搜档网
当前位置:搜档网 › 太阳能电池片检验规范

太阳能电池片检验规范

太阳能电池片检验规范
太阳能电池片检验规范

1.0目的:

规范产品检验标准,进一步提升从业人员的检验水平,保证产品质量能够满足客户的需求。

2.0范围:

适用于公司太阳能电池片检验。

3.0定义:

3.1 IQC:负责供应商来料检测与判定。

3.2 FQC:负责半成品与成品的检测与判定。

4.0检验依据:GB/2828.1 抽样标准:MIL-STD-105E Ⅱ抽样, AQL:CR =0 MAJ =0.65 MIN=1.5

5.0检验条件:在750LUX光照条件下检验,产品与肉眼距离为30—40cm。

6.0职责:

5.1品质部IQC负责电池片来料抽检工作,按照上述抽样标准执行判定。

5.2组件部负责对IQC抽样合格后的电池片进行全检。

7.0内容:

7.1电池片等级划分为ABC三个级别(A级为最高标准),单个级别出现任何不合格项(1项),必须降为下一个等级,依此类推;低于B级标准的电池片归类为C级片直接退货。

7.2 电池片颜色划分为:蓝、淡蓝、深蓝、天蓝等。

9.0其它

所有来料电池片外观不能量化的标准以实物限度样品为判定依据(如:色差、赃污等)。

10.0参考文件

《产品规格书》及相关标准

11.0支持文件

(无)

12.0支持性表单

《IQC检验报告》、《《品质异常反馈单》 .

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

光伏电站验收标准

太阳能光伏发电系统验收考核办法 第一章总则 为确保太阳能光伏发电系统在现场安装调试完成后,综合检验太阳能光伏发电系统的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 第二章验收标准 第一条编制依据 (一)太阳能光伏发电系统验收规范CGC/GF003.1-2009 (二)建筑工程施工质量验收统一标准GB50300 (三)建筑结果荷载规范GB50009-2001 (四)电气设备交接试验标准GB50150 (五)电气装置安装工程接地装置施工及验收规范GB50169 (六)电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 (七)电气装置安装工程低压电器施工及验收规范GB50254 (八)电器安装工程高压电器施工及验收规范GBJ147 (九)建筑电气工程施工质量验收规范GB50303 (十)光伏组件(PV)安全鉴定第一部分:结构要求GB/T20047.1-2006

(十一)光伏系统性能监测测量、数据交换和分析导则GB/T20513-2006 (十二)(所有部分)交流1000V和直流1500V以下低压配电系统电气安全-防护措施的试验测量或监控设备GB/T18216 (十三)光伏系统并网技术要求GB/T19939 (十四)光伏(PV)系统电网接口特性GB/20046 (十五)地面用晶体硅光伏组件设计鉴定和定型IEC:61215 2005 (十六)并网光伏发电系统文件、试运行测试和检查的基本要求ICE:62446:2009 (十七)保护装置剩余电流动作的一般要求ICE/TR60755:2008 (十八)400V以下低压并网光伏发电专用逆变器技术要求和试验方法CNCA/CTS0004-2009 (十九)太阳能光伏发电运行规程 (二十)电力建设施工及验收技术规程DL/T5007 (二十一)太阳能光伏发电系统技术说明书、使用手册和安装手册 (二十二)太阳能光伏发电系统订货合同中的有关技术性能指标要求 (二十三)太阳能光伏发电系统基础设计图纸与有关标准 第二条验收组织机构 太阳能光伏发电工程调试完成后,建设单位组建验收领导小

光伏组件生产四 EL检测

光伏组件生产四——EL检测 太阳能电池组件缺陷检测仪——即EL测试仪是利用晶体硅的电致发光原理、利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。 EL 检测仪具有灵敏度高、检测速度快、结果直观形象等优点,是提升光伏组件品质的关键设备;红外检测可以全面掌握太阳电池内部问题,为改进生产工艺提供依据,提升产品质量,可以对问题组件进行及时返修,尽可能的降低损失。方便层压前和层压后太阳能电池组件的测试,更换不同规格的太阳能电池组件后设备能方便地调整,保证太阳能电池组件的安全。 使用EL检测仪 通过EL测试仪可以清楚的发现太阳能组件电池片上的黑斑、黑心以及组件中的裂片,包括隐裂和显裂、劣片及焊接缺陷等问题,从而及时发现生产中出现的问题,及时排除,进而改进工艺。对提高效率和稳定生产都有重要的作用,因而太阳电池电致发光测试仪被认为是太阳电池产线上的“眼睛”。 EL检查的生产工艺及注意事项 不同规格的电池片要使用不同的电流和电压,具体如下 注意事项

