搜档网
当前位置:搜档网 › 射影几何的诞生与发展

射影几何的诞生与发展

射影几何的诞生与发展
射影几何的诞生与发展

射影几何的诞生与发展

一从透视学到射影几何

1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题:

(1)一个物体的同一投影的两个截影有什么共同的性质?

(2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系?

2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。

3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。

4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。

5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线

6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。

7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点:

1)一个数学对象从一个形状连续变化到另一形状

2)变换与变换不变性

3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量

二射影几何的繁荣

1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

18世纪末19世纪初,蒙日的《画法几何学》及其学生们的工作,重新激发了人们对综合射影几何的兴趣,然而将射影几何变革为具有自己独立的目标与方法的学科的数学家是曾受教于蒙日的庞斯列(1788-1867)

2.庞斯列曾任拿破仑的远征军的工兵中尉,1812年莫斯科战役被俘,度过了两年铁窗生活,在这两年里,庞斯列不借助于任何书本,以炭为笔,在监狱的墙壁上谱写了射影几何的新篇章。获释后他整理出版了《论图形的射影性质》,这部著作立即掀起了19世纪射影几何发展的巨大波澜,带来了这门学科历史的黄金时期

3.庞斯列利用连续性原理引入虚元素,强调对偶原理,深入研究了极点与极线的概念,给出了极点到极线和从极线到极点的变换的一般表述

4.在庞斯列用综合的方法为射影几何奠基的同时,德国数学家莫比乌斯在《重心计算》(1827)一书中第一次引进了齐次坐标,后被普吕克发展为更一般的形式。这种代数方法遭到了以庞斯列为首的综合派学者的反对,因此19世纪的射影几何就是在综合派的与代数的两大派之间的激烈争论中前进的,支持庞斯列的还有斯坦纳 沙勒 和施陶特

5.1850年前后,数学家们对于射影几何与欧氏几何在一般概念与方法上已经作出区别,但对这两种几何的逻辑关系不甚了了。即使综合派的著作中也仍然用长度的概念,实际上长度不是射影概念。施陶特在1847年的《位置几何学》中提出一套方案,给交比以重新定义:

4

23

24131/

x x x x x x x x ----,这样施陶特不借助长度概念就得到了建立射影几何的基本工具,从而使射影几何摆脱了度量关系,成为与长度等度量概念无关的全新的学科,施陶特还指出:射影几何的概念在逻辑上要先于欧氏几何的概念,因而射影几何比欧氏几何更基本。

6.施陶特的工作鼓舞了英国数学家凯莱(1821-1895)和普吕克的学生克莱因进一步在射影几何概念基础上建立欧氏几何与非欧氏几何的特例,从而为以射影几何为基础来统一各种几何学铺平了道路。

三 几何学的统一

1.统一几何学的第一大胆计划是由德国数学家克莱因(1849-1925)提出的,1872年,克莱因在爱尔朗根大学任数学教授就职演讲《爱尔朗根纲领》中阐述了几何学统一的思想。(射影几何,仿射几何,欧氏几何)当然,并非所有的几何都能纳入克莱因的方案,如代数几何,微分几何。 2.克莱因1886年受聘于哥廷根大学担任教授,因为这位创造性天才和组织能力完美结合的他的到来,使得哥廷根大学更富科学魅力.希

尔伯特就是被克莱因引向哥廷根的最重要的年轻数学家1862-1943,他提出了另一条统一几何学的途径---公理化方法。

3.公理化方法始于欧几里得,然而当19世纪数学家们重新审视《原本》中的公理体系时,却发现它有许多隐蔽的假设,模糊的定义及逻辑的缺陷,这就迫使他们着手重新建立欧氏几何以及其他包含同样弱点的几何的基础。其中希尔伯特在《几何基础》(1899)中使用的公理化方法最为成功。

第一章仿射坐标与仿射变换

本章将主要介绍仿射变换的概念,并在仿射坐标系下研究图形的仿射不变量和仿射不变性。

§1 透视仿射对应

定义1.1共线三点的A,B,C的单比表示为(ABC),且

AC

(ABC)=

BC

AC,BC是有向线段的数量,其中,点A﹑B称为基点,C称为分点。

显然,当C在A,B之间时,(ABC)<0;否则,(ABC)>0。当C为线段AB中点时,(ABC)=-1。

当A与C重合时,(ABC)=0;B与C重合时,(ABC)不存在。

定义1.2 在一平面上设有直线l和l′,m为此平面上与l和l′均不平行的方向直线,通过直线l上任意一点A,作与m平行的直线,交l′于A′,这样得到的直线l上点到l′上点的一一对应,称为透视仿射对应.

