加速效率和聚焦度。图 1 回旋加速器工作原理示意图 1.1经典劳伦斯(https://www.sodocs.net/doc/0618227695.html,wrence)回旋加速器回旋加速器的核心结构是磁场系统和射频(RF)系统,性能要求很高。为防止带电粒子运动中与其他原子碰撞损失能量,需置于真空(系统),因此对真空条件的要求也很高。图1是经典的https://www.sodocs.net/doc/0618227695.html,wrence 回旋加 速器原理示意图,两块磁铁上、下隔开放置,在两磁 极间形成一个均匀磁场(B),两个半圆形的金属扁盒 (D 形盒)隔开相对放置其中,D 形盒与高频振荡电源相联,在两个D 形盒的间隙处产生为粒子加速的交变

医用回旋加速器培训考试题及答案

小型医用回旋加速器培训考试题及答案 (一)简述等时性回旋加速器的基本工作原理,并说明与相对论效应的关系? 答:①回旋加速器由离子源产生的带电粒子在两D盒缝隙中被电场加速进入D盒内,在罗仑兹 力作用下做圆周运动,离子来到D盒缝隙时,高频电场的方向正好使离子再次加速,随后进入 另一边的D盒内作圆周运动,如此周而复始的来到D盒缝隙,实现多次加速,离子圆周运动半 径r 随速度v 增加,能量不断增加,最后达到引出半径r时,获得最大能量,被引出打到靶上。 保证粒子每次通过D盒缝隙均被加速的条件是:高频电场的频率f D 为带电粒子的回旋频率f C 的整倍数h,f D = h f C h 称为谐波数。 ②相对论效应使f C随m 增加而减小,逐渐f D = h f C 不再满足,粒子的速度达到极限。突破相 对论效应限制:使f C 不随m 增加而减小,可设计磁场的分布使其强度B 随粒子轨道半径r的 增加而增加,并刚好抵消m 的增加,从而使f C 保持恒定。最后实现等时性加速。 (二)写出计算粒子加速器的最高能量计算公式,说明公式内符号的代表意义及单位。用公式计算能量18MeV 回旋加速器,质子引出的半径是多少? 答:能量计算公式:W = 48(BR)2Z2/A , B-引出半径处的平均磁感应强度(Tesla) R—引出轨道半径(m),Z—离子的电荷数,A—离子的原子量数 例如:W=18MeV, 对质子Z=1,A=1,在引出半径处B=1.3T带入上式 (BR)2= 18/48=0.375,BR=√0.375 =613,R=0.613m/1.3 =471mm≈480mm (三)画出14MeV小回旋加速器高频D电路等效电路图(电容耦合),并说明等效电路图中符号的意义 答: 14MeV回旋加速器是外部离子源,两个D形盒在中心连接在一起,D电路等效电路图如下,CK1,CK2 分别为D电路耦合电容,C1,C2 为D盒对地等效电容,L1,L2 为地电路的等效电感。R1, R2为回路等效电阻。 左D输入右D输入 (四)等时性回旋加速器高频D电路的频率如何决定?举例说明。 答:回旋加速器高频D电路的频率由粒子加速器的回旋频率决定, 回旋加速器的高频频率必须等于粒子加速器的回旋频率的整数倍。 粒子的回旋频率fc= ω/2π= Z e B/2πmc , 简化后得fc =15.2?Z/A?B 如果B=1.3特斯拉,Z/A =1 ,fc = 15.2?1.3 = 19.76≈20MHz (基波) 如果是2倍频加速fc=20X2=40MHz。 (五)说出高频放大器输出功率最大时,末级输出阻抗与D电路同轴线阻抗最佳 匹配条件,不匹配将产生何影响? 答:同轴线的特性阻抗应当和末极放大器输出阻抗匹配,必须是D电路和同轴线谐振在高频 频率时阻抗为纯电阻,同轴线特性阻抗为50欧姆,放大器末级输出阻抗也应当接近50欧 姆。当不匹配时,高频放大器反射功率增大,谐振腔失谐,D电路损耗增大。 (六)简述负氢离子源的基本工作原理?

相关主题