1.使用前确保太阳能电池组件规格是否有调整,严禁未经调整随意测试 不同规格的组件。 2.太阳能电池组件在传输过程中不得随意拉动或者停止太阳能电池组件,确保人员和产品的安全。 3.在检查直流电源前,请在切断电源10分钟后再用万用表等确认进行工作。 4.禁止随意使用U盘拷贝数据,避免病毒传染,重要数据流失。 5.如一段时间不使用,应同时关闭电脑及所有电源。 6.打开直流稳压电源后,确认电源上面的数值是否符合规格。 7.请勿在暗箱内放置任何物体。 EL检测阶段常见问题及解决方法 1、破片 生产过程中由于铺设、层压操作不当导致热应力、机械应力作用不均匀都有可能出现破片现象。 2、黑芯 黑芯一般是由于原材料商在拉硅棒的时候没有拉均匀所致。 3、断栅 断栅的原因是丝网印刷参数没调好或丝网印刷质量不佳,或者是硅片切割不均匀,也有可能出现断层现象。 4、暗片

太阳能电池板标准测试方法

太阳能电池板标准测试方法 (2011-03-14 21:30:56) 转载 标签: 杂谈 太阳能电池板标准测试方法 (模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢?

答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般 白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上.环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来转换电能的,照度越强功率值越大 太阳能电池和电池板测试解决方案 已有 158 次阅读2011-6-25 11:51|个人分类:光伏文档|关键词:解决方案太阳能电池电池板 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方案大体又有两种: 一是全套专用的系统, 二是利用现有标准化仪器及软件进行系统集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,如用于太空或在地面上,测量精度、速度和参数的重要性会有不同,但有一些在任何测试环境都必

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

太阳能电池板标准测试方法

太阳能电池板标准测试方法(模拟太阳能光) 一、开路电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为开路电压; 二、短路电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,直接测试值为短路电流; 三、工作电压:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,正负极并联一个相对应的电阻,(电阻 值的计算:R=U/I),测试值为工作电压; 四、工作电流:用500W的卤钨灯,0~250V的交流变压器,光强设定为3.8~4.0万LUX,灯与测试平台的距离大约为15-20CM,串联一个相对应的电阻,(电阻值的计算:R=U/I),测试值为工作电流。 问:太阳能电池板在阴天或日光灯下能产生电吗? 答:准确的说法是产生很小的电流.基本上可以说是忽略不计. 问:在白炽灯下或阳光下能产生多大电流? 答:在白炽灯下距离远近都是有差别的.同样阳光下上午,中午,下午,产生的电流也是不同的. 问:太阳能测试标准是什么?在白炽灯下多大灯泡多远距离测试算标准呢? 答:太阳能测试标准光照强度为:40000LUX,温度:25度.我们做过测试一般白炽灯100W, 距离0.5-1CM,这样测试和标准测试相差不大. 问:太阳能电池板寿命是多长时间? 答:一般封装方式不同使用寿命会不同,一般钢化玻璃/铝合金外框封装寿命20年以上. 环氧树脂封装15年以上. 问:为什么太阳能电池在太阳底下和出厂测试参数不同? 答: 99%工厂用流明计测出的是光通量的数值.但是实际上太阳能电池板是根据照度来 转换电能的,照度越强功率值越大 迅速增长的太阳能产业对太阳能电池及电池板测试有极为紧迫的需要。如今的解决方 案大体又有两种:一是全套专用的系统,二是利用现有标准化仪器及软件进行系统 集成。集成的方案能建造更低成本的测试系统,并可根据测试要求的变化修改测试系统。例如,如果您的测试要求更高精度或更宽电流范围,需要更换的就只是测试系统 中的个别仪器,而不是整个系统。此外,标准化的硬件和软件也可用于其它的测试系统。太阳能电池在研发、质量保证和生产中都需要测试。虽然对于不同的行业和应用,