若直线l与l′相交,则交点是自对应点或二重点(不变点)。

显然,两直线间的透视仿射对应,与方向直线有关,不同的方向决定不同的对应关系。

仿上述定义,可定义两平面π和π′间的透视仿射对应。

若平面π和π′相交于直线l,则直线l上的每个点都是透视仿射对应下的自对应点,直线l叫做透视轴,简称轴。当平面π和π′平行时,则不存在透视轴。

透视仿射对的性质:

(1)透视仿射对应保持结合性

透视仿射对应使点对应点,直线对应直线,这种性质称为同素性。

(2)透视仿射对应保持结合性

点A在直线a上,经过透视仿射对应后,对应点A ′在对应直线a′上,也就是说,点和直线的结合关系在透视仿射对应下保持不

变。

(3)透视仿射对应保持共线三点的单比不变

若平面π内共线三点A ,B ,C 经过透视仿射对应后在平面

π′上的象是A ′,B ′,C ′,则(ABC )=(A ′B ′C ′)。

证明

由于 AA ′∥BB ′∥CC , 所以有

BC AC =C B C A '

''

'

(ABC )=(A ′B ′C ′)

(4)透视仿射对应保持二直线的平行性

证明 设平面π内两直线 a ∥b ,经过透视仿射对应后,在平面π′内的象分别为a ′﹑b ′

假设,a ′与b ′不平行,且 a ′∩b ′=P ′,那么 P ′的原象P 在π上。

由点和直线的结合性,点P 一定同时在直线a 和b 上,即a ∩b=P ,这与a ∥b 矛盾。

透视仿射对应的性质: (1)保持同素性;

(2)保持点和直线的结合性; (3)保持共线三点单比不变; (4)保持二直线的平行性。

§2 仿射对应与仿射变换

定义2.1 设同一平面内有n 条直线a 1,a 2,…,a n , ?1,?2,…,?n ,顺次表示a 1到a 2 ,a 2到a 3,。。。,a n-1到a n 的透视仿射对应,经过这

一串透视仿射对应,使a1上的点与a n上的点建立了一一对应,这个对应称为a1到a n的仿射对应,用?表示,于是有

?=?n-1·?n-2·…·?2·?1

如果直线a1与a n重合,则a1到a n的仿射对应叫做a1到直线自身的仿射变换。

仿此,可定义两平面间的仿射对应。

所以两平面间的仿射对应也是有限次透视仿射对应的结果。

若两平面重合,仿射对应称为仿射变换。

仿射对应和仿射变换都是一串透视仿射对应的乘积。因此有下列性质:

(1)保持同素性和结合性;

(2)保持共线三点单比不变;

(3)保持直线的平行性。

定义2.2 若两个平面间(平面到自身)的一个点对应(变换)保持同素性,结合性和共线三点的单比不变,则这个点对应(变换)称为仿射对应(变换)。

注意:平行四边形经过仿射对应(变换)后,对应图形仍为平行四边形;两条平行线段经过仿射对应(变换)后,其长度之比不变。根据定义2。1,由透视仿射对应的性质,显然,透视仿射对应当∏π1与πn重合时,仿射对应称为平面π1到自身的仿射变换。

不难证明,仿射对应和仿射变换保持直线的平行性;而且,两条平行线段的长度之比经仿射对应(变换)后不改变。平行四边形经仿射对应和仿射变换后仍为平行四边形。

§1.3 仿射坐标

3.1 仿射坐标系

设O - xy 为平面内笛卡儿坐标系,E(1,1)为单位点,P(x,y)

是平面上一点。E 1,E 2,P 1,P 2分别为过E ,P 所做 与y 轴和x 轴平行的直线与x 轴和y 轴的交点。则O E 1EE 2 和 O P 1P P 2 均为平行四边形。

经过一个仿射对应后,坐标系O - xy 的对应图形为O ′ - x ′y ′,E ,E 1,E 2,P ,P 1,P 2的对应点依次为 E ′,E 1′,E 2′,P ′,P 1′,P 2′,则O ′E 1′E ′E 2′和 O ′P 1′P ′P 2′也都是平行四边形。

在新坐标系O ′ - x ′y ′中,选取E ′为单位点(1,1),设点P ′在此坐标系下的坐标为(x ′,y ′)。

因为

x = 1

1

OE OP =(P 1E 1O) , x ′= ''''11E O P O = (P 1′E 1′

O ′) ,

y=2

2

OE OP =(P 2E 2O) , y ′ = ''''22E O P O =(P 2′E 2′O ′)