光伏发电工程验收规范GBT50796-2012

光伏发电工程验收规范(GB/T 50796-2012) 1总则 1.0.1为确保光伏发电工程质量,指导和规范光伏发电工程的验收,制定本规范。 1.0.2本规范适用于通过380V及以上电压等级接人电网的地面和屋顶光伏发电新建、改建和扩建工程的验收,不适用于建筑与光伏一体化和户用光伏发电工程。 1.0.3光伏发电工程应通过单位工程、工程启动、工程试运和移交生产、工程竣工四个阶段的全面检查验收。 1.0.4各阶段验收应按要求组建相应的验收组织,并确定验收主持单位。 1.0.5光伏发电工程的验收,除按本规范执行外,尚应符合国家现行有关标准的规定。

2术语 2.0.1光伏发电工程photovoltaic power project 指利用光伏组件将太阳能转换为电能、并与公共电网有电气连接的工程实体,由光伏组件、逆变器、线路等电气设备、监控系统和建(构)筑物组成。 2.0.2光伏电站photovoltaic power station 指利用光伏组件将太阳能转换为电能、并按电网调度部门指令向公共电网送电的电站,由光伏组件、逆变器、线路、开关、变压器、无功补偿设备等一次设备和继电保护、站内监控、调度自动化、通信等二次设备组成。 2.0.3光伏发电单元photovoltaic power unit 光伏电站中,以一定数量的光伏组件串,通过直流汇流箱多串汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。这种一定数量光伏组件串的集合称为光伏发电单元。 2.0.4观感质量quality of appearance 通过观察和必要的量测所反映的工程外在质量。 2.0.5绿化工程plant engineering 由树木、花卉、草坪、地被植物等构成的植物种植工程。 2.0.6安全防范工程security and protection engineering 以保证光伏电站安全和防范重大事故为目的,综合运用安全防范技术和其他科学技术,为建立具有防入侵、防盗窃、防抢劫、防破坏、防爆安全检查等功能(或其组合)的系统而实施的工程。

2020年 太阳能组件玻璃检验标准 A-0-工艺部-三级文件-安全作业管理

文件制修/ 订记录表

1 目的 明确玻璃检验标准. 2 范围 本规范适用于各种规格型号太阳能组件专用玻璃的进厂质量检验。 3 定义 无 4 相关文件 《太阳能电池组件玻璃检验作业检验指导书》 GB/T9963-1998钢化玻璃国家检验标准 5 职责 5.1 质量部:依照标准制定相应检验指导书。 5.2 采购部:将标准传递至供应商,并与供应商签订技术协议。 6 管理内容 6.1 外观检验

6.2 几何尺寸检验 6.2.1 长度,宽度符合订货协议要求,允许偏差为±1.0mm。 6.2.2 厚度尺寸公差为±0.2mm。 6.2.3 对角线L﹤1000mm,偏差为≤1.5mm;1000mm≤L≤2000mm,偏差为≤3mm 3.2.4 倒角 2.0mm~5.0mm 6.3 性能检验 6.3 性能检验 6.4 检测仪器,仪表及工卡量具 钢板尺或钢卷尺、游标卡尺或千分尺、钢球。 6.5 检验方法 6.5.1 外观检验 在较好的自然光或自然散射光下,距玻璃表面600mm用肉眼进行观察,必要时使用 放大镜进行检查。 6.5.2 尺寸检验 依据订货协议技术要求用钢板尺或钢卷尺进行多点长宽尺寸测量,取其平均值;用 精度为0.01mm的千分尺测量玻璃各边中心的厚度,取其平均值。 6.5.3 弯曲度检验 以平面钢化玻璃制品为试样。试样垂直立放,水平放置直尺贴紧试样表面进行测量。 弓形时以弧的高度与弦的长度之比的百分率表示。波形时,用波谷到波峰的高与波

峰到波峰或波谷到波谷的距离之比的百分率表示。 6.5.4 机械强度检验 6.5.4.1 将试样放置在高50mm宽15mm与试样外形尺寸大小一致的木框上。 6.5.4.2 将重1040g的钢球自1.0m高度自由落下,冲击点应距试样中心25mm范围 内。每块试样中心只限一次。(备注:试样玻璃单独放置,不可流入生产线使用) 6.5.4.3 试样完好无损。 6.5.5 其它各项性能检验以采购部从厂家索取的性能检验报告为准,性能检验报告完全符 合3.3标准条款时方可认为性能合格,否则认为性能指标不合格。(针对不同厂家、 不同项目定期进行委托检验). 7 安全 无 8 职工健康 无 9 记录 无 10 附件 无

太阳能电池片生产制造工艺

太阳能电池(硅片)的生产工艺原理 太阳能电池片的生产工艺流程分为硅片检测——表面制绒——扩散制结——去磷硅玻璃——等离子刻蚀——镀减反射膜——丝网印刷——快速烧结等。具体介绍如下: 一、硅片检测 硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试模组主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。 二、表面制绒 单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 三、扩散制结 太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 四、去磷硅玻璃 该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。

第三章 太阳电池测试

第三章太阳电池测试 3.1太阳模拟器 3.1.1概述 太阳电池是将太阳能转变成电能的半导体器件,从应用和研究的角度来考虑,其光电转换效率、输出伏安特性曲线及参数是必须测量的,而这种测量必须在规定的标准太阳光下进行才有参考意义。如果测试光源的特性和太阳光相差很远,则测得的数据不能代表它在太阳光下使用时的真实情况,甚至也无法换算到真实的情况,考虑到太阳光本身随时间、地点而变化,因此必须规定一种标准阳光条件,才能使测量结果既能彼此进行相对比较,又能根据标准阳光下的测试数据估算出实际应用时太阳电池的性能参数。 3.1.2太阳辐射的基本特性 3.1.2.1几个描述光的物理概念: (1)发光强度。按照1979年第16届国防计量会议(CGPN)确定,以坎德拉(cd)为发光强度的计量单位。坎德拉是一光源在给定的方向上的光强度,该光源发出频率为5401012Hz的光学辐射,且在此方向上的辐射强度为1/683WSr-1 (2)光通量。光通量的单位是流明(lm),它用来计量所发出的总光量,发光强度为1cd的点光源,向周围空间均匀发出4流明的光能量。 (3)光强度。指照射于一表面的光强度,它用勒克斯(lx)作为单位,当1lm光通量的光强射到1m2面积上时,该面积所受的光照度(简称照度)就是1lx。 (4)辐射度,通常称为光强,即入射到单位面积上的光功率,单位是W/m2或mw/cm2。 3.1.2.2辐照度及其均匀性

对空间应用,规定的标准辐照度为1367w/m2(另一种较早的标准规定为1353 w/m2),对地面应用,规定的标准辐照度为1000 w/m2。实际上地面阳光和很多复杂因素有关,这一数值仅在特定的时间及理想的气候和地理条件下才能获得。地面上比较常见的辐射照度是在600~900 w/m2范围内,除了辐照度数值范围以外,太阳辐射的特点之一是其均匀性,这种均匀性保证了同一太阳电池方阵上各点的辐照度相同。 3.1.2.3光谱分布 太阳电池对不同波长的光具有不同的响应,就是说辐照度相同而光谱成分不同的光照射到同一太阳电池上,其效果是不同的,太阳光是各种波长的复合光,它所含的光谱成分组成光谱分布曲线,而且其光谱分布也随地点、时间及其它条件的差异而不同,在大气层外情况很单纯,太阳光谱几乎相当于6000K的黑体辐射光谱,称为AMO光谱。在地面上,由于太阳光透过大气层后被吸收掉一部分,这种吸收和大气层的厚度及组成有关,因此是选择性吸收,结果导致非常复杂的光谱分布。而且随着太阳天顶角的变化,阳光透射的途径不同吸收情况也不同。所以地面阳光的光谱随时都在变化。因此从测试的角度来考虑,需要规定一个标准的地面太阳光谱分布。目前国内外的标准都规定,在晴朗的气候条件下,当太阳透过大气层到达地面所经过的路程为大气层厚度的1.5倍时,其光谱为标准地面太阳光谱,简称AM1.5标准太阳光谱。此时太阳的天顶角为48.19,原因是这种情况在地面上比较有代表性。 3.1.2.4总辐射和间接辐射 在大气层外,太阳光在真空中辐射,没有任何漫射现象,全部太阳辐射都直接从太阳照射过来。地面上的情况则不同,一部分太阳光直接从太阳照射下来,而另一部分则来自大气层或周围环境的散射,前者称为直接辐射,后者称为天空辐射。二部分合起来称为总辐射,在正常的大气条件下,直接辐射占总辐射的75%以上,否则就是大气条件不正常所致,例如由于云层反射或严重的大气污染所致。 3.1.2.5辐照稳定性 天气晴朗时,阳光辐照是非常稳定的,仅随高度角而缓慢的变化,当天空有浮云或严重的气流影响时才会产生不稳定现象,这种气候条件