又因为仿射对应保持单比不变,所以有

x = x ′ , y = y ′

定义 3.1 笛卡儿坐标系在仿射对应(变换)下的象叫做仿射坐标系。(x ′,y ′) 叫点P ′在仿射坐标系下的坐标,记做:P ′(x ′,y ′)。

现在我们可以用坐标来表示共线三点单比。

若用e 1′,e 2′表示y

x E O E O ''',则仿射坐标系表示为O ′ - e 1′e 2′,则有

P O ''= x ′e 1′+y ′e 2′

仿射坐标系是笛卡儿坐标系的推广,两坐标轴上的测量单位不一定相等,笛卡儿坐标系是仿射坐标系当两轴上测量单位相等时的特殊情况。

定理 3.1 设共线三点P i (i=1,2,3)的仿射坐标顺次为(x i ,y i )(i=1,2,3)则单比

(P 1P 2P 3)=2

31

32313y y y y x x x x --=--

证明

23132313231332313231321)P P (P x x x x OE OP OE OP OE OP OE OP OP OP OP OP P P P P P P P P x

X

x X

x X

x X X X X X X

X X

X --=

--

=--==

= 同理,

(P 1P 2P 3)=

2

31

3y y y y --

定理3.2 在仿射坐标系下,经过两点P 1(x 1,y 1)P 2(x 2,y 2)的直线的方程为

01

112

2

11=y x y x y x 证明 在直线P 1P 2上任取一点P (x,y ),则有

2

31

32313y y y y x x x x --=--

01

112

2

11=y x y x y x 反之,凡满足上述方程的x,y ,所对应的点P (x,y )必在直线P 1P 2上。

所以上述方程是经过两点P 1(x 1,y 1)P 2(x 2,y 2)的直线的方程。 由此可知,在仿射坐标系下,直线的方程是一次方程

Ax+By+C=0 (A 2+B 2≠0)

反之,一次方程Ax+By+C=0 (A 2+B 2≠0) 的图形一定是直线。

3.2 仿射变换的代数表示

设有一个仿射变换T ,将 仿射坐标系O -e 1e 2变为O ′- e 1′e 2′,将点P (x,y )变成点P ′,且P ′在仿射坐标系O – e 1e 2下的坐标是(x ′,y ′), 以下我们来推导两组坐标(x,y )与(x ′,y ′)之间的关系式。

设O ′, e 1′,e 2′在O - e 1e 2下的坐标分别为(a 13,a 23),{a 11,a 21},{a 12,a 22},

由前面讨论,我们知道P ′在坐标系O ′ - e 1′e 2′下的坐标为(x,y ).

由于 P O '= O O ' + P O ''

而且 O O '= a 13e 1+a 23e 2

P O ''= xe 1′+y e 2′

另外

e 1′ = a 11e 1+a 21e 2

e 2′ = a 12e 1+a 22e 2

所以

P O ' = (a 13e 1+a 23e 2)+ x (a 11e 1+a 21e 2 ) +y (a 12e 1+a 22e 2 )

=(a 11x+a 12y+a 13)e 1+(a 21x+a 22y+a 23)e 2 另外,还有

P O ' =x ′e 1+y ′ e 2

因此

??

?++='++='23

222113

1211a y a x a y a y a x a x (1.1) 由于e 1′,e 2′是两不共线矢量,所以

△= 22

211211a a a a ≠0

定理 3.3 平面上的仿射变换在仿射坐标系下的代数表达式为(1。1),其中 x, y 的系数满足△≠0 。

推论 不共线三对对应点唯一确定一个仿射变换。 在(1.1)式中,由于△≠0,可以解出它的逆式,即

??

?+'+'=+'+'=2

221

11γβαγβαy x y y x x (1.2) 其中

△′=

2

21

1βαβα≠0

例1 求使三点O (0,0),E (1,1),P (1,-1)顺次变到点O ′

(2,3),E ′(2,5),P ′(3,-7)的仿射变换。 解 设所求仿射变换为

??

?++='++='23

222113

1211a y a x a y a y a x a x 于是有

2=a 13

3=a 23

2=a 11+a 12+a 13 5= a 21+a 22+a 23

3= a 11-a 12+a 13 -7= a 21-a 22+a 23

解此方程组,得

a 11=1/2,a 12=-1/2,a 13 =2,a 21=-4,a 22=6,a 23=3

故所求仿射变换为

???

?