电池片检测标准

ICS 陕西省地方标准 DB61/T XXXX—2011 地面用晶体硅光伏组件 检验规则 (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施陕西省质量技术监督局发布

前言 本标准是根据我省太阳能光伏产业发展的实际需求,以GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》为依据,参照GB/T 9535-1998《地面用晶体硅光伏组件设计型式和定型》结合国内外晶体硅光伏产业的现状和发展趋势制订的。 本标准由陕西电子信息集团有限公司提出。 本标准由陕西省工业和信息化厅归口。 本标准由陕西电子信息集团有限公司、陕西电子信息集团西安黄河光伏科技股份有限公司、中电投西安太阳能电力有限公司、碧辟普瑞太阳能有限公司、应用材料西安有限公司共同负责起草。 本标准主要起草人:牛军旗、柳军、李拉平、孙涛、王帅、巨小宝、严泊、吕喜臣、王晓英、张爱亮、朱文献。 本标准为首次发布。 I

地面用晶体硅光伏组件检验规则 1范围 本标准规定了地面用晶体硅光伏组件的技术要求、试验方法和检验规则等。 本标准适用于地面用晶体硅光伏组件(以下简称组件)的检验验收。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2828.1 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划 GB/T 6495.1 光伏器件第1部分:光伏电流-电压特性的测量 GB/T 9535 地面用晶体硅光伏组件设计型式和定型 DB61/T XXXX-2011 地面用晶体硅光伏组件用原材料检验规则 3技术要求 3.1原材料 组件用原材料应符合DB61/T XXXX-2011《地面用晶体硅光伏组件用原材料检验规则》的要求。 3.2外观要求 表1 外观要求 1

单晶硅太阳能电池检验标准

单晶硅太阳能电池检验标准 单晶硅太阳电池检验标准……………………………… EV A检验标准…………………………………………… 钢化玻璃检验标准……………………………………… TPT检验标准…………………………………………… 铝型材检验标准………………………………………… 涂锡焊带检验标准……………………………………… 双组分有机硅导热灌封胶检验标准…………………… 有机硅橡胶密封剂检验标准…………………………… 组件质量检测标准……………………………………… EV A检验标准 晶体硅太阳电池囊封材料是EV A,它乙烯与醋酸乙烯脂的共聚物,化学式结构如下 (CH2—CH2)—(CH—CH2) | O | O — O — CH2 EV A是一种热融胶粘剂,常温下无粘性而具抗粘性,以便操作,经过一定条件热压便发生熔融粘接与交联固化,并变的完全透明,长期的实践证明:它在太阳电池封装与户外使用均获得相当满意的效果。 固化后的EV A能承受大气变化且具有弹性,它将晶体硅片组“上盖下垫”,将硅晶片组包封,并和上层保护材料玻璃,下层保护材料TPT(聚氟乙烯复合膜),利用真空层压技术粘合为一体。 另一方面,它和玻璃粘合后能提高玻璃的透光率,起着增透的作用,并对太阳电池组件的输出有增益作用。 EV A厚度在0.4mm~0.6mm之间,表面平整,厚度均匀,内含交联剂,能在150℃固化温度下交联,采用挤压成型工艺形成稳定胶层。 EV A主要有两种:①快速固化②常规固化,不同的EV A层压过程有所不同 采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.4mm的EVA膜层作为太阳电池的密封剂,使它和玻璃、TPT之间密封粘接。 用于封装硅太阳能电池组件的EV A,主要根据透光性能和耐侯性能进行选择。 1. 原理 EV A具有优良的柔韧性,耐冲击性,弹性,光学透明性,低温绕曲性,黏着性,耐环境应力开裂性,耐侯性,耐化学药品性,热密封性。 EV A的性能主要取决于分子量(用熔融指数MI表示)和醋酸乙烯脂(以V A表示)的含量。当MI一定时,V A的

单晶硅太阳电池性能测试实验

实验一、单晶硅太阳电池特性测试 一、 实验目的 1.了解单晶硅太阳电池的工作原理和结构。 2.了解单晶硅太阳电池的外特性。 3.了解单晶硅太阳电池外特性的影响因素。 二、 实验仪器 1.单晶硅太阳电池板 一块 2.单晶硅太阳电池阵列 一块 3.光源(氙灯) 一套 4.调压器 一台 5.数字万用表 两块 6.定值变阻 若干 7.光辐射计 一块 三、 实验任务 1. 模拟太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。 测量记录日期、时间和地点,绘制电池的外形结构图并记录电池几何参数(用于计算电池面积),并记录太阳光当时辐射强度,按照图1所示实验原理图接线。 (1) 在室内太阳光模拟器下,分别测试光强为1 sun (1000 W/m 2)、0.5 sun (500 W/m 2)下的电池短路电流(I sc )和空载电压(U oc ),以及输出外 特性曲线。 (2) 具体测量方法:分别在上述一定光强下,逐步改变电阻箱(负载)的阻值R L ,分别测量电池两端的I 和U 。根据测量结果绘制上述不同条件下的电池外特性曲线。 图1 单晶硅电池阵列外特性测试

2.自然太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。 (1)选择户外有太阳光的地方,记录天气状况,测试时间,并测试太阳 光辐射强度; (2)改变单晶硅电池板与地平线的夹角,分别测量在0o、30o和45o夹 角下,电池的短路电流(I sc)和空载电压(U oc)。 (3)分别在上述夹角下,逐步改变电阻箱的阻值(即负载电阻)R L,测 量不同电阻值下的电池两端的I和U,以绘制上述不同条件下的电 池外特性曲线。 3.单晶硅太阳电池电池阵列板的的输出外特性 测量记录日期、时间和地点;记录太阳电池阵列的结构与几何尺寸,应于估算电池面积;记录天气状况、太阳光当时辐射强度,按照图1所示实验原理图接线。 (1)在太阳光照下,水平放置电池阵列板,先测试出在当前光照下的短路电 流(I sc)和空载电压(U oc),在逐步改变负载,测量电池阵列的输出外 特性。 (2)用黑色遮光板遮住一半面积的阵列板,记录电池的短路电流(I sc)和空 载电压(U oc),进一步测量该条件下的外特性曲线。 四、实验结果 1.绘制单电池与阵列板串并联方式简图,标明单电池与电池阵列的有效面积。 单电池有效面积:10.84cm2 电池阵列有效面积:36*10.84cm2 2.整理实验数据,分别绘出单晶硅电池单电池、电池阵列板在不同测试条件下的外特性。 (1)自然光条件下: 0度