?++-='+-='3

6422121

y x y y x x

例2 试确定仿射变换,使y 轴,x 轴的象分别为直线x ′+y ′+1=0和x ′-y ′-1=0,且点(1,1)的象为原点。 解 设所求变换的逆变换为式(1。2),于是有 x=0 的象是 α1x ′+β1y ′+γ1=0 也即 x ′+ y ′+ 1 =0 所以

α1x ′+β1y ′+γ1=0 与 x ′+ y ′+ 1 =0表示同一条直线,则有

11

α = 11β = 1

1γ = h

因此

x=h x ′+h y ′+ h 同理,由于

y=0 的象是 α2x ′+β2y ′+γ2=0 即 x ′- y ′- 1 =0 所以

y=k x ′-k y ′-k 另外又有(1,1)的象为(0,0),所以 h=1 , k=-1 所求变换的逆变换式为

??

?+'+'-=+'+'=1

1

y x y y x x 所求变换式为

???

???

?-+='-='121212

121y x y y x x

利用仿射变换的代数表达式可以证明仿射变换的基本性质,下面我们来证明仿射变换保持共线三点单比不变。

设P 1(x 1,y 1)P 2(x 2,y 2)P 3(x 3,y 3)是共线三点,经过仿射变换后,它们的对应点顺次为共线三点P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),P 3′(x 3′,y 3′)

则有

(P 1 P 2P 3)=

2313x x x x --=2

31

3y y y y --=λ

(P 1′ P 2′P 3′)= 2313

x x x x '-''-'=2

313y y y y '-''-'

在仿射变换下,有

(P 1′ P 2′P 3′)= 2

3

13

x x x x '-''-'

=)

()()()(13212211133123111311211113312311a y a x a a y a x a a y a x a a y a x a ++-++++-++ =

)

()()

()(2312231113121311y y a x x a y y a x x a ------

=λ 所以

(P 1 P 2P 3)=(P 1′ P 2′P 3′) 定义3.2 平面上点之间的一个线性变换

??

?++='++='23

222113

1211a y a x a y a y a x a x △ =

22

211211a a a a ≠0

叫做仿射变换。

3.3 几种特殊的仿射变换

(1)正交变换

当仿射变换的系数矩阵T 满足正交条件:TT ′=T ′T=E ,即

???????=+=+=+0

1

1222112

112

22212221211a a a a a a a a 时,仿射变换称为正交变换。正交变换的代数表达式为

??

?++='+-='23

13

cos sin sin cos a y x y a y x x θδθθδθ

(δ= ±1)

(2)位似变换

当仿射变换的系数满足下列条件时,仿射变换称为位似变换,

???+='+='23

13

a ky y a kx x , k ≠0

(3)压缩变换

???='='by

y ax

x , ab ≠0

(4)相似变换

当仿射变换的系数满足下列条件时,称为相似变换,

??

?++='+-='23

1113

11a y a x b y a y b x a x δδ , δ=±1

△ =

0)(2

1211

1

1

1≠+±=-b a a b b a δδ

相似变换总能分解为一个正交变换与一个位似变换的乘积。

§4 仿射性质

定义4.1图形经过仿射变换后保持不变的性质(量)称为图形的仿射性质(仿射不变量)。

同素性,结合性,以及平行性都是仿射性质;共线三点的单比是仿射不变量。

利用仿射变换的代数表示同样可以证明仿射性质。

定理4.1 两条平行直线经过仿射变换后仍变为两条平行直线。

推论1 两条相交直线经仿射变换后仍变为两条相交直线。

推论2 共点直线经仿射变换后,仍变为共点直线。

定理4.2 两条平行线段之比是仿射不变量。

定理4.3 两个三角形面积之比是仿射不变量。

证明设在笛卡儿坐标系下,不共线三点A(x1 ,y1),B(x2,y2),C(x3,y3)经过仿射变换(1。1)后,对应点分别为A′(x1 ′,

y 1′),B ′(x 2′,y 2′),C ′(x 3′,y 3′),于是有

S △ABC =

1

11

21

33

2211

y x y x y x 的绝对值 (1) S △A ′B ′C ′=1

112

13322

11'''

'

''y x y x y x 的绝对值 (2) 由仿射变换代数式(1.1),得

S △A ′B ′C ′=111

2

1

233223211331231123222221132122112312212113

112111a y a x a a y a x a a y a x a a y a x a a y a x a a y a x a ++++++++++++

=

00

111

2123

13

22122111

33

2211

a a a a a a y x y x y x ?的绝对值 = S △ABC |a 11a 22-a 21a 12|

所以

12

2122

11ABC

C B A S S a a

a a -=?'

''?

同理,若三角形DEF 在仿射变换下的对应图形是三角形D ′E ′F ′,则同样有

12

2122

11F E S S a a

a a DEF

D -=?'