太阳能光伏电池组件质量检测标准

本文由彼岸烟花盛贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 组件质量检测标准……………………………………… EVA EVA检验标准晶体硅太阳电池囊封材料是EVA,它乙烯与醋酸乙烯脂的共聚物,化学式结构如下(CH2—CH2)—(CH—CH2) | O | O — O — CH2 EVA是一种热融胶粘剂,常温下无粘性而具抗粘性,以便操作,经过一定条件热压便发生熔融粘接与交联固化,并变的完全透明,长期的实践证明:它在太阳电池封装与户外使用均获得相当满意的效果。固化后的EVA能承受大气变化且具有弹性,它将晶体硅片组“上盖下垫”,将硅晶片组包封,并和上层保护材料玻璃,下层保护材料TPT(聚氟乙烯复合膜),利用真空层压技术粘合为一体。另一方面,它和玻璃粘合后能提高玻璃的透光率,起着增透的作用,并对太阳电池组件的输出有增益作用。 EVA厚度在0.4mm~0.6mm之间,表面平整,厚度均匀,内含交联剂,能在150℃固化温度下交联,采用挤压成型工艺形成稳定胶层。EVA主要有两种:①快速固化②常规固化,不同的EVA层压过程有所不同采用加有抗紫外剂、抗氧化剂和固化剂的厚度为0.4mm的EVA膜层作为太阳电池的密封剂,使它和玻璃、TPT 之间密封粘接。用于封装硅太阳能电池组件的EVA,主要根据透光性能和耐侯性能进行选择。 1. 原理 EVA具有优良的柔韧性,耐冲击性,弹性,光学透明性,低温绕曲性,黏着性,耐环境应力开裂性,耐侯性,耐化学药品性,热密封性。 EVA的性能主要取决于分子量(用熔融指数MI表示)和醋酸乙烯脂(以VA表示)的含量。当MI一定时,VA的弹性,柔软性,粘结性,相溶性和透明性提高,VA的含量降低,则接近聚乙烯的性能。当VA含量一定时,MI降低则软化点下降,而加工性和表面光泽改善,但是强度降低,分子量增大,可提高耐冲击性和应力开裂性。不同的温度对EVA的胶联度有比较大的影响, EVA的胶联度直接影响到组件的性能以及使用寿命。在熔融状态下,EVA 与晶体硅太阳电池片,玻璃,TPT产生粘合,在这过程中既有物理也有化学的键合。未经改性的EVA透明,柔软,有热熔粘合性,熔融温度低,熔融流动性好。但是其耐热性较差,易延伸而低弹性,内聚强度低而抗蠕变性差,易产生热胀冷缩导致晶片碎裂,使得粘接脱层。因此通过采取化学胶联的方式对EVA进行改性,其方法就是在EVA中添加有机过氧化物交联剂,当EVA加热到一定温度时,交联剂分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,当胶联度达到60%以上时能承受大气的变化,不再发生热胀冷缩。测定胶联度原理:通过二甲苯萃取样品中未胶联的EVA,剩下的未溶物就是已经胶联的EVA,假设样品总量为 W1,未溶物的重量为W2,那么EVA的胶联度就为W2/W1*100%。 2. 功能介绍 a). 封装电池片,防止外界环境对电池片的电性能造成影响。 b). 增强组件的透光性。 c). 将电池片,钢化玻璃,TPT粘接在一起,具有一定的粘接强度。 3. 材料介绍 用作光伏组件封装的EVA,主要对以下几点性能提出要求 a). 熔融指数 b). 软化点 c). 透光率影响EVA的融化速度。影响EVA开始软化的温度点。对于不同的光谱分布有不同的透过率,这里主要指的是在AM1.5的光谱分布 条件下的透过率。 d). 密度 e). 比热胶联后的密度。胶联后的比热,反映胶联后的EVA吸收相同热量的情况下温度升高数值的大 小。 f). 热导率胶联后的热导率,反映胶联后的EVA的热导性能。 g). 玻璃化温度反映EVA的抗低温性能。 h). 断裂张力强度胶联后的EVA断裂张力强度,反映了EVA胶联后的抗断裂机械强度。 i). 断裂延长率胶联后的EVA断裂延长率,反映了EVA胶联后的延伸性能。 j). 张力系数 k). 吸水性 l). 胶连率 m). 剥离强度胶联后的EVA张力系数,反映了EVA胶联后的

集团晶硅太阳电池组件质量检验标准修订稿-新版

晶体硅太阳电池组件质量检验标准 (修订稿) 二零一三年九月十六日

《晶体硅太阳电池组件质量检验标准》 编写委员会 主任:张晓鲁 副主任:胡建东吴金华杨存龙 委员:李启钊王怀志孙玉军庞秀兰桑振海李贵信主编:吴金华杨存龙 副主编:李启钊庞秀兰 编写人员:张治卢刚崇锋王雪松董鹏 评审人员:李建勋汪毅徐永邦唐超莫玄超 桑振海付励张雄刘蕾 韩晓冉曹继福严海燕张效乾刘立峰 陈文凯雷力靳旭东徐振兴

前言 为加强中国电力投资集团公司光伏发电站晶体硅太阳电池组件质量检验管理工作,规范光伏发电站晶体硅太阳电池组件质量监造、验收程序,确保光伏发电站建设与生产运营质量,特制订本标准。 本标准编制的主要依据是:现行国家有关工程质量的法律、法规、管理标准、技术标准、GB/T 1.1-2009 标准化工作导则第1部分:标准的结构和编写等有关标准和相关行业标准。 本标准由中国电力投资集团水电与新能源部提出、归口管理并负责解释。

晶体硅太阳电池组件质量检验标准(修订稿) 目录 1总则 (1) 2规范性引用文件 (1) 3工厂检验 (2) 4出厂检验 (12) 5电站现场检验 (13) 6组件送实验室质量检验 (15) 附录 GB/T 2828.1-2003 抽样方法 (16)

1总则 1.1本标准适用于中国电力投资集团公司(以下简称集团公司)及其全资、控股 公司所属或管理的新建和改扩建的光伏发电站工程用晶体硅太阳电池组件质量监造、检验、验收。 1.2本标准适用于中国国内的各地区光伏发电站用晶体硅太阳电池组件(以下简 称组件)的质量检验验收。本标准中的晶体硅太阳电池组件包括单晶硅太阳电池组件、多晶硅太阳电池组件和准单晶太阳电池组件。 1.3本标准所列的检验内容主要包括三种检验,即工厂检验、产品出厂检验和电 站现场检验。 1.4本标准依据国家、行业现行有关工程质量的法律、法规、技术标准编制。1.5本标准未涉及的范围,执行国家现行标准的相关规定。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明年代的引用文件,仅注明年代的版本适用于本文件。凡是不注明年代的引用文件,其最新版本(包括所有的修改单)适用于本文件。 IEC 61730.1-2004 光伏组件安全认证第1部分:光伏组件的安全性构造要求 IEC 61730.2-2004 光伏组件安全认证第2部分:实验要求 IEC 61215 2005-4 地面用晶体硅光伏组件设计鉴定和定型 UL1703-2004 平板光伏组件 GB/T 2828.1-2003 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验 抽样计划 GB/T 1.1-2009 标准化工作导则第1部分:标准的结构和编写 GB/T9535-1998 地面用晶体硅光伏组件设计鉴定和定型 GB/T 18912-2002 光伏组件盐雾腐蚀试验 GB/T 19394-2003 光伏(PV)组件紫外试验 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求 GB/T 6495.1-1996 光伏器件第1部分:光伏电流-电压特性的测量 GB/T 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求 GB/T 6495.3-1996 光伏器件第3部分:地面用光伏器件的测量原理及标准光谱辐照 度数据

太阳能电池特性测试实验报告

太阳电池特性测试实验 太阳能是人类一种最重要可再生能源,地球上几乎所有能源如: 生物质能、风能、水能等都来自太阳能。利用太阳能发电方式有两种:一种是光—热—电转换方式,另一种是光—电直接转换方式。其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。 太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。 太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、 通信、家电以及公用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 一、 实验目的 1. 熟悉太阳电池的工作原理; 2. 太阳电池光电特性测量。 二、 实验原理 (1) 太阳电池板结构 以硅太阳电池为例:结构示意图如图1。硅太阳电池是以硅半导体材料制成的大面积PN 结经串联、并联构成,在N 型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成了太阳电池板。为了减小光的反射损失,一般在表面覆盖一层减反射膜。 (2) 光伏效应 当光照射到半导体PN 结上时,半导体PN 结吸 收光能后,两端产生电动势,这种现象称为光生伏特效应。由于P-N 结耗尽区存在着较强的 图1 太阳能电池板结构示意图

相关主题