''?

所以

ABC C B A S S ?'''?=DEF

D ?'

''?S S F E 即

EF ABC S S D ??=F E C B A S S '

''?'

''?D 这表明两三角形面积比是仿射不变量。

推论1 两平行四边形面积之比是仿射不变量。 推论2 两封闭图形面积比是仿射不变量。

例1 求一仿射变换,将椭圆

122

22=+b

y a x

变成一个圆。

解 设有一个变换

???

???

?='='b y y a

x x 显然,它是一个仿射变换,经过这个变换后,所给椭圆的象为

122='+'y x

这是一个圆。

那么由仿射变换的可逆性,圆经过一个仿射变换后也可以变成椭圆。我们可以从圆的一些性质推倒出椭圆的一些性质。

即三角形存在内切椭圆。

例2 利用仿射变换求椭圆的面积。

解 设在笛氏直角坐标系下,椭圆的方程为

122

22=+b

y a x 经过仿射变换

??

?

??='='y b a y x x 椭圆的对应图形为圆,其方程为

222a y x ='+'

设在仿射变换下,△AOB 对应△AOB ′,其中各点坐标为 A (a,0),O (0,0) , B (0,b) , B ′(0,a) 。 由定理4.3的推论2,有

B O A AOB

S S S S '

''??=

圆椭圆

所以

椭圆S =ab π.

射影几何

南京师范大学 毕业设计(论文) (2009 届) 题目:漫谈射影几何的几种子几何及其关系 学院:数学科学学院 专业:数学与应用数学 姓名:刘峰 学号:0 6 0 5 0 2 1 0 指导教师:杨明升 南京师范大学教务处制

漫谈射影几何的几种子几何及其关系 刘峰 数学与应用数学(师范)06050210 一.摘要 射影几何学是研究图形的射影性质,即它们经过射影变换不变的性质. 射影几何集中表现了投影和截影的思想,论述了同一射影下,一个物体的不同截景所形成的几何图形的共同性质,以及同一物体在不同射影下的几何图形的共同性质,一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊地位,通过它可以把其他一些几何联系起来. 概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的科学. 这门”诞生于艺术的科学”,今天成了最美的数学分支之一. 二.关键词 射影几何,摄影仿射几何,摄影欧氏几何,仿射几何,欧氏几何,射影变换,仿射变换,正交变换,射影变换群,仿射变换群,正交变换群,克莱因变换群. 三.射影几何(projective geometry)的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前. 这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件. 这门几何学就是射影几何学. 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影. 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形. 那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来. 在这个过程中,被描绘下来

射影几何的诞生与发展

射影几何的诞生与发展 一从透视学到射影几何 1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题: (1)一个物体的同一投影的两个截影有什么共同的性质? (2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系? 2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。 3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。 4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。 5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线 6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。 7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点: 1)一个数学对象从一个形状连续变化到另一形状 2)变换与变换不变性 3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量 二射影几何的繁荣 1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

圆锥曲线中的四种经典模型

圆锥曲线中的定点定值问题的四种经典模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:2 2 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2 :()7 l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。(参考优酷视频资料尼尔森数学第一季第13节) 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。 ◆迁移训练 练习1:过抛物线M:px y 22 =上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。(注:本题结论也适用于抛物线与双曲线) 练习2:过抛物线M:x y 42=的顶点任意作两条互相垂直的弦OA 、OB ,求证:直线AB 过定点。(经典例题,多种解法)

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

圆锥曲线和射影几何

圆锥曲线与射影几何 射影几何是几何学的重要内容,射影几何中的一些重要定理与结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。 例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线12 2=-y x 的左支上,A D ≠,直线 CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直 线2 1= x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。 我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据与特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成: 有一点 A 在一条双曲线内部,过A 引两条直线与双曲线分别交于 B , C , D , E 。连 BD ,CE 交于点P ,且P 点在四边形BCDE 外部。 又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连 BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。 D

证明: 对 C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得: DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线, 同理P ,Q ,N 三点共线 所以 P ,Q ,M ,N 四点共线。 又因为 BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A 的极线,即 PQ 是A 的极线。 回到原图,由极线的定义与性质得 PQ OA ,且FAGH 为调与点列。

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计 划书》中提出用变换群对几何学进行分类 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

浅析射影几何及其应用讲解

浅析射影几何及其应用 湖北省黄冈中学 一、概述 射影几何是欧几里得几何学的一个重要分支,研究的是在射影变换中图形所具有的性质。在高等数学中,射影几何的定义是根据克莱因的变换群理论与奥古斯特·费迪南德·莫比乌斯(1970-1868)的齐次坐标理论,这一部分已经涉及了群论和解析几何,但是这两位数学家对于射影几何的发展作出的巨大贡献是令人钦佩的。在本次综合性学习中小组成员对于射影几何的纯几何内容进行了探究,对以下专题进行了研究: 1、射影几何的基本概念及交比不变性 2、笛沙格定理(早期射影几何中最重要的定理之一) 3、对偶原理 4、二次曲线在射影几何上的应用 5、布列安桑定理和帕斯卡定理 6、二次曲线蝴蝶定理

二、研究过程 1、射影几何的基本概念及交比不变性 射影几何虽然不属于高考内容,射影几何与较为容易的中学几何具有更加抽象、难以理解的特点,但是射影几何所研究的图形的性质是极具有吸引力的,可以说是中学几何的一个延伸。 射影几何所研究的对象是图形的位置关系,和在射影变换下图形的性质。射影,顾名思义,就是在光源(可以是平行光源或者是点光源),图形保持的性质。在生活中,路灯下人的影子会被拉长,矩形和圆在光源照射下会出现平行四边形和椭圆的影子,图形的形状和大小发生了变化。然而,在这种变换中图形之间的有些位置关系没有变,比如,相切的椭圆和直线在变换之后仍相切。此外,射影几何最重要的概念之一——交比也不会发生改变。 在中学的几何中,我们认为两条平行的直线是不相交的。但是在射影几何中,我们可以规定一簇平行直线相交于平面上一个无穷远点,而通过这个点的所有直线是一簇有确定方向的平行直线。一条直线有且只有一个无穷远点,平面上方向不同的直线经过不同的无穷远点。所有这样的无穷远点构成了一条无穷远直线,同样在三维空间中可类似地定义出无穷远平面,这样就扩充了两个公理: 1、过两点有且只有一条直线 2、两条直线有且只有一个交点 这两条公理对普通点(即非无穷远点)和无穷远点均成立。这两条公

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

高数学总复习(立体几何与圆锥曲线)

跃龙教育 个性化辅导教案讲义任教科目:数学 授课题目:上学期总复习 年级:高二 任课教师:时侠圣 授课对象:武文娟 合肥跃龙个性化教育 香樟雅苑校区 教学主任签名: 日期: 2015-01-23

跃龙教育个性化辅导授课案 教师:时侠圣学生:武文娟日期: 2015-01-23星期: 周五时段:07:00-09:00

4.两个平面平行的性质有五条: (1)两个平面平行,其中一个平面内的任一直线必平行于另一个平面,这个定理可简记为:“面面平行,则线面平行”。用符号表示是:. // , //β α β αa a? ? (2)如果两个平行平面同时与第三个平面相交,那么它们的交线平行,这个定理可简记为:“面面平行,则线线平行”。用符号表示是:. // , , //b a b a? = ? = ?γ β γ α β α (3)一条直线垂直于两平行平面中的一个平面,它也垂直于另一个平面。这个定理可用于证线面垂直。用符号表示是:. , //β α β α⊥ ? ⊥a a (4)夹在两个平行平面间的平行线段相等. (5)过平面外一点只有一个平面与已知平面平行. (Ⅲ)、线线平行、线面平行、面面平行间的相互转换 例1:已知正四棱锥ABCD P-的底面边长及侧棱长均为13,N M,分别是BD PA,上的点,且 8 5 : :: = =ND BN MA PM. (1)证:直线MN∥平面PBC;(2)求直线MN与平面ABCD所成角的正弦值。 例2:如图,在正四棱锥P ABCD -中,PA AB a ==,点E在棱PC上.问 点E在何处时,// PA EBD 平面,并加以证明. P N M E D C B A E P D C B A

平面几何四大定理

平面几何四大定理 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Me nelau s)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R,则P、Q 、R共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Pto lemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(S imso n)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△A BC的边BC 上的中线,直线CF 交AD 于F 。求 证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F,交CB 于

平面几何四大定理 D 。 求证: 1FA CF EA BE =+。 【分析】连结并延长AG 交BC 于M,则M为BC 的中点。 DEG 截△AB M→1DB MD GM AG EA BE =??(梅氏定理) D GF 截△AC M→1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE + =MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、C A、AB 边上, λ===EA CE FB AF DC BD ,A D、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△B CE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C。求证:AC 2=AB 2+AB ·B C。

射影几何学

射影几何学 射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。 发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在4世纪帕普斯的著作中,出现了帕普斯定理。 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。 射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家——笛沙格和帕斯卡。

笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。 迪沙格在他的著作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用他的名字命名的迪沙格定理:“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。 帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理:“内接于二次曲线的六边形的三双对边的交点共线。”这条定理叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。1658年,他写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。迪沙格和他是朋友,曾经敦促他搞透视学方面的研究,并且建议他要把圆锥曲线的许多性质简化成少数几个基本命题作为目标。帕斯卡接受了这些建议。后来他写了许多有关射影几何方面的小册子。 不过迪沙格和帕斯卡的这些定理,只涉及关联性质而不涉及度量性质(长度、角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意识到,自己的研究方向会导致产生一个新的几何体系射影几何。他们所用的是综合法,随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。 射影几何的主要奠基人是19世纪的彭赛列。他是画法几何的创始人蒙日的学生。蒙日带动了他的许多学生用综合法研究几何。由于迪沙格和帕斯卡等的工作被长期忽视了,前人的许多工作他们不了解,不得不重新再做。 1822年,彭赛列发表了射影几何的第一部系统著作。他是认识到射影几何是一个新的数学分支的第一个数学家。他通过几何方法引进无穷远虚圆点,研究了配极对应并用它来确立对偶原理。稍后,施泰纳研究了利用简单图形产生较复杂图形的方法,线素二次曲线概念也是他引进的。为了摆脱坐标系对度量概念的依赖,施陶特通过几何作图来建立直线上的点坐标系,进而使交比也不依赖于长度概念。由于忽视了连续公理的必要性,他建立坐标系的做法还不完善,但却迈出了决定性的一步。 另—方面,运用解析法来研究射影几何也有长足进展。首先是莫比乌斯创建一种齐次坐标系,把变换分为全等,相似,仿射,直射等类型,给出线束中四条线交比的度量公式等。接着,普吕克引进丁另一种齐次坐标系,得到了平面上无穷远线的方程,无穷远圆点的坐标。他还引进了线坐

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

《几何画板》圆锥曲线的形成和画法

《几何画板》课件制作 ——圆锥曲线的形成和画法 作者:马现岭 摘要 《几何画板》是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。它代表了当代专业工具平台类教学软件的发展方向。 在对《几何画板》进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件。主要包括:用动态效果展示圆锥曲线及截面的形成和圆锥曲线的画法。这两类课件在教学上都有很重要的应用。最新的《普通中学数学课程标准》中强调“教师应向学生展示平面截圆锥得到的椭圆的过程,使学生加深对圆锥曲线的理解,有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。”这表明圆锥曲线的教学在以往的教学过程中存在着很大的困难,由于以往教育技术的落后,无法生动直观的进行讲解。现在有了这个课件,我们就能达到既生动又直观的教学效果。第二类利用《几何画板》实现了轨迹、函数图像的变换以及图像变换的动态演示,并由此法制作了几个有关函数图像变换的课件。第二类课件系统介绍了圆锥曲线的画法,为在教学中提高学生学习兴趣,开展对圆锥曲线的研究,提供了良好的方法和方便的途径。 全文由三部分组成: 第一部分:《几何画板》课件制作的选题原则。 第二部分:详细介绍了我所选择制作的数学课件及其制作过程。 第三部分:学习及应用《几何画板》的体会。 关键词:几何画板、标记向量、椭圆、圆锥曲线、圆锥截面、轨迹。

引言 The Geometer’s Sketchpad 是美国优秀的教育软件。由美国Nicholas Jackiw 和Scott Steketee程序实现,Steven Rasmussen领导的Key Curriculum出版社出版。它的中文名是《几何画板─21世纪的动态几何》,以下简称《几何画板》。它小巧玲珑,操作简单,是数学学习的有力助手。它可以说是我们的数学实验室,因为它能够有效地使数形结合,使我们在数学学习中既理解了数学结论,又得到了数学经验。 众所周知数学是训练逻辑思维的,尤其几何。通过教师的辅导,我们在自己的记忆中形成—套逻辑思维体系。那么怎样才能使我们更好地理解几何知识、掌握逻辑思维方法呢?一个方法是多看、多想,增加我们的学习经验,另一个方法就是寻找良好的辅助工具,帮助我们在动态的几何之中,去观察,探索。《几何画板》就是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。它代表了当代专业工具平台类教学软件的发展方向。 在对《几何画板》进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件,主要包括:用动态效果展示圆锥曲线的形成和圆锥曲线的画法。 这两类课件在教学上都有很重要的应用。这里我所选择的《几何画板》版本为4.04版,目前最高的版本为5.0英文版,此外还有3.03版、4.03版和4.06版. 下面我就课件的选题、制作及使用《几何画板》的感受几方面来展开我的论文。 第一部分几何画板的选题原则

射影几何的起源

射影几何的起源 在欧洲文艺复兴时期,许多著名的画家,包括多才多艺的达·芬奇,以他们非凡的技巧和才能,为透视学的研究,作出了卓越的贡献。他们的成果,很快地影响到几何学,并孕育出一门新的几何学分支——射影几何。 所谓射影是指:从中心O发出的光线投射锥,使平面Q上的图形Ω,在平面P上获得截景Ω1。则Ω1称为Ω关于中心O在平面P上的射影。 射影几何就是研究在上述射影变换下不变性质的几何学。 为射影几何的诞生奠基的,是两位法国数学家:笛沙格(Desargues,1591~1661)和帕斯卡(Pascal,1623~1662)。 公元1636年,笛沙格发表了题为《用透视表示对象的一般方法》一书。 在这本书里,笛沙格首次给出了高度、宽度和深度“测尺”的概念,从而把绘画理论与严格的科学联系起来。 公元1639年,笛沙格在平面与圆锥相截的研究中,取得了新的突破。 他论述了三种二次曲线都能由平截面圆锥而得,从而可以把这三种曲线都看盾成是圆的透视图形。这使有关圆锥曲线的研究,有了一种特别简捷的形式。 不过,笛沙格的上述著作后来竟不幸失传,直到200年后,公元1845年的一天,法国数学家查理斯,由于一个偶然的机会,在巴黎的一个旧书摊上,惊异地发现了笛沙格原稿的抄本,从而使笛沙格这一被埋没了的成果,得以重新发放光辉! 笛沙格之所以能青史留名,还由于以下的定理:如果两个空间三角形对应顶点的三条联线共点,那么它们对应边直线的交点共线。这个定理后来便以笛沙格的名字命名。 有趣的是:把笛沙格定理中的“点”改为“直线”,而把“直线”改为“点”,所得的命题依然成立。即如果两个空间三角形的对应边直线的三个交点共线,那么它们对应顶点的联线共点。 在射影几何中,上述现象具有普遍性。一般地,把一个已知命题或构图中的词语,按以下“词典”进行翻译: 将得到一个“对偶”的命题。两个互为对偶的命题,要么同时成立,要么同时不成立。这便是射影几何中独有的“对偶原理”。 射影几何的另一位奠基者是数学史上公认的“神童”法国数学家帕斯卡。

圆锥曲线的几何性质

培优点十七 圆锥曲线的几何性质 1.椭圆的几何性质 例1:如图,椭圆()22 22+10x y a b a b =>>的上顶点、左顶点、左焦点分别为B 、A 、F ,中 心为O ,则:ABF BFO S S =△△( ) A .(2:3 B .() 3:3 C .(2:2 D .() 3:2 【答案】B 【解析】由ABF ABO BFO S S S =-△△△,得( )() :: :A B F B F O A B O B F O B F O S S S S S a b b c b c = -=-△△ △△ △ 而c a = () :3:3ABF BFO S S =△△,故选B . 2.抛物线的几何性质 例2:已知抛物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在抛物线C 上,点M 在直线:1l x =-上的射影为A ,且直线AF 的斜率为MAF △的面积为( ) A B .C .D .【答案】C 【解析】 设准线l 与x 轴交于点N ,所以2FN =,因为直线AF 的斜率为60AFN ∠=?,

所以4AF =, 由抛物线定义知,MA MF =,且60MAF AFN ∠=∠=?,所以MAF △是以4为边长的正三 2 4=C . 3.双曲线的几何性质 例3:已知点P 是双曲线2213664 x y -=的右支上一点,M ,N 分别是圆()2 2104x y ++=和 () 2 2101x y -+=上的点,则PM PN -的最大值为_________. 【答案】15 【解析】在双曲线22 13664x y -=中,6a =,8b =,10c =, ()110,0F ∴-,()210,0F ,12212PF PF a -==, 11MP PF MF ≤+,22PN PF NF ≥-,112215PM PN PF MF PF NF ∴-≤+-+=. 一、单选题 1.抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值为1,则p =( ) A .12 B .1 C .2 D .4 【答案】C 【解析】抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值即到准线的最小值, 很明显满足最小值的点为抛物线的顶点,据此可知: 12 p =,2p ∴=.本题选择C 选项. 2.设点1F ,2F 是双曲线2 2 13y x -=的两个焦点,点P 是双曲线上一点,若1234PF PF =, 则12PF F △的面积等于( ) A . B . C . D .对点增分集训

相关主题